SSD1030

Product Preview

Boost Regulating White LED drivers

CONTENTS

1	GENERAL DESCRIPTION	1
2	FEATURES	1
3	ORDERING INFORMATION	1
4	BLOCK DIAGRAM	2
5	SSD1030 PIN ASSIGNMENT AND MARKING	2
6	PIN DESCRIPTIONS	3
7	FUNCTIONAL BLOCK DESCRIPTIONS	. 4
8	INPUT VOLTAGE SETTING	4
9	LED CURRENT SETTING	4
10	MAXIMUM RATINGS	5
11	DC CHARACTERISTICS	6
12	AC CHARACTERISTICS	6
13	APPLICATION EXAMPLES	7
14	PACKAGE DIMENSIONS	9

TABLES

Table 3-1: Ordering Information	3 5 6 6
FIGURES	
Figure 4-1: Block diagram of SSD1030	2
Figure 5-1: Pin assignment diagram (Topview)	2
Figure 13-1: Typical Application with Open Circuit Current Protection	7
Figure 13-2: Typical Application of Li-ion Powered Driver for 3 White LEDs	
Figure 14-1: Package Dimension	
Figure 14-2: Recommended PCB Landing Pattern	10

SOLOMON SYSTECH SEMICONDUCTOR TECHNICAL DATA

1 **GENERAL DESCRIPTION**

SSD1030 is a boost regulating white LED driver designed to drive up to 4 white LEDs in series with constant current.

LED brightness can be adjusted by PWM (Pulse Width Modulation) control or resistor value.

2 **FEATURES**

- V_{IN} operation range 2.4 to 5.0V
- Drive up to 4 LEDs at 3.0V supply
- High efficiency operations: over 80%
- 500KHz Switching Frequency
- Low shutdown current: 1uA max
- Digital brightness control by PWM method
- Analog brightness control by feedback resistor adjustment
- Low feedback voltage minimizes power loss
- TSOT23-5 pin package

3 ORDERING INFORMATION

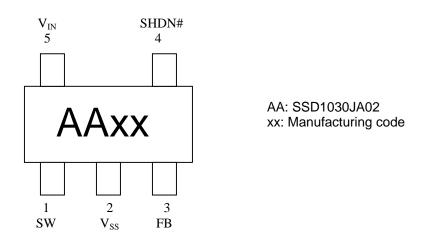
Table 3-1: Ordering Information

Ordering Part Number	Package Form		
SSD1030JA02R3	TSOT23-5		

4 BLOCK DIAGRAM

Oscillator

Logic control


Feedback circuit

SHDN#

Figure 4-1: Block diagram of SSD1030

5 SSD1030 PIN ASSIGNMENT AND MARKING

Figure 5-1: Pin assignment diagram (Topview)

 Solomon Systech
 Dec 2005
 P 2/11
 Rev 0.11
 SSD1030

PIN DESCRIPTIONS

Table 6-1: Pin Descriptions

Pin Name	Type	Pin no.	Description
SW	Ю	1	Power switch switching terminal connecting to external inductor and diode. The signal at SW has high frequency switching properties. Connecting trace should have minimized length to reduce EMI.
V_{SS}	P	2	Ground pin.
FB	Ю	3	Feedback pin. A RFB resistor connected between this pin and ground controlled the LED current (ILED). Relationship between R_{FB} and I_{LED} is: $ILED = Reference \ voltage \ / \ RFB$ where Reference voltage is the voltage at FB, which is 95mV typical.
SHDN#	Ю	4	Shutdown pin. H – Normal operation L – Shutdown mode
V _{IN}	P	5	Input Power supply.

Rev 0.11 P 3/11 Dec 2005 SSD1030 **Solomon Systech**

Note $$^{(1)}$$ Normal operation is to connect the SHDN# pin with $V_{IN};$ Shutdown mode is to connect the SHDN# pin with $V_{SS}.$

7 FUNCTIONAL BLOCK DESCRIPTIONS

7.1 Feedback circuit

The feedback block senses the voltage at FB pin and maintains constant current output ILED.

7.2 Logic Control

This is the main control logic block for the operation of the power switch.

When SHDN# connects to V_{IN} , it generates clocks to the power switch according to the feedback circuit sensing inputs.

