

Hardware Design SIM900A_HD_V1.01

Document Title:	SIM900A Hardware Design
Version:	1.01
Date:	2009-12-26
Status:	Release
Document Control ID:	SIM900A_HD_V1.01

General Notes

SIMCom offers this information as a service to its customers, to support application and engineering efforts that use the products designed by SIMCom. The information provided is based upon requirements specifically provided to SIMCom by the customers. SIMCom has not undertaken any independent search for additional relevant information, including any information that may be in the customer's possession. Furthermore, system validation of this product designed by SIMCom within a larger electronic system remains the responsibility of the customer or the customer's system integrator. All specifications supplied herein are subject to change.

Copyright

This document contains proprietary technical information which is the property of SIMCom Limited, copying of this document and giving it to others and the using or communication of the contents thereof, are forbidden without express authority. Offenders are liable to the payment of damages. All rights reserved in the event of grant of a patent or the registration of a utility model or design. All specification supplied herein are subject to change without notice at any time.

Copyright © Shanghai SIMCom Wireless Solutions Ltd. 2009

CTHON.

Contents

Contents	
Version history	7
1 Introduction	8
1.1 Related Documents	8
1.2 Terms and Abbreviations	8
2 SIM900A Overview	
2.1 SIM900A Key Features	
2.2 SIM900A Functional Diagram	
2.3 SIM900A Evaluation Board	
3 Application Interface.	
3.1 SIM900A Pin Description	
3.2 Operating Modes	
3.3 Power Supply	21
3.3.1 Power Supply Pins	
3.3.2 Minimizing Power Losses	
3.3.3 Monitoring Power Supply	
3.4 Power Up and Power Down Scenarios	
3.4.1 Turn on SIM900A	
3.4.2 Turn Off SIM900A	
3.4.3 Restart SIM900A Using the PWRKEY Pin	
3.5 Power Saving	
3.5.1 Minimum Functionality Mode	
3.5.2 Sleep Mode (Slow Clock Mode)	
3.5.3 Wake Up SIM900A from SLEEP Mode	
3.6 Summary of State Transitions (except SLEEP mode)	
3.7 RTC Backup	
3.8 Serial Interfaces	
3.8.1 Function of serial port & debug port supporting	
3.8.2 Software Upgrade and Software Debug	
3.9 Audio Interfaces	
3.9.1 Speaker Interface Configuration	
3.9.2 Microphone Interfaces Configuration	
3.9.3 Earphone Interface Configuration	
3.9.4 Referenced Electronic Characteristic	
3.10 SIM Card Interface	
3.10.1 SIM Card Application	
3.10.2 Design Considerations for SIM Card Holder	
3.11 LCD Display Interface	
3.12 Keypad Interface	

SIM900 Hardware Design	A company of SIM Tech
3.13 ADC	
3.14 Behaviors of the RI	
3.15 Network Status Indication	
3.16 General Purpose Input Output (GPIO)	
3.17 External Reset	
3.18 PWM	
3.19 I2C Bus	
4 Antenna Interface	
4.2 Module RF Output Power	
4.3 Module RF Receive Sensitivity	
4.4 Module Operating Frequencies	
5 Electrical, Reliability and Radio Characteristics	
5.1 Absolute Maximum Ratings	
5.2 Operating Temperatures	
5.5 Electro-Static Discharge	
6 Mechanics	
6.1 Mechanical Dimensions of SIM900A	
6.2 Top and Bottom View of the SIM900A	
6.3 PIN Assignment of SIM900A	
6.4 The Ramp-Soak-Spike Reflow Profile of SIM900.	A
STHOM CONT	

Table Index

TABLE 1: RELATED DOCUMENTS	8
TABLE 2: TERMS AND ABBREVIATIONS	8
TABLE 3: SIM900A KEY FEATURES	13
TABLE 4: CODING SCHEMES AND MAXIMUM NET DATA RATES OVER AIR INTERFACE	15
TABLE 5: PIN DESCRIPTION	17
TABLE 6: OVERVIEW OF OPERATING MODES	20
TABLE 7: PIN DEFINITION OF THE SERIAL INTERFACES	
TABLE 8: LOGIC LEVELS OF THE SERIAL PORT AND DEBUG PORT	32
TABLE 9: PIN DEFINE OF THE AUDIO INTERFACE	35
TABLE 10: MIC INPUT CHARACTERISTICS	38
TABLE 11: AUDIO OUTPUT CHARACTERISTICS	38
TABLE 12: PIN DEFINE OF THE SIM INTERFACE	38
TABLE 13: PIN DESCRIPTION (AMPHENOL SIM CARD HOLDER)	
TABLE 14: PIN DESCRIPTION (MOLEX SIM CARD HOLDER)	41
TABLE 15: PIN DEFINE OF THE LCD INTERFACE	42
TABLE 16: PIN DEFINE OF THE KEYPAD INTERFACE	
TABLE 17: ADC SPECIFICATION	44
TABLE 18: BEHAVIOURS OF THE RI.	
TABLE 19: WORKING STATE OF THE NETLIGHT	45
TABLE 20: PIN DEFINE OF THE GPIO INTERFACE	
TABLE 21: PIN DEFINE OF THE PWM	
TABLE 22: PIN DEFINE OF THE I2C BUS	48
TABLE 23: SIM900A CONDUCTED RF OUTPUT POWER	48
TABLE 24: SIM900A CONDUCTED RF RECEIVE SENSITIVITY	48
TABLE 25: SIM900A OPERATING FREQUENCIES	49
TABLE 26: ABSOLUTE MAXIMUM RATINGS	49
TABLE 27: SIM900A OPERATING TEMPERATURE	49
TABLE 28: SIM900A POWER SUPPLY RATINGS	50
TABLE 29: SIM900A CURRENT CONSUMPTION	50
TABLE 30: THE ESD ENDURE STATUE MEASURED TABLE (TEMPERATURE: 25 °C, HUMIDITY:45%)	51
TABLE 31: PIN ASSIGNMENT	55
S	

Figure Index

FIGURE 1: SIM900A FUNCTIONAL DIAGRAM	
FIGURE 2: TOP VIEW OF SIM900A EVB	
FIGURE 3: REFERENCE CIRCUIT OF THE VBAT INPUT	
FIGURE 4: REFERENCE CIRCUIT OF THE SOURCE POWER SUPPLY INPUT	
FIGURE 5: VBAT VOLTAGE DROP DURING TRANSMIT BURST	
FIGURE 6: TURN ON SIM900A USING DRIVING CIRCUIT	
FIGURE 7: TURN ON SIM900A USING BUTTON	
FIGURE 8: TIMING OF TURN ON SYSTEM USING PWRKEY	24
FIGURE 9: TURN ON SIM900A USING DRIVING CIRCUIT FIGURE 10: TURN ON SIM900A USING BUTTON	
FIGURE 10: TURN ON SIM900A USING BUTTON	
FIGURE 11: TIMING OF TURN ON SYSTEM USING PWRKEY AND PWRKEY_OUT	
FIGURE 12: TIMING OF TURN OFF SYSTEM USING PWRKEY	
FIGURE 13: TIMING OF TURN OFF SYSTEM USING PWRKEY AND PWRKEY_OUT	
FIGURE 14: TIMING OF RESTART SYSTEM	
FIGURE 14: TIMING OF RESTART SYSTEM	
FIGURE 16: RTC SUPPLY FROM NON-CHARGEABLE BATTERY FIGURE 17: RTC SUPPLY FROM RECHARGEABLE BATTERY EIGURE 18: PTC SUPPLY FROM CAPACITOR	
FIGURE 17: RTC SUPPLY FROM RECHARGEABLE BATTERY	
FIGURE 18: RTC SUPPLY FROM CAPACITOR	
FIGURE 19: SEIKO XH414H-IV01E CHARGE CHARACTERISTIC	
FIGURE 20: CONNECTION OF THE SERIAL INTERFACES	
FIGURE 21: CONNECTION OF SOFTWARE UPGRADE AND SOFTWARE DEBUG	
FIGURE 22: RS232 LEVEL CONVERTER CIRCUIT	
FIGURE 23: SPEAKER INTERFACE CONFIGURATION	
FIGURE 24: SPEAKER INTERFACE WITH AMPLIFIER CONFIGURATION	
FIGURE 25: MICROPHONE INTERFACE CONFIGURATION	
FIGURE 26: EARPHONE INTERFACE CONFIGURATION	
FIGURE 27: REFERENCE CIRCUIT OF THE 8 PINS SIM CARD	
FIGURE 28: REFERENCE CIRCUIT OF THE 6 PINS SIM CARD	
FIGURE 29: AMPHENOL C707 10M006 512 2 SIM CARD HOLDER	40
FIGURE 30: MOLEX 91228 SIM CARD HOLDER	41
FIGURE 31: REFERENCE CIRCUIT OF THE KEYPAD INTERFACE	
FIGURE 32: ARCHITECTURE OF ADC	
FIGURE 33: SIM900A SERVICES AS RECEIVER	
FIGURE 34: SIM900A SERVICES AS CALLER	
FIGURE 35: REFERENCE CIRCUIT OF NETLIGHT	
FIGURE 36: RESET TIMING	
FIGURE 37: TOP AN SIDE MECHANICAL DIMENSIONS OF MODULE (UNIT: MM)	
FIGURE 38: BOTTOM MECHANICAL DIMENSIONS OF MODULE (UNIT: MM)	
FIGURE 39: RECOMMENDED PCB DECAL (UNIT: MM)	53
FIGURE 40: TOP VIEW OF THE SIM900A	
FIGURE 41: SIM900A PIN OUT DIAGRAM (TOP VIEW)	
FIGURE 42: THE RAMP-SOAK-SPIKE REFLOW PROFILE OF SIM900A	
SIM900_HD_V1.01 6	26.12.2009

Version history

Date	Version	Description of change	Author
2009-12-26	1.01	Origin	Ligang
		COL	
Ś			

1 Introduction

This document describes the hardware interface of the SIMCom SIM900A module that connects to the specific application and the air interface. As SIM900A can be integrated with a wide range of applications, all functional components of SIM900A are described in great detail.

This document can help you quickly understand SIM900A interface specifications, electrical and mechanical details. With the help of this document and other SIM900A application notes, user guide, you can use SIM900A module to design and set-up mobile applications quickly.

1.1 Related Documents

Table 1: Related documents

SN	Document name	Remark	
[1]	SIM900A_ATC	SIM900A_ATC	
[2]	ITU-T Draft new recommendation V.25ter:	Serial asynchronous automatic dialing and control	
[3]	GSM 07.07:	Digital cellular telecommunications (Phase 2+); AT command set for GSM Mobile Equipment (ME)	
[4]	GSM 07.10:	Support GSM 07.10 multiplexing protocol	
[5]	GSM 07.05:	Digital cellular telecommunications (Phase 2+); Use of Data Terminal Equipment – Data Circuit terminating Equipment (DTE – DCE) interface for Short Message Service (SMS) and Cell Broadcast Service (CBS)	
[6]	GSM 11.14:	Digital cellular telecommunications system (Phase 2+); Specification of the SIM Application Toolkit for the Subscriber Identity Module – Mobile Equipment (SIM – ME) interface	
[7]	GSM 11.11:	Digital cellular telecommunications system (Phase 2+); Specification of the Subscriber Identity Module – Mobile Equipment (SIM – ME) interface	
[8]	GSM 03.38:	Digital cellular telecommunications system (Phase 2+); Alphabets and language-specific information	
[9]	GSM 11.10	Digital cellular telecommunications system (Phase 2); Mobile Station (MS) conformance specification; Part 1: Conformance specification	
[10]	AN_Serial Port	AN_Serial Port	

1.2 Terms and Abbreviations

Table 2: Terms and AbbreviationsSIM900_HD_V1.01

Abbreviation	Description
ADC	Analog-to-Digital Converter
AMR	Adaptive Multi-Rate
ARP	Antenna Reference Point
ASIC	Application Specific Integrated Circuit
BER	Bit Error Rate
BTS	Base Transceiver Station
СНАР	Challenge Handshake Authentication Protocol
CS	Coding Scheme
CSD	Circuit Switched Data
CTS	Clear to Send
DAC	Digital-to-Analog Converter
DRX	Discontinuous Reception
DSP	Digital Signal Processor
DTE	Data Terminal Equipment (typically computer, terminal, printer)
DTR	Data Terminal Ready
DTX	Discontinuous Transmission
EFR	Enhanced Full Rate
EGSM	Enhanced GSM
EMC	Electromagnetic Compatibility
ESD	Electrostatic Discharge
ETS	European Telecommunication Standard
FCC	Federal Communications Commission (U.S.)
FDMA	Frequency Division Multiple Access
FR	Full Rate
GMSK	Gaussian Minimum Shift Keying
GPRS	General Packet Radio Service
GSM	Global Standard for Mobile Communications
HR	Half Rate
I/O	Input/Output
IC	Integrated Circuit
IMEI	International Mobile Equipment Identity
Abbreviation	Description
kbps	Kilo bits per second
LED	Light Emitting Diode
Li-Ion	Lithium-Ion
МО	Mobile Originated
MS	Mobile Station (GSM engine), also referred to as TE

SIM900 Hardware Design	A contribution of annu toru
MT	Mobile Terminated
PAP	Password Authentication Protocol
РВССН	Packet Switched Broadcast Control Channel
РСВ	Printed Circuit Board
PDU	Protocol Data Unit
РРР	Point-to-point protocol
RF	Radio Frequency
RMS	Root Mean Square (value)
RTC	Real Time Clock
RX	Receive Direction
SIM	Subscriber Identification Module
SMS	Short Message Service
TDMA	Time Division Multiple Access
TE	Terminal Equipment, also referred to as DTE
ТХ	Transmit Direction
UART	Universal Asynchronous Receiver & Transmitter
URC	Unsolicited Result Code
USSD	Unstructured Supplementary Service Data
VSWR	Voltage Standing Wave Ratio
Vmax	Maximum Voltage Value
Vnorm	Normal Voltage Value
Vmin	Minimum Voltage Value
VIHmax	Maximum Input High Level Voltage Value
VIHmin	Minimum Input High Level Voltage Value
VILmax	Maximum Input Low Level Voltage Value
VILmin	Minimum Input Low Level Voltage Value
VImax	Absolute Maximum Input Voltage Value
VImin	Absolute Minimum Input Voltage Value
VOHmax	Maximum Output High Level Voltage Value
VOHmin	Minimum Output High Level Voltage Value
VOLmax	Maximum Output Low Level Voltage Value
VOLmin	Minimum Output Low Level Voltage Value
Inorm	Normal Current
Imax	Maximum Load Current
Phonebook abbreviation	ns
Abbreviation	Description
FD	SIM fix dialing phonebook
LD	SIM last dialing phonebook (list of numbers most recently dialed)

МС	Mobile Equipment list of unanswered MT calls (missed calls)
ON	SIM (or ME) own numbers (MSISDNs) list
RC	Mobile Equipment list of received calls
SM	SIM phonebook
NC	Not connect

1.3 Safety Caution

The following safety precautions must be observed during all phases of the operation. Usage, service or repair of any cellular terminal or mobile incorporating SIM900A module. Manufactures of the cellular terminal should send words the following safety information to users and operating personnel and to incorporate these guidelines into all manuals supplied with the product. If not so, SIMCom does not take on any liability for customer failure to comply with these precautions.

When in a hospital or other health care facility, observe the restrictions about the use of mobiles. Switch the cellular terminal or mobile off, medical equipment may be sensitive to not operate normally for RF energy interference.

Switch off the cellular terminal or mobile before boarding an aircraft. Make sure it be switched off. The operation of wireless appliances in an aircraft is forbidden to prevent interference with communication systems. Forget to think much of these instructions may lead to the flight safety or offend against local legal action, or both.

Do not operate the cellular terminal or mobile in the presence of flammable gases or fumes. Switch off the cellular terminal when you are near petrol stations, fuel depots, chemical plants or where blasting operations are in progress. Operation of any electrical equipment in potentially explosive atmospheres can constitute a safety hazard.

Your cellular terminal or mobile receives and transmits radio frequency energy while switched on. RF interference can occur if it is used close to TV sets, radios, computers or other electric equipment.

Road safety comes first! Do not use a hand-held cellular terminal or mobile when driving a vehicle, unless it is securely mounted in a holder for hands free operation. Before making a call with a hand-held terminal or mobile, park the vehicle.

sos

GSM cellular terminals or mobiles operate over radio frequency signals and cellular networks and cannot be guaranteed to connect in all conditions, for example no mobile fee or a invalid SIM card. While you are in this condition and need emergent help, Please Remember using emergency calls. In order to make or receive calls, the cellular terminal or mobile must be switched on and in a service area with adequate cellular signal strength.

Some networks do not allow for emergency call if certain network services or phone features are in use (e.g. lock functions, fixed dialing etc.). You may have to deactivate those features before you can make an emergency call.

Also, some networks require that a valid SIM card be properly inserted in the cellular terminal or mobile.

WINDER

2 SIM900A Overview

Designed for global market, SIM900A is a dual-band GSM/GPRS engine that works on frequencies EGSM 900MHz and DCS 1800MHz. SIM900A features GPRS multi-slot class 10/ class 8 (optional) and supports the GPRS coding schemes CS-1, CS-2, CS-3 and CS-4.

With a tiny configuration of 24mm x 24mm x 3mm, SIM900A can meet almost all the space requirements in your applications, such as M2M, smart phone, PDA and other mobile devices.

The physical interface to the mobile application is a 68-pin SMT pad, which provides all hardware interfaces between the module and customers' boards.

- The keypad and SPI display interface will give you the flexibility to develop customized applications.
- Serial port and Debug port can help you easily develop your applications.
- One audio channel includes a microphone input and a speaker output,
- Programmable General Purpose Input & Output.

The SIM900A is designed with power saving technique so that the current consumption is as low as 1.5mA in SLEEP mode.

The SIM900A is integrated with the TCP/IP protocol; extended TCP/IP AT commands are developed for customers to use the TCP/IP protocol easily, which is very useful for those data transfer applications.

2.1 SIM900A Key Features

Table 3: SIM900A key features

Feature	Implementation	
Power supply	Single supply voltage $3.4V - 4.5V$	
Power saving	Typical power consumption in SLEEP mode is 1.5mA (BS-PA-MFRMS=5)	
Frequency Bands	 SIM900A Dual-band: EGSM900, DCS1800. The SIM900A can search the 2 frequency bands automatically. The frequency bands also can be set by AT command. Compliant to GSM Phase 2/2+ 	
GSM class	Small MS	
Transmitting power	 Class 4 (2W) at EGSM 900 Class 1 (1W) at DCS 1800 	
GPRS connectivity	 GPRS multi-slot class 10 (default) GPRS multi-slot class 8 (option) GPRS mobile station class B 	

SIM900 Hardware Design	A company of SIM Tech
Temperature range	• Normal operation: -30°C to +80°C
	• Restricted operation: -40° C to -30° C and $+80^{\circ}$ C to $+85^{\circ}$ C ⁽¹⁾
	• Storage temperature -45° C to $+90^{\circ}$ C
DATA GPRS:	• GPRS data downlink transfer: max. 85.6 kbps
	• GPRS data uplink transfer: max. 42.8 kbps
	• Coding scheme: CS-1, CS-2, CS-3 and CS-4
	• Supports the protocols PAP (Password Authentication Protocol) usually used
	for PPP connections.
	• Integrates the TCP/IP protocol.
	• Support Packet Switched Broadcast Control Channel (PBCCH)
CSD:	• CSD transmission rates: 2.4, 4.8, 9.6, 14.4 kbps, non-transparent
	• Unstructured Supplementary Services Data (USSD) support
SMS	• MT, MO, CB, Text and PDU mode
	• SMS storage: SIM card
FAX	Group 3 Class 1
SIM interface	Support SIM card: 1.8V, 3V
External antenna	Antenna pad
Audio features	Speech codec modes:
	• Half Rate (ETS 06.20)
	• Full Rate (ETS 06.10)
	• Enhanced Full Rate (ETS 06.50 / 06.60 / 06.80)
	• Adaptive multi rate (AMR)
	• Echo Cancellation
	• Noise Suppression
Serial port and	Serial Port:
Debug port	• 8-wire modem interface with status and control lines, unbalanced,
	asynchronous.
	• 1.2kbps to 115.2kbps.
	• Serial Port can be used for AT commands or data stream.
	• Supports RTS/CTS hardware handshake and software ON/OFF flow control.
	• Multiplex ability according to GSM 07.10 Multiplexer Protocol.
	• Autobauding supports baud rate from 1200 bps to 115200bps.
	Debug port:
	• 2-wire null modem interface DBG_TXD and DBG_RXD.
	• Can be used for debugging and upgrading firmware.
Phonebook management	Support phonebook types: SM, FD, LD, RC, ON, MC.
SIM Application Toolkit	Support SAT class 3, GSM 11.14 Release 99
Real time clock	Implemented
Timer function	Programmable via AT command
Physical characteristics	Size: 24mm x 24mm x 3mm
	Weight: 3.4g
Firmware upgrade	Firmware upgrade by debug port.
SIM900 HD V1.01	14 26.12.2009

(1) The SIM900A does work, but deviations from the GSM specification may occur.

Coding scheme	1 Timeslot	2 Timeslot	4 Timeslot
CS-1:	9.05kbps	18.1kbps	36.2kbps
CS-2:	13.4kbps	26.8kbps	53.6kbps
CS-3:	15.6kbps	31.2kbps	62.4kbps
CS-4:	21.4kbps	42.8kbps	85.6kbps

Table 4: Coding schemes and maximum net data rates over air interface

2.2 SIM900A Functional Diagram

The following figure shows a functional diagram of the SIM900A and illustrates the mainly functional part:

- The GSM baseband engine
- Flash and SRAM
- The GSM radio frequency part
- The antenna interface
- The Other interfaces

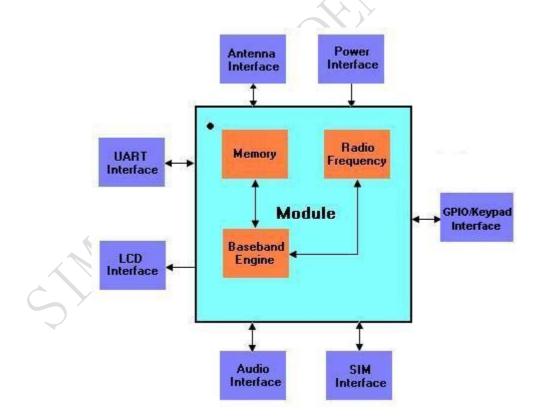


Figure 1: SIM900A functional diagram

2.3 SIM900A Evaluation Board

In order to help you on the application of SIM900A, SIMCom can supply an Evaluation Board (EVB) that interfaces the SIM900A directly with appropriate power supply, SIM card holder, RS232 serial port, handset port, earphone port, line in port, antenna and all GPIO of the SIM900A.

Figure 2: Top view of SIM900A EVB

For details please refer to the SIM900A-EVB_UGD document.

3 Application Interface

SIM900A is equipped with a 68-pin SMT pad that connects to the cellular application platform. Sub-interfaces included in these SMT pads are described in detail in following chapters:

- Power supply (*please refer to Chapter 3.3*)
- Serial interfaces (*please refer to <u>Chapter 3.8</u>*)
- Analog audio interfaces (*please refer to Chapter 3.9*)
- SIM interface (*please refer to Chapter 3.10*)

Electrical and mechanical characteristics of the SMT pad are specified in *Chapter 5*.