When SHDN# connects to V_{SS}, IC operation turns off.

7.3 Oscillator

The internal oscillator generates clock signal for DC/DC switching operations.

7.4 Power Switch

The power switch is the basic element of a boost converter. The control logic block controls the on-off operation of the power switch to achieve boost up function.

8 INPUT VOLTAGE SETTING

For LED voltage required is larger than 14V, V_{IN} voltage should be larger than or equal to 3.0V.

9 LED CURRENT SETTING

The current passing through the LED can be set by external resistor R_{FB} (Refer to application circuit Figure 13-1)

The relationship between RfB and ILED is:

 I_{LED} = Reference voltage / R_{FB} where Reference voltage = 95mV typical

Table 9-1: ILED Configuration Reference Table

ILED current (mA)	R _{FB} resistance (Ω)
2	47.50
4	23.75
6	15.83
8	11.88
10	9.50
12	7.92
14	6.79
16	5.94
18	5.28
20	4.75

 Solomon Systech
 Dec 2005
 P 4/11
 Rev 0.11
 SSD1030

10 MAXIMUM RATINGS

Table 10-1: Maximum Ratings (Voltage Referenced to V_{SS})

Symbol	Parameter	Value	Unit
V _{IN}	Supply voltage	-0.3 to 6.0	V
V_{SW}	Switch voltage	18	V
IOUT-MAX	Output current drive	25	mA
T_A	Operating temperature	-40 to +85	°C
T_{STG}	Storage temperature	-65 to +150	°C
Tj	Junction temperature	125	°C

Note

The device contains ESD protection with the following voltage level:

Human Body Model (HBM) ±2.0kV per JEDEC JESD22 standard for all pins.

Machine Model (MM) ±200V per JEDEC JESD22 standard for all pins except SW pin.

Machine Model (MM) ±150V for SW pin.

Latch-up Rating: ±200mA per JEDEC JESD78standard

Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Description section.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. Reliability of operation is enhanced if unused input is connected to an appropriate logic voltage level (e.g., either V_{SS} or V_{IN}). Unused outputs must be left open. This device is not radiation protected.

SSD1030 | Rev 0.11 | P 5/11 | Dec 2005 | **Solomon Systech**

11 DC CHARACTERISTICS

Conditions:

Unless otherwise specified, Voltage referenced to V_{SS} $V_{IN} = 3.0V$

Table 11-1: DC Characteristics

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
V_{IN}	Operating voltage		2.4	-	5	V
Istd	Shut down supply current				1	uA
Іор	Operating current	Quiescent current, No loading (1)			250	uA
V _{FB}	Feedback voltage		86	95	104	mV
Iswlim	Switch current limit			250		mA
Iswleakage	Switch leakage current				1	uA
VIH	Input Logic High Voltage		0.8 x V _{IN}			V
VIL	Input Logic Low Voltage				0.2 x V _{IN}	V

12 AC CHARACTERISTICS

Conditions:

Unless otherwise specified, Voltage referenced to V_{SS} $V_{IN} = 3.0V$

Table 12-1: AC Characteristics

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
Fsw	Switching frequency	V _{FB} =0V			600	KHz
Dcyc	Maximum duty cycle			85		%

SSD1030 Solomon Systech P 6/11 Rev 0.11 Dec 2005

Note(1) No loading condition applies only for the application circuit in Figure 13-1: Typical Application with Open Circuit Current Protection.

13 APPLICATION EXAMPLES

Figure 13-1: Typical Application with Open Circuit Current Protection

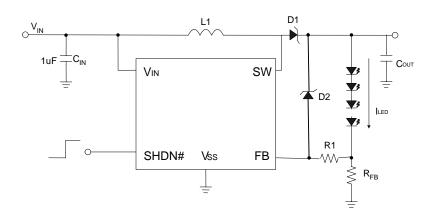
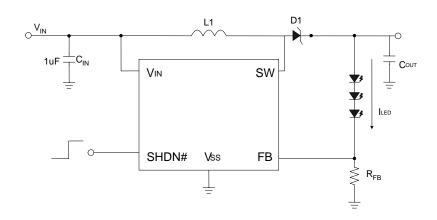