3.1 SIM900A Pin Description

Table 5: Pin description

Power Supply					
PIN NAME	I/O	DESCRIPTION	DC CHARACTERISTICS	COMMENT	
VBAT	Ι	3 VBAT pins are dedicated to connect the supply voltage. The power supply of SIM900A has to be a single voltage source of VBAT= 3.4V4.5V. It must be able to provide sufficient current in a transmit burst which typically rises to 2A	Vmax= 4.5V Vmin=3.4V Vnorm=4.0V		
VRTC	I/O	Current input for RTC when the battery is not supplied for the system. Current output for backup battery when the main battery is present and the backup battery is in low voltage state.	Vmax=3.15V Vmin=2.0V Vnorm=3.0V Iout(max)= 300uA Iin=2 uA	If the RTC function is enabled, a battery or capacitor or should be connected with the VRTC pin. Otherwise the VRTC pin. be keep open.	
VDD_EXT	0	2.8V output power supply	Vmax=2.95V Vmin=2.70V Vnorm=2.80V	If unused, keep open.	

SIM900 Hardward	e Desigi	n		A company of SIM Tech
			Iout(max)= 10mA	
GND		Ground		
Power on or po	ower o	ff		
PIN NAME	I/O	DESCRIPTION	DC CHARACTERISTICS	
PWRKEY	I	Voltage input for PWRKEY. PWRKEY should be pulled low to power on or power off the system. The user should keep pressing the key for a short time when power on or power off the system because the system need margin time in order to assert the software.	VILmax=0.15*VDD_EXT VIHmin=0.85* VDD_EXT VImax=VDD_EXT VILmin= 0V	It is already pulled up.
PWRKEY_O	0	Connecting PWRKEY and	VOHmin= VDD_EXT-0.1V	
UT		PWRKEY_OUT for a short	VOLmax=0.1V	
		time then release also can	VOHmax= VDD_EXT	
		power on or power off the module.	VOLmin= 0V	
Audio interfac	es			
PIN NAME	I/O	DESCRIPTION	DC CHARACTERISTICS	COMMENT
MIC_P	Ι	Positive and negative voice	Audio DC Characteristics refer to	If unused keep
MIC_N		band input	chapter 3.9	open
SPK_P	0	Positive and negative voice		If unused keep
SPK_N		band output		open
LINEIN_R LINEIN_L	Ι	Line input		If unused keep open
GERNERAL I	PURP	OSE input/output		
PIN NAME	I/O	DESCRIPTION	DC CHARACTERISTICS	COMMENT
STATUS	0	Indicate working status	VILmax=0.15 *VDD_EXT VIHmin=0.85*VDD_EXT	If unused keep open
NETLIGHT	0	Indicate net status	VILmin= 0V VIHmax= VDD_EXT	If unused keep open
DISP_DATA	I/O		VOHmin= VDD_EXT-0.1V	
DISP_CLK	0		VOLmax=0.1V	If unused keep
DISP CS	0	Display interface	VOHmax= VDD_EXT	open
DISP D/C	0		VOLmin= 0V	
SCL	0	I ² C bus clock		If unused keep
SCL	0	1 C DUS CIOCK		n unuseu keep

SDAI/Oi [°] C bus dataopenKBR0-KBR4OIf cusued keep these pins openKBC0-KBC4IKeypad interfacePall up to VDD_EXT, if unused keep pins openSecial portFOSecial portIReceive dataVILmax=0.15 *VDD_EXT VILmin=0VD_EXT VILmin=0VD_EXT VILmin=0VD_EXT VID_EXTDTR Pin has been pulded UP to the pulded VID_EXT if unused keep pin openRXDOTransmit dataVILmax=0.15 *VDD_EXT VILmin=0VD_EXT VID_EXT if VID_EXT if unused keep pin openRXIORing indicator VOLmax=0.1V VOLmax=0.1V VOLmax=0.1V VOLmax=0.1V VOLmin=VDD_EXTIONVDD_EXT. if unused keep pin openDSROData carry detect vOLmin=0VVOLmax=0.1V VOLmin=0VVID VOLmax=0.1V VOLmin=0VDBG_TXDOSerial interface for debugging and firmware upgradeVILmax=0.15 *VDD_EXT VILmin=0VD_EXT VILmin=0VD_EXT VILmin=0VIf unused keep pin sopenDBG_RXDISerial interface for vOLmax=0.1V VOLmax	SIM900 Hardware Design A company of SIM Te					
KBC0-KBC4IKeypad interfaceIntegrationKBC0-KBC4IKeypad interfacePull up to VDD_EXT, if unused keep pins openSerial portIDESCRIPTIONDC CHARACTERISTICSCOMMENTRXDIReceive dataVII.max=0.15 *VDD_EXTDER pin has been pulled up to VDD_EXT.Dern pin has been pulled up toRXDIReceive dataVII.min=0.8*VDD_EXTDern pin has been pulled up toRTSIRequest to sendVII.min=VDD_EXT.Dern pulled up toRTSOClear to sendVOI.max=0.1VVDD_EXT.I I' unused keep pin openDSROData Set ReadyVOI.max=VDD_EXTVDD_EXT.I I' unused keep pin openDFRIData carry detectVOI.max=VDD_EXTIf funin=VDD_EXTDDatg interfaceVII.max=0.1S *VDD_EXTIf unused keep pin openDBG_TXDOSerial interface for debugging and firmware upgradeVII.max=0.1S *VDD_EXTIf unused keep pins openDBG_RXDIDESCRIPTIONDC CHARACTERISTICSCOMMENTDBG_RXDIDESCRIPTIONDC CHARACTERISTICSCOMMENTSIM_InterfaceVII.min=0VVII.min=0VVII.min=0VSIM_DATAI/ODESCRIPTIONDC CHARACTERISTICSCOMMENTSIM_DATAI/OSIM data outputVII.max=0.1S*ND_VDDAll signals ofSIM_DATAI/OSIM clockVII.max=0.1S*NLVDDAll signals ofSIM_RSTOSIM clockVII.max	SDA	I/O	I ² C bus data		open	
KBCO-KBC4 KBC0-KBC4IKeypad interfacePull up to VDD_EXT, if unused keep pins openSecial portFPIN NAMEIODESCRIPTIONDC CHARACTERISTICSCOMMENTRXD1Receive dataVILmax=0.15 *VDD_EXTDTR Pin has been pulled up toTXD0Transmit dataVILmax=0.15 *VDD_EXTDTR Pin has been pulled up toRTSIRequest to sendVILmin=0VVD_EXT.CTS0Clear to sendVILmin=0VVDD_EXT.DSR0Data Set ReadyVOHmax=VDD_EXTVDD_EXT.DCD0Data carry detectVOLmin=0VDTR1Data terminal ReadyVOLmin=0XOC CMARACTERISTICSCOMMENTDBG_TXD0Scrial interface for upgradeVILmax=0.15 *VDD_EXTIf unused keep pins openDBG_TXD0Scrial interface for upgradeVILmin=0.85*VDD_EXTpins openDBG_RXD10ESCRIPTIONDC CHARACTERISTICSCOMMENTDBG_RXD10DESCRIPTIONDC CHARACTERISTICSCOMMENTSIM_MATAIODESCRIPTIONDC CHARACTERISTICSCOMMENTSIM_DATAIOSIM data outputVILmax=0.15 *SIM_VDDAll signals ofSIM_RST0SIM resetVILmax=SIM_VDDAll signals ofSIM_RST0SIM resetVILmax=SIM_VDDAll signals ofSIM_RST0SIM resetVILmax=SIM_VDDAll signals ofSIM_RST0SI	KBR0~KBR4	0			If unused keep	
IntervenceImage: Constraint of the second secon					these pins open	
Serial portunused keep pins openPIN NAMEI/ODESCRIPTIONDC CHARACTERISTICSCOMMENTRXDIReceive dataVILmax=0.15 *VDD_EXTbeen pulledRTSIRequest to sendVILmin= 0Vup toCTSOClear to sendVILmin=VD_EXT-0.1VVDD_EXT. IfRIORing indicatorVOLmax=0.1VVDD_EXT-0.1VDSROData carry detectVOLmin= 0VVDTDSROData carry detectVOLmin= 0VVOLmin= 0VDrug interfaceDDESCRIPTIONDC CHARACTERISTICSCOMMENTDBG_TXDOSerial interface for debugging and firmware upgradeVILmax=0.1S *VDD_EXTIf unused keep pins openDBG_RXDIDSerial interface for debugging and firmware upgradeVILmax=0.1S *VDD_EXT VILmin=0VIf unused keep pins openDBG_RXDIDDESCRIPTIONDC CHARACTERISTICSCOMMENTDBG_RXDIDDESCRIPTIONDC CHARACTERISTICSCOMMENTSIM_UDDOVoltage supply for SIM card automatically either 1.8V or 3VCommentSIM_DATAI/OSIM data outputVILmax=0.15 *SIM_VDDAll signals ofSIM_RSTOSIM resetVILmin=0VVILmin=0XVOLmin= VDSIM resetVILmin=0XVILmin=0XVOLmin= VDSIM resetVILmin=0XVILmin=0XVILMINSIM resetVILmin=0XVILmin=0XVOLmin=0VSIM_VDDAll signals of<	KBC0~KBC4	Ι	Keypad interface			
Serial portpins openSerial portUPIN NAMEI/ODESCRIPTIONDC CHARACTERISTICSCOMMENTRXDIReceive dataVILmai=0.15 *VDD_EXTDTR Pin hasTXDOTransmit dataVILmin=0.85 *VDD_EXTDTR Pin hasTXDOTransmit dataVILmin=0VuptoRTSIRequest to sendVILmin=0VVD_EXT.VDD_EXT. IfUnimationORing indicatorVOHmax=VDD_EXTVDD_EXT.VDD_EXT.DSROData set ReadyVOHmax=0.1VVOHmax=0.1Vvolemax=0.1VDCDOData carry detectVOLmax=0.1VVOHmax=VDD_EXTvolemax=0.1S *VDD_EXTDCDODescRIPTIONDC CHARACTERISTICSCOMMENTDBG_TXDOSerial interface for debugging and firmware upgradeVILmax=0.1S *VDD_EXT VOHmin=VD_EXT-0.1V VOHmax=VDD_EXT VOHmin=0VIf unused keep pins openDBG_RXDIODescRIPTIONDC CHARACTERISTICSCOMMENTSIM interfaceVILmax=0.1V VOHmin=VD_EXT-0.1V VOHmax=VDD_EXT VOHmin=0VCOMMENTSim openSIM_DATAI/OSIM data outputVILmax=0.15 *SIM_VDDAll signals ofSIM_CLKOSIM data outputVILmax=0.15 *SIM_VDDAll signals ofSIM_RSTOSIM resetVILmin=0V VOHmin=SIM_VDDAll signals ofSIM_RSTOSIM resetVILmin=0V VOHmin=SIM_VDDAll signals ofSIM_RSTOSIM resetVILmin=0V 						
Serial portPIN NAMEI/ODESCRIPTIONDC CHARACTERISTICSCOMMENTRXDIReceive dataVILmax=0.15 *VDD_EXTDTR Pin hasTXDOTransmit dataVIIImin=0.85*VDD_EXTuptoRTSIRequest to sendVIImin=VDVD_EXT. IfuptoCTSOClear to sendVOIImin=VDD_EXTVDD_EXT. Ifunused keepPIORing indicatorVOLmax=0.1VvOlmax=0.1Vunused keepDCDOData carry detectVOLmin= 0VVOIvolmin=0VDEbug interfacePIN NAMEI/ODESCRIPTIONDC CHARACTERISTICSCOMMENTDBG_TXDOSerial interface for debugging and firmware upgradeVIImax=0.15 *VDD_EXTIf unused keep pins openPIN NAMEI/ODESCRIPTIONDC CHARACTERISTICSCOMMENTDBG_RXDIVIEmax=0.15 *VDD_EXTIf unused keep volmax=0.1Vvolmax=0.1VVOImax=0.1VVOImax=0.1VVOImax=0.1Vvolmax=0.1VVOImax=0.1VVOImax=0.1VVOImax=0.1Vvolmax=0.1VVOImax=0.1VVOImax=0.1VVOImax=0.1Vvolmax=0.1VVOImax=0.1VVOImax=0.1VVOImax=0.1Vvolmax=0.1VVOImax=0.1VVOImax=0.1VVOImax=0.1S *VDD_EXTfill signals ofSIM_DDIOVoltage supply for SIM cardThe voltage can be select by software automatically either 1.8V or 3VSIM_DATAI/OSIM data outputVIImax=0.1S *SIM_VDDA					1	
PIN NAMEI/ODESCRIPTIONDC CHARACTERISTICSCOMMENTRXDIReceive dataVILmax=0.15 *VDD_EXTDTR Pin hasTXDOTransmit dataVIImin=0.85*VDD_EXTbeen pulledRTSIRequest to sendVILmin=0.85*VDD_EXTuptoCTSOClear to sendVIImmax=VDD_EXTVDD_EXT. IfRIORing indicatorVOHmax=VDD_EXTvOImax=0.1VDCDOData Set ReadyVOImax=0.1VvOImax=0.1VDCDOData carry detectVOI.min= 0Vvoi.min=0VDrong interfaceVDEscriptionDC CHARACTERISTICSCOMMENTDBG_TXDOSerial interface for upgradeVIImax=0.15 *VDD_EXT VIImin=0.85*VDD_EXT VOImin=VD_EXT VOImin=VD_EXT VOImin=VD_EXT VOImin=0VIf unused keep pin sopenDBG_RXDIDESCRIPTIONDC CHARACTERISTICSCOMMENTDBG_RXDIDESCRIPTIONDC CHARACTERISTICSCOMMENTSIM interfaceVIImin=0.85*VDD_EXT VOImin=VD_EXT VOImin=0VVOImax=0.1V VOImax=0.1V VOImax=0.1V VOImin=0VAll signals ofSIM_VDDOVoltage supply for SIM cardThe voltage can be select by software automatically either 1.8V or 3VAll signals ofSIM_DATAI/OSIM clockVIImin=0.8*S*SIM_VDDAll signals ofSIM interface vOImin=0VSIM_RSTOSIM resetVIImin=0.V VIImax=SIM_VDDAll signals ofVIImin=0.V vOImax=0.1V VOImin=0VAll signals ofSIM_RSTO	Serial nort				pins open	
RXDIReceive dataVILmax=0.15 *VDD_EXTDTR Pin has been pulled up toTXDOTransmit dataVILmin=0.85*VDD_EXTbeen pulled up toRTS1Request to sendVILmin=0Vup toCTSOClear to sendVILmin=VD_EXTVDD_EXT. If unused keep pin openRIORing indicatorVOLmax=0.1VVDD_EXTDCDOData Set ReadyVOLmax=VDD_EXTVOLmax=0.1VDCDOData carry detectVOLmin= VDVOLDTRIData terminal ReadyDC CHARACTERISTICSCOMMENTDBG_TXDOSerial interface for upgradeVILmax=0.15 *VDD_EXT VILmax=0.15 *VDD_EXT upgradeIf unused keep pin openDBG_RXDISerial interface for upgradeVILmax=0.15 *VDD_EXT VOImin= VD_EXT VOImax=0.1V VOImax=0.1S *SIM_VDDAll signals of SIM interface a protectedSIM_DATAI/OSIM clockVIImin=0X VIImin=0		I/O	DESCRIPTION	DC CHARACTERISTICS	COMMENT	
TXD0Transmit dataVIHmin=0.85*VDD_EXTbeen pulledRTS1Request to sendVILmin= 0VVDD_EXT.VDD_EXT.RI0Ring indicatorVOHmin=VDD_EXT-0.1VVDD_EXT.VDD_EXT.RI0Data Set ReadyVOHmax=VDD_EXTVDD_EXT.Inused keepDCD0Data carry detectVOLmax=0.1VVOHmax=VDD_EXTVOHmax=VDD_EXTDCD0Data carry detectVOLmax=0.1S*VDD_EXTInused keepDTR1Data terminal ReadyDC CHARACTERISTICSCOMMENTDBG_TXD0Serial interface for debugging and firmware upgradeVILmax=0.15*VDD_EXTIf unused keepVILmin=0VVILmin=0VVILmin=0VVILmin=0VPins openDBG_RXD1IDESCRIPTIONDC CHARACTERISTICSCOMMENTSIM interfaceVOLmin= VDD_EXTVOHmin= VDD_EXTVOHmin= VDD_EXTVOLmin=VDD_EXTVOHmax=0.1VVOHmax=0.1VVOHmax=0.1VVOLmin=0VVILmax=0.15*SIM_VDDAll signals ofSIM_VDD0Voltage supply for SIM cardThe voltage can be select by software automatically either 1.8V or 3VSIM_DATAI/OSIM telckVILmin=0VAll signals ofSIM_RST0SIM resetVILmin=0VAll signals ofVOHmax=SIM_VDDVOHmax=SIM_VDDagainst ESD VOHmax=SIM_VDDAdainwin cable length 200mm from the module						
RTSIRequest to sendVIL.min= 0VuptoCTSOClear to sendVIHmax= VDD_EXTVDD_EXT. IfRIORing indicatorVOHmin= VDD_EXT-0.1VVDD_EXTDSROData Set ReadyVOHmax= VDD_EXTvOHmax=VDD_EXTDCDOData carry detectVOLmax=0.1VvOHmax=VDD_EXTDTRIData terminal ReadyVOLmax=0.1S*VDD_EXTIf unused keepDBug interfaceVILmax=0.15 *VDD_EXTIf unused keepif unused keepPIN NAMEI/ODESCRIPTIONDC CHARACTERISTICSCOMMENTDBG_TXDOSerial interface for debugging and firmware upgradeVILmax=0.15 *VDD_EXT VILmin= 0VIf unused keepDBG_RXDISerial interface for debugging and firmware upgradeVILmin= 0V VOHmin= VDD_EXT VOHmin= VDD_EXT VOHmin= VDD_EXT VOHmin= 0VCOMMENTDBG_RXDIFerre atta carry debuggingSDCOMMENTSIM interfaceVILmax=0.15 *VDD_EXT VOHmin= 0VCOMMENTSIM SIM_CIASIM_VDDODESCRIPTIONDC CHARACTERISTICSCOMMENTSIM_VDDNSIM data outputVILmax=0.15 *SIM_VDD Auti automatically either 1.8V or 3VAll signals of SIM interface are protectedSIM_RSTOSIM resetVILmin=0V VOHma=SIM_VDDAll signals of SIM ariterface are protectedSIM_RSTOSIM resetVILmin=0V VOHma=SIM_VDD VOHma=SIM_VDDMaximum cable length 200mm from the module		0		-		
CTSOClear to sendVIHmax= VDD_EXTVDD_EXT. If unused keep pin openRIORing indicatorVOHmin= VDD_EXT-0.1V VOLmax=0.1V VOLmax=0.1Vinused keep pin openDSROData Set ReadyVOHmax=VDD_EXT VOLmin= 0Vinused keep pin openDCDOData carry detectVOLmin= 0VDTRIData terminal ReadyCOMMENTDebug interfaceVILmax=0.15 *VDD_EXT vOLmin= 0VIf unused keep pins openDBG_TXDOSerial interface for debugging and firmware upgradeVILmax=0.15 *VDD_EXT VOHmin= VDD_EXT VOHmax= VDD_EXT VOLmax=0.1V VOHmax= VDD_EXT VOLmax=0.1V VOHmax= VDD_EXT VOLmin= 0VCOMMENTDBG_RXDIDDESCRIPTIONDC CHARACTERISTICSCOMMENTSIM interfaceIIDESCRIPTIONDC CHARACTERISTICSCOMMENTSIM_VDDOVoltage supply for SIM card automatically either 1.8V or 3VThe voltage can be select by software automatically either 1.8V or 3VAll signals ofSIM_DATAI/OSIM data outputVILmax=0.15 *SIM_VDDAll signals ofSIM_RSTOSIM resetVILmin= 0V VOLmax= SIM_VDDAll signals ofSIM_RSTOSIM resetVILmin= 0V VOLmax= SIM_VDDAll signals ofVOHmax=SIM_VDDSIM resetVOLmax=0.1V VOLmax=0.1V VOLmax=0.1VMaximum cable length 200mm from the module				VILmin= 0V	up to	
RIORing indicatorVOHmin= VDD_EXT-0.1V VOLmax=0.1V VOLmax=0.1Vunused keep pin openDSROData Set ReadyVOImax=0.1Vpin openDCDOData carry detectVOLmin= 0VVOLmin= 0VDTRIData terminal ReadyDebug interfaceCOMMENTDebug interfaceVOLmax=0.15 *VDD_EXT debuging and firmware upgradeVILmax=0.15 *VDD_EXT VIImin=0.85*VDD_EXT VIImin=0.85*VDD_EXT VOLmax=0.1V VOLmax=0.1V VOLmax=0.1V VOLmax=0.1V VOLmax=0.1V VOLmax=0.1V VOLmax=0.1V VOLmax=0.1S *SIM_VDDCOMMENTSIM_InterfaceIVILmax=0.15 *SIM_VDD All signals of SIM_CLKSIM data outputVII.max=0.15 *SIM_VDD All signals of SIM_interfaceAll signals of SIM interface are protected VIImin=0VSIM_RSTOSIM resetVIImin=0V VOImax=SIM_VDD VOImax=SIM_VDD VOImax=SIM_VDD VOImax=SIM_VDDSIM interface are protected VIImin=0V VOImax=SIM_VDDSIM interface are protected VIImin=0V VOImax=SIM_VDDAll signals of SIM interface are protected VIImin=0V VOImax=0.1V VOImax=SIM_VDDSIM interface are protected VIImin=0V VOImax=SIM_VDDAll signals of SIM interface are protected VIImin=0V VOImax=SIM_VDDSIM interface are protected VIImin=0V VOImax=SIM_VDDAll signals of SIM interface are protected VIImin=0V VOImax=SIM_VDDSIM interface are protected VIImin=0V VOImax=SIM_VDDMaximum cable VOImax=BIV VOImax=SIM_VDDMaximum cable Interface		0	•	-	—	