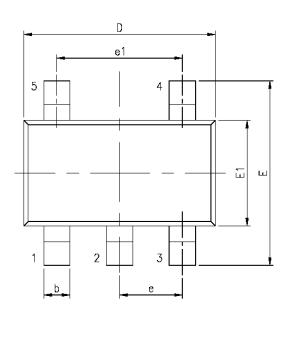
Table 13-1: Typical Component Values of Open circuit current protection application

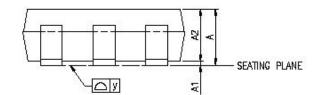
Components	Typical Value	Remark
C_{IN}	1uF, 16V	
C_{OUT}	0.22uF, 25V	
D1	30V, 200mA	Schottky diode, e.g. On Semiconductors BAT54ALT1
D2	18V, 0.1mA rating	Zener diode, DO-35 package, e.g. 1N4112
L1	22uH, 300mA	
R_{FB}	4.75Ω, ±1%	Feedback resistor
R1	1kΩ, ±5%	

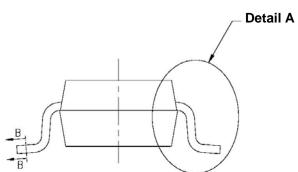
SSD1030 Rev 0.11 P 7/11 Dec 2005 **Solomon Systech**

Figure 13-2: Typical Application of Li-ion Powered Driver for 3 White LEDs




Table 13-2: Typical Component Values of typical application.


Components	Typical Value	Remark
C_{IN}	1uF, 16V	
C_{OUT}	0.22uF, 25V	
D1	30V, 200mA	Schottky diode, e.g. On Semiconductors BAT54ALT1
L1	22uH, 300mA	
R_{FB}	5.6 ohm, ±1%	Feedback resistor


 Solomon Systech
 Dec 2005
 P 8/11
 Rev 0.11
 SSD1030

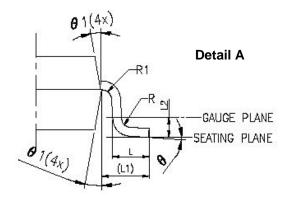
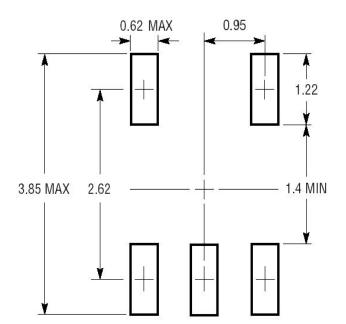

14 PACKAGE DIMENSIONS

Figure 14-1: Package Dimension



	DIMENSIONS IN MILLIMETERS				
SYMBOLS	MIN	TYPICAL	MAX		
Α	,		1.1		
A1	0	-	0.1		
A2	0.7	0.9	1		
b	0.3		0.5		
b1	0.3	0.4	0.45		
С	0.08	-	0.2		
c1	0.08	0.13	0.16		
D		2.9	-		
E	,	2.8	-		
E1	,	1.6	-		
L	0.3	0.45	0.6		
L1	,	0.6	-		
L2	,	0.25	-		
R	0.1	-	-		
R1	0.1	-	0.25		
е	,	0.095	-		
e1		1.9	-		
θ	0°	4°	8°		
θ1	4°	10°	12°		

SSD1030 Rev 0.11 P 9/11 Dec 2005 **Solomon Systech**

Figure 14-2: Recommended PCB Landing Pattern

Unit: mm

 Solomon Systech
 Dec 2005
 P 10/11
 Rev 0.11
 SSD1030

Solomon Systech reserves the right to make changes without notice to any products herein. Solomon Systech makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Solomon Systech assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any, and all, liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typical" must be validated for each customer application by the customer's technical experts. Solomon Systech does not convey any license under its patent rights nor the rights of others. Solomon Systech products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Solomon Systech product could create a situation where personal injury or death may occur. Should Buyer purchase or use Solomon Systech products for any such unintended or unauthorized application, Buyer shall indemnify and hold Solomon Systech and its offices, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Solomon Systech was negligent regarding the design or manufacture of the http://www.solomon-systech.com

Rev 0.11 P 11/11 Dec 2005 SSD1030 Solomon Systech