DSROData Set ReadyVOLmax=0.1Vpin openDCDOData carry detectVOLmin= 0VDTR1Data terminal ReadyDebug interfacePIN NAMEI/ODESCRIPTIONDC CHARACTERISTICSCOMMENTDBG_TXDOSerial interface for debugging and firmware upgradeVILmin=0XVILmin=0VDBG_RXDIIActive colspan="2">VILmin=0VDBG_RXDIIDESCRIPTIONDC CHARACTERISTICSCOMMENTDBG_RXDIIActive colspan="2">VILmin=0VDBG_RXDIColspan="2">SERVICE colspan="2">VILmin=0VDBG_RXDIDESCRIPTIONDC CHARACTERISTICSCOMMENTSIM interfaceVILmax=0.1VVOLmax=0.1VVOLmin= 0VSIM_InterfaceI/ODESCRIPTIONDC CHARACTERISTICSCOMMENTSIM_VDDOVoltage supply for SIM cardThe voltage can be select by software automatically either 1.8V or 3VAll signals ofSIM_DATAI/OSIM data outputVILmax=0.15 *SIM_VDDAll signals ofSIM interfaceSIM_RSTOSIM resetVILmin=0Vare protected VILmin=0VSIM interfaceSIM_RSTOSIM resetVILmin=0Vdiod array. VOLmax=0.1VVolmax=SIM_VDDVOHmax=SIM_VDDMaximum cable VOLmin=0VInterfaceInterfaceSIM_RSTOSIM resetVILmin=0VInterfaceSIM_RSTOSIM resetVILmin=0VAll signals ofVOLmax=0.1				-		
DCD0Data carry detectVOLmina VDD_EXTDTR1Data terminal ReadyVOLmin= 0VDebug interfacePIN NAMEI/0DESCRIPTIONDC CHARACTERISTICSCOMMENTDBG_TXD0Serial interface for debugging and firmware upgradeVILmax=0.15 *VDD_EXT VILmin=0VIf unused keep pins openDBG_RXD11VILmax=0.15 *VDD_EXT VUHmin=VDD_EXT-0.1V VOLmax=0.1V VOLmax=0.1V VOLmax=0.1V VOLmax=0.1VIf unused keep pins openPIN NAMEI/0DESCRIPTIONDC CHARACTERISTICSCOMMENTSIM interface10VOLmineDC CHARACTERISTICSCOMMENTSIM_VDD0Voltage supply for SIM card automatically either 1.8V or 3VThe voltage can be select by software automatically either 1.8V or 3VSIM_DATAI/0SIM data outputVILmax=0.15 *SIM_VDD VIILmin=0VAll signals of SIM interfaceSIM_RST0SIM resetVILmin=0Vagainst ESD VOImax=SIM_VDDAll signals of SIM interface are protected VIILmin=0VSIM_RST0SIM resetVOImax=0.1V VOImax=0.1V VOImax=SIM_VDDMaximum cable VOImax=0.1V VOImax=SIM_VDDMaximum cable Idoe array.	DSR	0			pin open	
DTRIData terminal ReadyIdeal elemental ReadyDebug interfaceDESCRIPTIONDC CHARACTERISTICSCOMMENTDBG_TXD0Serial interface for debugging and firmware upgradeVILmax=0.15 *VDD_EXT VILmin=0V VILmin=0V VOHmine VDD_EXT VILmin=0V VOHmine VDD_EXT VOHmax=0.1V VOImax=0.1S*SIM_VDDCOMMENTSIM interface SIM_VDD0SIM data outputVILmax=0.15 *SIM_VDD SIM_interface are protected VIImin=0.85*SIM_VDDAll signals of SIM interface are protected VIImax=0.1V VOImax=0.1V VOImax=0.1V VOImax=0.1VSIM interface are protected against ESD VOImax=0.1VSIM_RST0SIM resetVIImax=SIM_VDD VOImax=0.1V VOImax=0.1VAll signals of SIM_interface are protected VIImax=0.1V VOImax=0.1V	DCD	0		-		
PIN NAMEI/ODESCRIPTIONDC CHARACTERISTICSCOMMENTDBG_TXDOSerial interface for debugging and firmware upgradeVILmax=0.15 *VDD_EXT VIHmin=0.85*VDD_EXT VIHmax=VDD_EXT VOHmin= VDD_EXT VOHmin= VDD_EXT-0.1V VOLmax=0.1V VOLmax=0.1V VOLmax=VDD_EXT VOLmin= 0VIf unused keep pins openDBG_RXDIIVIIIVIIIVIIIVIIIDBG_RXDIIVIIIVIIIVIIIVIIIDBG_RXDIIVIIIVOLmax=0.1V VOLmax=0.1V VOLmax=0.1V VOLmin= 0VVIIIVIIISIM interfaceIDC CHARACTERISTICSCOMMENTSIM_VDDOVoltage supply for SIM card automatically either 1.8V or 3VCOMMENTSIM_DATAI/OSIM data outputVIII.max=0.15 *SIM_VDDAll signals of SIM interface are protected VIIImin=0VSIM_RSTOSIM resetVIII.min=0V VOIImax=SIM_VDDagainst ESD VOIImax=SIM_VDDVOIImax=0.1VVOIImax=0.1V VOIImax=0.1VVIII max=0.1V VOIImax=0.1VVIII max=0.10 VIIISIM_RSTOSIM resetVIIImin=0V VIIImin=0V VOIImax=0.1VAll signals of VOIImax=0.1V	DTR	Ι				
DBG_TXDOSerial interface for debugging and firmware upgradeVILmax=0.15 *VDD_EXT VILmin=0.85*VDD_EXT VILmin=0V VIHmax= VDD_EXT VOHmin= VDD_EXT-0.1V VOHmax=VDD_EXT VOLmax=0.1V VOLmax=0.1V VOLmax=0.1V VOLmax=0.1V VOLmax=0.1V VOLmax=0.1V VOLmax=0.1SIf unused keep pins openSIM interfaceIDESCRIPTIONDC CHARACTERISTICS The voltage can be select by software automatically either 1.8V or 3VCOMMENTSIM_VDDOSIM data outputVILmax=0.15 *SIM_VDD VILmin=0VAll signals of SIM interface are protectedSIM_RSTOSIM resetVILmin=0V VILmin=0Vagainst ESD VOHmin=SIM_VDDSIM_RSTOSIM resetVILmin=0V VILmin=0Vagainst ESD VOHmin=SIM_VDDVILmax=0.1VVODMaximun cable LongCOMMANDSIM_RSTOSIM resetVILmin=0V VOLmax=0.1VMaximun cable LongOSIM resetVILmin=0V VOLmax=0.1VMaximun cable LongOSIM resetVILmin=0V VOLmax=0.1VMaximun cable Long	Debug interfac	e				
Ldebugging and firmware upgradeVIHmin=0.85*VDD_EXT VILmin=0V VIHmax=VDD_EXT VOHmin=VDD_EXT-0.1V VOHmax=0.1V VOHmax=VDD_EXT VOHmax=VDD_EXT VOLmax=0.1V VOLmax=0.1V VOLmin=0Vpins openBIM interfacePIN NAMEI/ODESCRIPTIONDC CHARACTERISTICSCOMMENTSIM_VDDOVoltage supply for SIM card automatically either 1.8V or 3VThe voltage can be select by software automatically either 1.8V or 3VSIM either faceSIM_DATAI/OSIM data outputVILmax=0.15 *SIM_VDDAll signals ofSIM_CLKOSIM clockVIHmin=0.85*SIM_VDDSIM interfaceSIM_RSTOSIM resetVILmin=0Vagainst ESDVOHmin=SIM_VDDOISIM resetVOHmin=SIM_VDDMaximun cableVOHmax=SIM_VDDNUAll signals ofSIM either 1.8V or 3VSIM either faceSIM_RSTOSIM resetVILmin=0VAll signals ofVOHmin=SIM_VDDOIMaximun cableVOHmax=SIM_VDDMaximun cableVOLmax=0.1VVOHmax=SIM_VDDMaximun cableHength 200mmMaximun cableVOLmin=0VHength 200mmFor the module	PIN NAME	I/O	DESCRIPTION	DC CHARACTERISTICS	COMMENT	
DBG_RXDIupgradeVILmin= 0V VIHmax= VDD_EXT VOHmin= VDD_EXT-0.1V VOHmax=0.1V VOHmax=0.1V VOLmin= 0VSIM interfacePIN NAMEI/0DESCRIPTIONDC CHARACTERISTICSCOMMENTSIM_VDDOVoltage supply for SIM card automatically either 1.8V or 3VTe voltage can be select by software automatically either 1.8V or 3VSIM_DATAI/0SIM data outputVILmax=0.15 *SIM_VDDAll signals of SIM_interfaceSIM_RSTOSIM resetVILmin= 0VSIM_interface are protected VOHmin= SIM_VDDAll signals of SIM_interfaceSIM_RSTOSIM resetVILmin=0Vagainst ESD VOHmin= SIM_VDDMaximum cable VOLmax=0.1VVOHmax=SIM_VDDMaximum cable VOLmax=0.1VMaximum cable VOLmax=0.1VMaximum cable VOLmax=0.1V	DBG_TXD	0	Serial interface for	VILmax=0.15 *VDD_EXT	If unused keep	
Image: Stress of the second			debugging and firmware	VIHmin=0.85*VDD_EXT	pins open	
DBG_RXDIIVOHmin=VDD_EXT-0.1V VOLmax=0.1V VOHmax=VDD_EXT VOLmin=0VISIM interfaceVOLmin=0VCOMMENTPIN NAMEI/0DESCRIPTIONDC CHARACTERISTICSCOMMENTSIM_VDDOVoltage supply for SIM card automatically either 1.8V or 3VThe voltage can be select by software automatically either 1.8V or 3VSIM_DATAI/0SIM data outputVILmax=0.15 *SIM_VDDAll signals ofSIM_CLKOSIM clockVIHmin=0.85*SIM_VDDSIM interfaceSIM_RSTOSIM resetVILmin= 0Vare protectedVOHmax=SIM_VDDAll resetVOHmin=SIM_VDDdiode array.VOHmax=SIM_VDDMaximum cableVOHmax=SIM_VDDMaximum cableVOLmin=0VIIIIOSIM resetIIIOSIM resetIIIOSIM resetIIIOSIM resetIII <t< td=""><td></td><td></td><td>upgrade</td><td></td><td></td></t<>			upgrade			
Image: Strain of DD_DATE of IV VOLmax=0.IV VOLmax=0.IV VOLmax=VDD_EXT VOLmin= 0VSIM interfacePIN NAMEI/ODESCRIPTIONDC CHARACTERISTICSCOMMENTSIM_VDDOVoltage supply for SIM card utomatically either 1.8V or 3VThe voltage can be select by software automatically either 1.8V or 3VSIM_DATAI/OSIM data outputVILmax=0.15 *SIM_VDDAll signals of SIM_interfaceSIM_CLKOSIM clockVIHmin=0.85*SIM_VDDSIM interface are protected VIHmax=SIM_VDDSIM_RSTOSIM resetVILmin=0V VOHmax=SIM_VDDagainst ESD VOHmax=0.1VVOHmax=SIM_VDDMaximum cable VOLmin=0VIdoe array. VOHmax=SIM_VDDMaximum cable Loomm from the module	DPC PYD	T		_		
VOHmax=VDD_EXT VOLmin=0VSIM interfacePIN NAMEI/ODESCRIPTIONDC CHARACTERISTICSCOMMENTSIM_VDDOVoltage supply for SIM cardThe voltage can be select by software automatically either 1.8V or 3V	DBO_KAD	1		-		
VOLmin= 0VSIM interfacePIN NAMEI/ODESCRIPTIONDC CHARACTERISTICSCOMMENTSIM_VDDOVoltage supply for SIM cardThe voltage can be select by software automatically either 1.8V or 3VCommentSIM_DATAI/OSIM data outputVILmax=0.15 *SIM_VDDAll signals ofSIM_CLKOSIM clockVIHmin=0.85*SIM_VDDSIM interface are protectedSIM_RSTOSIM resetVILmax=0.1VagainstVOHmin= SIM_VDDAll signals ofVOHmin= SIM_VDDAll signals ofVOLmax=0.1VVOHmax=SIM_VDDagainstESDVOLmax=0.1VVoHmax=SIM_VDDMaximum cableVOLmin= 0VIdiode array.VOHmin= 0VVOLmin= 0VInterfaceInterfaceVOLmin= 0VInterfaceInterfaceVOL						
SIM interfacePIN NAMEI/ODESCRIPTIONDC CHARACTERISTICSCOMMENTSIM_VDDOVoltage supply for SIM cardThe voltage can be select by software automatically either 1.8V or 3VAll signals ofSIM_DATAI/OSIM data outputVILmax=0.15 *SIM_VDDAll signals ofSIM_CLKOSIM clockVIHmin=0.85*SIM_VDDSIM interfaceSIM_RSTOSIM resetVILmin= 0Vare protectedVIHmax=SIM_VDDAll signals ofVIHmax=SIM_VDDagainst ESDVOHmin=SIM_VDD-0.1Vwith a TVSVOLmax=0.1Vdiode array.VOLmax=SIM_VDDMaximum cableVOLmin= 0VHength 200mmFor the moduleVOLmin=0VFor the moduleFor the module				—		
SIM_VDDOVoltage supply for SIM cardThe voltage can be select by software automatically either 1.8V or 3VSIM_DATAI/OSIM data outputVILmax=0.15 *SIM_VDDAll signals ofSIM_CLKOSIM clockVIHmin=0.85*SIM_VDDSIM interface are protectedSIM_RSTOSIM resetVILmax=SIM_VDDagainst ESD VOHmin= SIM_VDD-0.1VVOLmax=0.1VVOLmax=0.1VWith a TVS diode array.VOLmax=SIM_VDDHaximum cable length 200mm from the module	SIM interface					
Image: Constructionautomatically either 1.8V or 3Vautomatically either 1.8V or 3VSIM_DATAI/OSIM data outputVILmax=0.15 *SIM_VDDAll signals ofSIM_CLKOSIM clockVIHmin=0.85*SIM_VDDSIM interfaceSIM_RSTOSIM resetVILmin= 0Vare protectedVIHmax=SIM_VDDSIM resetVIHmax=SIM_VDDagainst ESDVOHmin=SIM_VDD-0.1Vwith a TVSVOLmax=0.1Vdiode array.VOHmax=SIM_VDDMaximum cableVOLmin= 0Vlength 200mmfrom the module	PIN NAME	I/O	DESCRIPTION	DC CHARACTERISTICS	COMMENT	
SIM_DATAI/OSIM data outputVILmax=0.15 *SIM_VDDAll signals ofSIM_CLKOSIM clockVIHmin=0.85*SIM_VDDSIM interfaceSIM_RSTOSIM resetVILmax=SIM_VDDagainst ESDVOHmin= SIM_VDDVOHmin=SIM_VDD-0.1Vwith a TVSVOLmax=0.1Vdiode array.VOHman= SIM_VDDMaximum cableImage: Sim_CDDImage: Sim_CDDImage: Sim_CDDMaximum cableImage: Sim_CDDImage: Sim_CDD<	SIM_VDD	0	Voltage supply for SIM card	The voltage can be select by software		
SIM_CLKOSIM clockVIHmin=0.85*SIM_VDDSIM interfaceSIM_RSTOSIM resetVILmin=0Vare protectedVIHmax=SIM_VDDagainst ESDVOHmin=SIM_VDD-0.1Vwith a TVSVOLmax=0.1Vdiode array.VOHmax=SIM_VDDMaximum cableVOLmin=0Vlength 200mmfrom the module				automatically either 1.8V or 3V		
SIM_CERK O SIM reset VILmin= 0V are protected SIM_RST O SIM reset VILmin= 0V against ESD VOHmin= SIM_VDD with a TVS VOLmax=0.1V diode array. VOHmax= SIM_VDD Maximum cable VOLmin= 0V length 200mm from the module Interference Interference Interference	SIM_DATA	I/O	SIM data output		•	
SIM_KST O SIMTRESET VIHmax= SIM_VDD against ESD VIHmax= SIM_VDD-0.1V with a TVS VOHmin= SIM_VDD-0.1V with a TVS VOLmax=0.1V diode array. VOHmax= SIM_VDD Maximum cable VOLmin= 0V length 200mm from the module	SIM_CLK	0	SIM clock	—		
VOHmin= SIM_VDD-0.1V with a TVS VOLmax=0.1V diode array. VOHmax= SIM_VDD Maximum cable VOLmin= 0V length 200mm from the module from the module	SIM_RST	0	SIM reset		-	
VOLmax=0.1V diode array. VOHmax= SIM_VDD Maximum cable VOLmin= 0V length 200mm from the module				—	e	
VOHmax= SIM_VDD Maximum cable VOLmin= 0V length 200mm from the module				—		
VOLmin= 0V length 200mm from the module					-	
from the module				—		
pad to SIM card					-	
					pad to SIM card	

26.12.2009

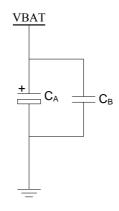
				holder.
SIM_PRESE NCE	Ι	SIM detect	VILmax=0.15 *VDD_EXT VIHmin=0.85*VDD_EXT VILmin= 0V VIHmax= VDD_EXT	If unused keep open
ADC				
PIN NAME	I/O	DESCRIPTION	DC CHARACTERISTICS	COMMENT
ADC	I	General purpose analog to digital converter.	Input voltage range: $0V \sim 3V$	If unused keep open
External Reset				
PIN NAME	I/O	DESCRIPTION	DC CHARACTERISTICS	COMMENT
NRESET	Ι	External reset input(Active low)	VILmax=0.15 *VDD_EXT VIHmin=0.85*VDD_EXT VILmin= 0V VIHmax= VDD_EXT	If unused keep open
Pulse Width M	odula	tion		
PIN NAME	I/O	DESCRIPTION	DC CHARACTERISTICS	COMMENT
PWM1	0	PWM Output	VOHmin= VDD_EXT-0.1V VOLmax=0.1V	If unused keep open
PWM2	0	PWM Output	VOHmax= VDD_EXT VOLmin=0	

3.2 Operating Modes

The table below briefly summarizes the various operating modes referred to in the following chapters.

<u> </u>	
Table 6: Overview	of operating modes

Mode	Function		
Normal	GSM/GPRS	Module will automatically go into SLEEP mode if DTR is set to high level	
operation	SLEEP	and there is no on air and no hardware interrupt (such as GPIO interrupt or	
		data on serial port).	
		In this case, the current consumption of module will reduce to the minimal	
		level.	
		In SLEEP mode, the module can still receive paging message and SMS	
		from the system normally.	
	GSM IDLE	Software is active. Module has registered to the GSM network, and the	
		module is ready to send and receive.	



	GSM TALK	Connection between two subscribers is in progress. In this case, the power consumption depends on network settings such as DTX off/on, FR/EFR/HR, hopping sequences, antenna.	
	GPRS STANDBY	Module is ready for GPRS data transfer, but no data is currently sent or received. In this case, power consumption depends on network settings and GPRS configuration.	
	GPRS DATA	There is GPRS data transfer (PPP or TCP or UDP) in progress. In this case, power consumption is related with network settings (e.g. power control level), uplink / downlink data rates and GPRS configuration (e.g. used multi-slot settings).	
POWER DOWN	Normal shutdown by sending the "AT+CPOWD=1" command or using the PWRKEY. The power management ASIC disconnects the power supply from the baseband part of the module, and only the power supply for the RTC is remained. Software is not active. The serial port is not accessible. Operating voltage (connected to VBAT) remains applied.		
Minimum functionality mode (without remove power supply)	serial port is not accessible. Operating voltage (connected to VBA1) remains applied. Use the "AT+CFUN" command can set the module to a minimum functionality mode without remove the power supply. In this case, the RF part of the module will not work or the SIM card will not be accessible, or both RF part and SIM card will be closed, and the serial port is still accessible. The power consumption in this case is very low.		

3.3 Power Supply

The power supply of SIM900A is from a single voltage source of VBAT= 3.4V...4.5V. In some case, the ripple in a transmitting burst may cause voltage drops when current consumption rises to typical peaks of 2A. So the power supply must be able to provide sufficient current up to 2A.

For the VBAT input, a local bypass capacitor is recommended. A capacitor (about 100 μ F, low ESR) is recommended. Multi-layer ceramic chip (MLCC) capacitors can provide the best combination of low ESR and small size but may not be cost effective. A lower cost choice may be a 100 μ F tantalum capacitor (low ESR) with a small (0.1 μ F to 1 μ F) ceramic in parallel, which is illustrated as following figure. The capacitors should be placed as close as possible to the SIM900A VBAT pins. The following figure is the recommended circuit.

Figure 3: Reference circuit of the VBAT input

The circuit design of the power supply depends strongly upon the power source where this power is drained. The following figure is the reference design of +5V input source power supply. The designed output for the power supply is 4.1V, thus a linear regulator can be used. If there's a big difference between the input source and the desired output (VBAT), a switching converter power supply will be preferable because of its better efficiency especially with the 2A peak current in burst mode of the module.

The single 3.6V Li-Ion cell battery type can be connected to the power supply of the SIM900A VBAT directly. But the Ni_Cd or Ni_MH battery types must be used carefully, since their maximum voltage can rise over the absolute maximum voltage for the module and damage it.

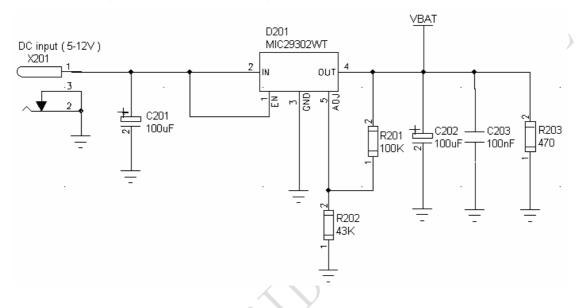


Figure 4: Reference circuit of the source power supply input

The following figure is the VBAT voltage ripple wave at the maximum power transmit phase, the test condition is VBAT=4.0V, VBAT maximum output current =2A, C_A =100µF tantalum capacitor (ESR=0.7 Ω) and C_B =1µF.

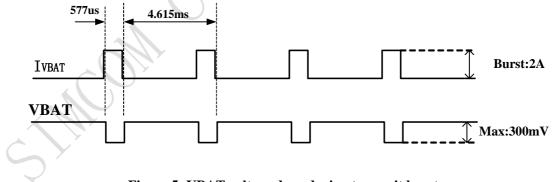


Figure 5: VBAT voltage drop during transmit burst

3.3.1 Power Supply Pins

Three VBAT pins are dedicated to connect the supply voltage and fifteen GND pins are dedicated to connect ground. VRTC pin can be used to back up the RTC.

3.3.2 Minimizing Power Losses

When designing the power supply for your application please pay specific attention to power losses. Ensure that the input voltage VBAT never drops below 3.4V even in a transmit burst where current consumption can rise to typical peaks of 2A. If the power voltage drops below 3.4V, the module may be switched off. The PCB traces from the VBAT pins to the power source must be wide enough to decrease voltage drops in the transmitting burst mode.

3.3.3 Monitoring Power Supply

To monitor the supply voltage, you can use the "AT+CBC" command which include a parameter: voltage value (in mV).

The voltage is continuously measured at intervals depending on the operating mode. The displayed voltage (in mV) is averaged over the last measuring period before the AT+CBC command is executed.

For details please refer to *document* [1]

3.4 Power Up and Power Down Scenarios

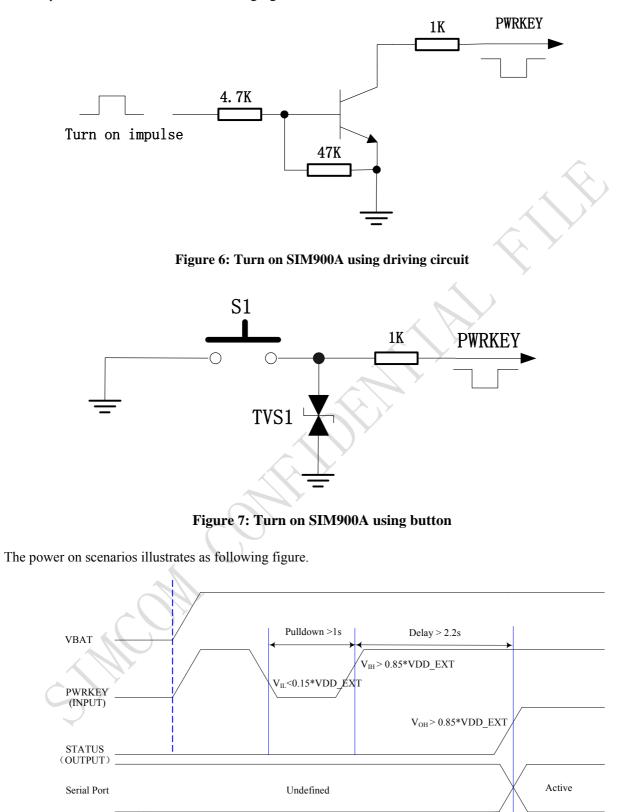
In general, be sure not to turn on SIM900A while it is beyond the safety limits of voltage and temperature stated in Chapter 3.4.2. SIM900A would immediately switch off after having started and detected these inappropriate conditions. In extreme cases this can cause permanent damage to the module.

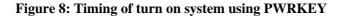
3.4.1 Turn on SIM900A

SIM900A can be turned on by two ways, which are described in following chapters:

- Via PWRKEY pin: starts normal operating mode (please refer to chapter 3.4.1.1);
- Via PWRKEY pin and PWRKEY_OUT pin: starts normal operating mode

Note: The AT command must be set after the SIM900A is power on and Unsolicited Result Code "RDY" is received from the serial port. However if the SIM900A is set autobauding, the serial port will receive nothing. The AT commands can be set after the SIM900A is power on. You can use AT+IPR=x to set a fixed baud rate and save the configuration to non-volatile flash memory. After the configuration is saved as fixed baud rate, the Code "RDY" should be received from the serial port all the time that the SIM900A is power on. Please refer to the chapter AT+IPR in document [1].


3.4.1.1 Turn on SIM900A Using the PWRKEY Pin (Power on)


You can turn on the SIM900A by driving the PWRKEY to a low level voltage with a limiting current resistor (1K is recommended) in series for a short time and then release. This pin has pulled up to VDD_EXT in the module.

SIM900_HD_V1.01

The simple circuit illustrates as the following figures.

When power on procedure completes, the SIM900A will send out following result code to indicate the module is ready to operate when set as fixed baud rate.

RDY

This result code does not appear when autobauding is active.

3.4.1.2 Turn on SIM900A Using the PWRKEY Pin and PWRKEY_OUT Pin (Power on)

User can turn on SIM900A by connecting PWRKEY Pin and PWRKEY_OUT Pin for a short time and then release. The simple circuit illustrates as the following figures.

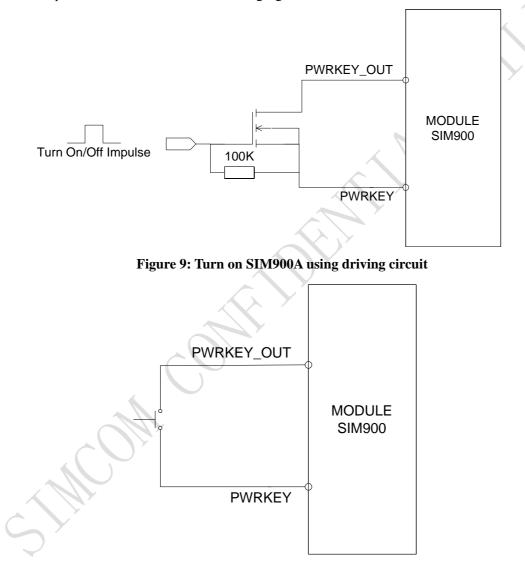


Figure 10: Turn on SIM900A using button

The power on scenarios illustrates as following figure.

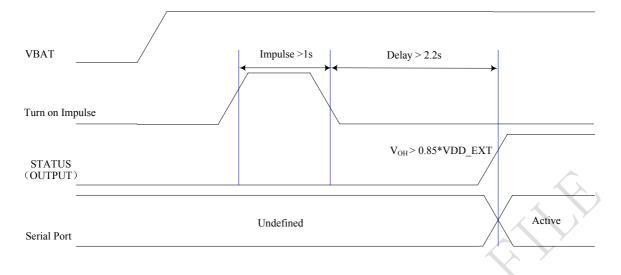


Figure 11: Timing of turn on system using PWRKEY and PWRKEY_OUT

3.4.2 Turn Off SIM900A

Following ways can be used to turn off the SIM900A:

- Normal power down procedure: Turn off SIM900A using the PWRKEY pin
- Normal power down procedure: Turn off SIM900A using AT command
- Over-voltage or under-voltage automatic shutdown: Take effect if over-voltage or under-voltage is detected
- Over-temperature or under-temperature automatic shutdown: Take effect if over-temperature or under-temperature is detected

3.4.2.1 Turn Off SIM900A Using the PWRKEY Pin (Power down)

You can turn off the SIM900A by driving the PWRKEY to a low level voltage for a short time and then release. You also can urn off the SIM900A by connecting PWRKEY and PWRKEY_OUT for a short time and then release. Please refer to the turn on circuit. The power down scenario illustrates as following figure. This procedure lets the module log off from the network and allows the software to enter into a secure state and save data before completely disconnecting the power supply.

Before the completion of the switching off procedure the module will send out result code:

NORMAL POWER DOWN

After this moment, the AT commands can't be executed. The module enters the POWER DOWN mode, only the RTC is still active. POWER DOWN can also be indicated by STATUS pin, which is a low level voltage in this mode.

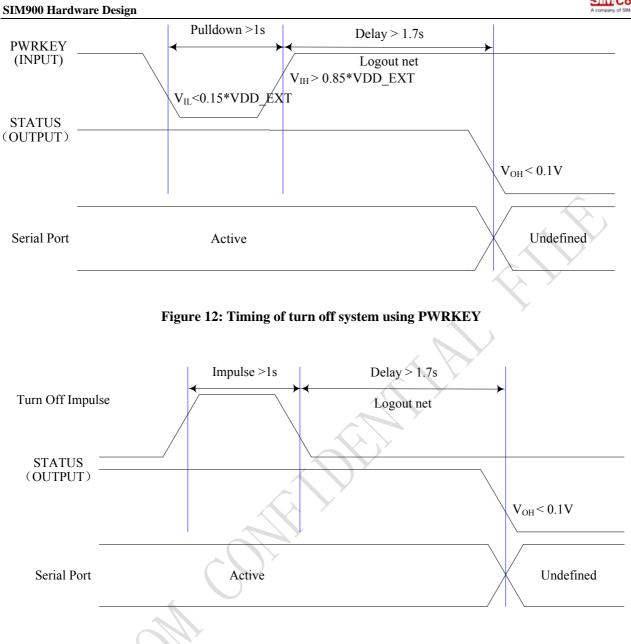


Figure 13: Timing of turn off system using PWRKEY and PWRKEY_OUT

3.4.2.2 Turn Off SIM900A Using AT Command

You can use the AT command "AT+CPOWD=1" to turn off the module. This command lets the module log off from the network and allows the module to enter into a secure state and save data before completely disconnecting the power supply.

Before the completion of the switching off procedure the module will send out result code:

NORMAL POWER DOWN

After this moment, the AT commands can't be executed. The module enters the POWER DOWN mode, only the RTC is still active. POWER DOWN can also be indicated by STATUS pin, which is a low level voltage in this mode.

Please refer to *document* [1] for detail about the AT command of "AT+CPOWD".

SIM900_HD_V1.01

3.4.2.3 Over-voltage or Under-voltage Automatic Shutdown

The module will constantly monitor the voltage applied on the VBAT. If the voltage \leq 3.5V, the following URC will be presented:

UNDER-VOLTAGE WARNNING

If the voltage \geq 4.5V, the following URC will be presented:

OVER-VOLTAGE WARNNING

The uncritical voltage range is 3.4V to 4.6V. If the voltage > 4.6V or < 3.4V, the module will be automatic shutdown soon.

If the voltage < 3.4V, the following URC will be presented:

UNDER-VOLTAGE POWER DOWN

If the voltage > 4.6V, the following URC will be presented:

OVER-VOLTAGE POWER DOWN

After this moment, no further more AT commands can be executed. The module logs off from network and enters POWER DOWN mode, and only the RTC is still active. POWER DOWN can also be indicated by STATUS pin, which is a low level voltage in this mode.

3.4.2.4 Over-temperature or Under-temperature Automatic Shutdown

The module will constantly monitor the temperature of the module, if the temperature $> 80^{\circ}$ C, the following URC will be presented:

+*CMTE:1*

If the temperature $< -30^{\circ}$, the following URC will be presented:

+*CMTE:-1*

The uncritical temperature range is -40° to 85° . If the temperature > 85° or < -40° c, the module will be automatic shutdown soon.

If the temperature $> 85^{\circ}$ C, the following URC will be presented:

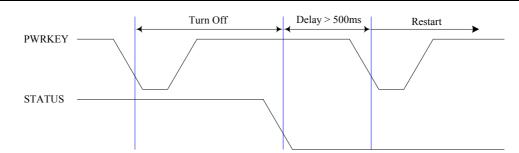
+CMTE:2

If the temperature < -40 °C, the following URC will be presented:

+CMTE:-2

After this moment, the AT commands can't be executed. The module logs off from network and enters POWER DOWN mode, and only the RTC is still active. POWER DOWN can also be indicated by STATUS pin, which is a low level voltage in this mode.

To monitor the temperature, you can use the "AT+CMTE" command to read the temperature when the module is power on.


For details please refer to *document* [1]

3.4.3 Restart SIM900A Using the PWRKEY Pin

You can restart SIM900A by driving the PWRKEY to a low level voltage for a short time and then release, the same as turning on SIM900A using the PWRKEY pin. Before restarting the SIM900A, you need delay at least 500ms from detecting the STATUS low level on. The restarting scenario illustrates as the following figure. SIM900_HD_V1.01 28

26.12.2009

Figure 14: Timing of restart system

3.5 Power Saving

There are two methods for the module to enter into low current consumption status. "AT+CFUN" is used to set module into minimum functionality mode and DTR hardware interface signal can be used to lead system to be in SLEEP mode (or slow clocking mode).

3.5.1 Minimum Functionality Mode

Minimum functionality mode reduces the functionality of the module to a minimum and, thus, minimizes the current consumption to the lowest level. This mode is set with the "AT+CFUN" command which provides the choice of the functionality levels <fun>=0, 1, 4

- 0: minimum functionality;
- 1: full functionality (default);
- 4: disable phone both transmit and receive RF circuits;

If SIM900A has been set to minimum functionality by "AT+CFUN=0", the RF function and SIM card function will be closed. In this case, the serial port is still accessible, but all AT commands correlative with RF function or SIM card function will not be accessible.

If SIM900A has been set by "AT+CFUN=4", the RF function will be closed, the serial port is still active. In this case all AT commands correlative with RF function will not be accessible.

After SIM900A has been set by "AT+CFUN=0" or "AT+CFUN=4", it can return to full functionality by "AT+CFUN=1".

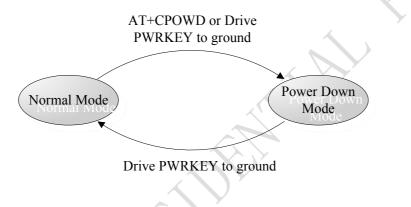
For detailed information about "AT+CFUN", please refer to document [1].

3.5.2 Sleep Mode (Slow Clock Mode)

We can control SIM900A module to enter or exit the SLEEP mode in customer applications through DTR signal. When DTR is in high level and there is no on air and hardware interrupt (such as GPIO interrupt or data on serial port), SIM900A will enter SLEEP mode automatically. In this mode, SIM900A can still receive paging or SMS from network but the serial port is not accessible.

Note: For SIM900A, it requests to set AT command "AT+CSCLK=1" to enable the sleep mode; the default value is 0, that can't make the module enter sleep mode. For more details please refer to our AT command list.

SIM900_HD_V1.01

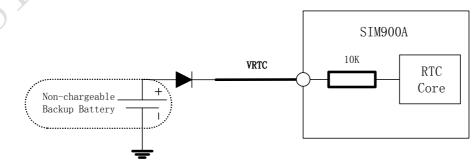

3.5.3 Wake Up SIM900A from SLEEP Mode

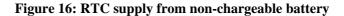
When SIM900A is in SLEEP mode, the following methods can wake up the module.

- Enable DTR pin to wake up SIM900A.
 If DTR pin is pulled down to a low level, this signal will wake up SIM900A from power saving mode. The serial port will be active after DTR changed to low level for about 50ms.
- Receiving a voice or data call from network to wake up SIM900A.
- Receiving a SMS from network to wake up SIM900A.

3.6 Summary of State Transitions (except SLEEP mode)

The following figure shows how to proceed from one mode to another.


Figure 15: State Transition


3.7 RTC Backup

The RTC (Real Time Clock) power supply of module can be provided by an external capacitor or a battery (rechargeable or non-chargeable) through the VRTC.

Note: If the RTC function is enabled, a battery or capacitor should be connected with the VRTC pin. Otherwise the VRTC pin can be keep open.

The following figures show various sample circuits for RTC backup.

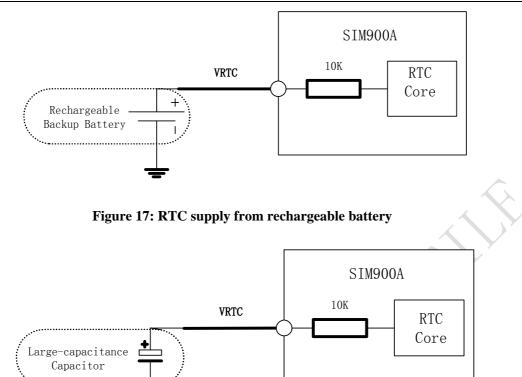
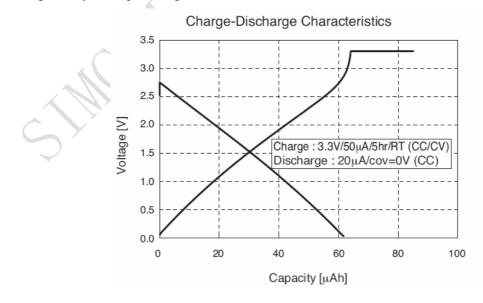



Figure 18: RTC supply from capacitor

• Li-battery backup

Coin-type Rechargeable Capacitor such as XH414H-IV01E form Seiko can be used. Typical charge curves for each cell type are shown in following figures. Note that the rechargeable Lithium type coin cells generally come pre-charged from the vendor.

SIM900_HD_V1.01

3.8 Serial Interfaces

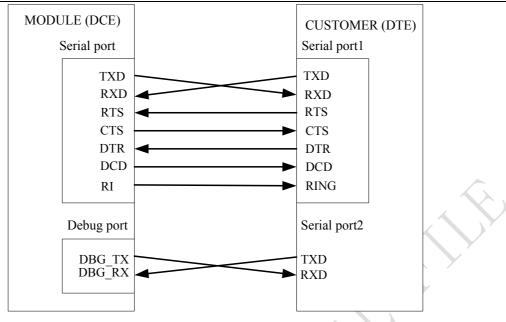
Table 7: Pin definition of the serial interfaces

	Name	Pin	Function
	DTR	3	Data terminal ready
	RI	4	Ring indicator
	DCD	5	Data carrier detection
Serial port	DSR	6	Date set ready
Senai port	CTS	7	Clear to send
	RTS	8	Request to send
	TXD	9	Transmit data
	RXD	10	Receive data
Debug port	DBG_RXD	28	Receive data
Debug port	DBG_TXD	27	Transmit data

SIM900A provides two unbalanced asynchronous serial ports. One is the serial port and the other is the debug port. The GSM module is designed as a DCE (Data Communication Equipment), following the traditional DCE-DTE (Data Terminal Equipment) connection. The module and the client (DTE) are connected through the following signal (as following figure shows). Autobauding supports baud rate from 1200bps to 115200bps. Serial port

- TXD: Send data to the RXD signal line of the DTE
- RXD: Receive data from the TXD signal line of the DTE

Debug port


- DBG_TXD: Send data to the RXD signal line of the DTE
- DBG_RXD: Receive data from the TXD signal line of the DTE

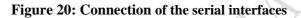

The logic levels are described in following table.

Table 8: Logic levels of the serial port and debug port

Parameter	Min	Max	Unit
V _{IL}	0	0.15*VDD_EXT	V
V _{IH}	0.85 *VDD_EXT	VDD_EXT	V
V _{OL}	0	0.1	V
V _{OH}	VDD_EXT -0.1	VDD_EXT	V

3.8.1 Function of serial port & debug port supporting

Serial port

- Modem device.
- Contains data lines TXD and RXD, State lines RTS and CTS, Control lines DTR, DCD, DSR and RI.
- Serial port can be used for CSD FAX, GPRS service and send AT command of controlling module. Also serial port can be used for multiplexing function. SIM900A supports only basic mode of multiplexing so far.
- Serial port supports the communication rates as following: 1200,2400, 4800, 9600, 19200, 38400, 57600, 115200 Default as 115200bps.
- Autobauding supports baud rates as following: 1200, 2400, 4800, 9600, 19200, 38400, 57600 and 115200bps.

Autobauding allows the GSM engine to automatically detect the baud rate configured in the host application. The serial port of the GSM engine supports autobauding for the following baud rates: 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200bps. Factory setting is autobauding enabled. This gives you the flexibility to put the GSM engine into operation no matter what baud rate your host application is configured to. To take advantage of autobauding mode, specific attention should be paid to the following requirements:

Synchronization between DTE and DCE:

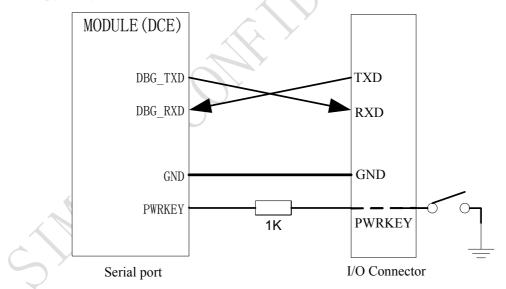
When DCE powers on with the autobauding enabled, it is recommended to wait 2 to 3 seconds before sending the first AT character. You must first send "A" to synchronize the band rate. After receiving the "OK" response, DTE and DCE are correctly synchronized. The more information please refer to the AT command "AT+IPR".

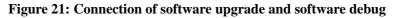
Restrictions on autobauding operation

• The serial port has to be operated at 8 data bits, no parity and 1 stop bit (factory setting).

SIM900_HD_V1.01

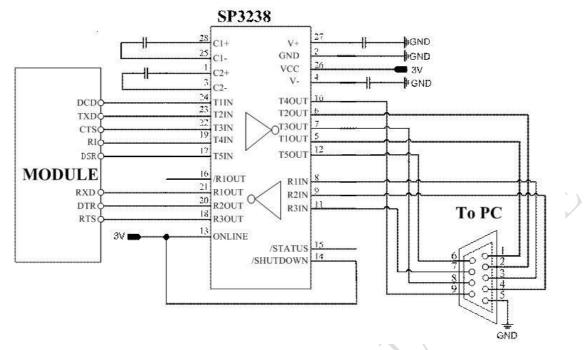
• The Unsolicited Result Codes like "RDY", "+CFUN: 1" and "+CPIN: READY" are not indicated when you start up the ME while autobauding is enabled. This is due to the fact that the new baud rate is not detected unless DTE and DCE are correctly synchronized as described above.

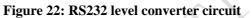

Note: You can use AT+IPR=x to set a fixed baud rate and save the configuration to non-volatile flash memory. After the configuration is saved as fixed baud rate, the Unsolicited Result Codes like "RDY" should be received from the serial port all the time that the SIM900A is power on.


Debug port

- Null modem port
- Only contain Data lines TXD and RXD
- Debug Port used for debugging and upgrading firmware. It cannot be used for CSD call, FAX call. And the Debug port can not use multiplexing function. It does not support autobauding function.
- Debug port supports the communication rates is 115200bps

3.8.2 Software Upgrade and Software Debug


The DBG_TXD, DBG_RXD and GND must be connected to the IO connector when user need to upgrade software and debug software, the DBG_TXD, DBG_RXD should be used for software upgrade and for software debugging. The TXD and RXD also should be connected to the IO connector, if user wants to send AT command or data stream to SIM900A. The PWRKEY pin is recommended to connect to the IO connector. The user also can add a switch between the PWRKEY and the GND. The PWRKEY should be connected to the GND when SIM900A is upgrading software. Please refer to the following figure.



The serial port and the debug port don't support the RS_232 level and it only supports the CMOS level. Please refer to the table 10 for details about the voltage level. You should add the level converter IC between the DCE and DTE, if you connect it to the computer. Please refer to the following figure.

3.9 Audio Interfaces

Table 9: Pin define of the Audio interface

	Pin Name	Pin Number	Function
	MIC_P	19	Microphone1 input +
AIN/AOUT	MIC_N	20	Microphone1 input -
	SPK_P	21	Audio1 output+
	SPK_N	22	Audio1 output-
LINE IN	LINEIN_R	23	Right Channel input
	LINEIN_L	24	Lift Channel input

The module provides one analog input channel, AIN, which may be used for microphone. The electret microphone is recommended when the interface is used for microphone. The outputs connect to the receiver. The receiver outputs only can directly drive 32Ω .

External line inputs are available to directly mix or multiplex externally generated analog signals such as polyphonic tones from an external melody IC or music generated by an FM tuner IC or module.

You can use AT+CMIC to adjust the input gain level of microphone, use AT+SIDET to set the side-tone level. In addition, you can also use AT+CLVL to adjust the output gain level. For more details, please refer to *document* [1].

It is suggested that you adopt one of the following two matching circuits in order to improve audio performance. The difference audio signals have to be layout according to difference signal layout rules. As show in following figures (*Note: all components package are 0603.*) If you want to adopt an amplifier circuit for audio, we recommend National Company's LM4890. Of course you can select it according to your requirement.

SIM900_HD_V1.01

3.9.1 Speaker Interface Configuration

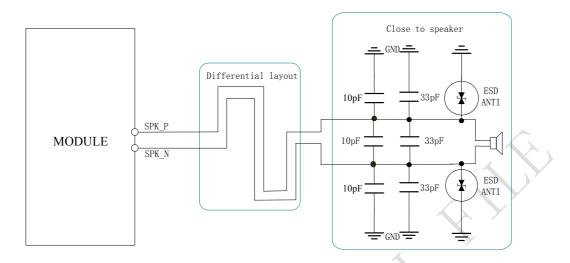
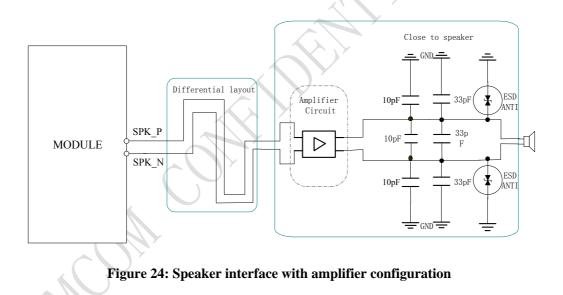



Figure 23: Speaker interface configuration

3.9.2 Microphone Interfaces Configuration

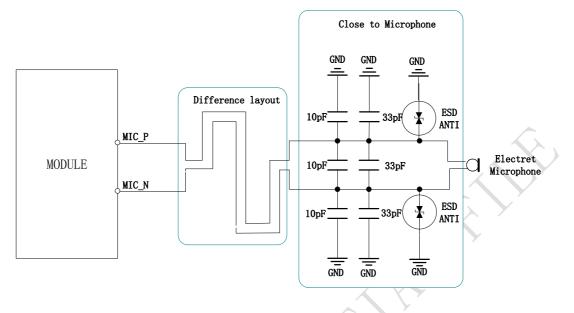
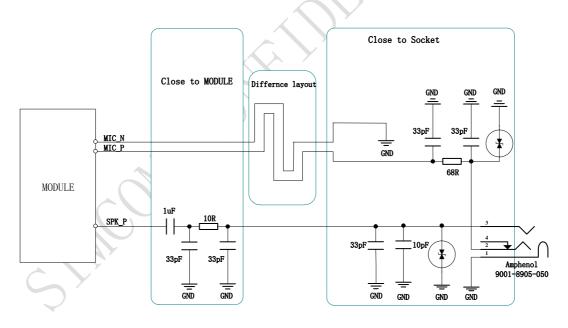



Figure 25: Microphone interface configuration

3.9.3 Earphone Interface Configuration

Figure 26: Earphone interface configuration

3.9.4 Referenced Electronic Characteristic

Table 10: MIC Input Characteristics

Parameter	Min	Тур	Max	Unit
Working Voltage	1.2	1.5	2.0	V
Working Current	200		500	uA
External Microphone Load Resistance	1.2	2.2		k Ohms

Table 11: Audio Output Characteristics

Parameter	Conditions	Min	Тур	Max	Unit
Normal	RL=32 Ohm THD=0.1%	-	91	-	mW
Output(SPK)	RL=32 Ohm THD=1%	-	96		mW

3.10 SIM Card Interface

3.10.1 SIM Card Application

You can use AT Command to get information in SIM card. For more information, please refer to document [1].

The SIM interface supports the functionality of the GSM Phase 1 specification and also supports the functionality of the new GSM Phase 2+ specification for FAST 64 kbps SIM (intended for use with a SIM application Tool-kit).

Both 1.8V and 3.0V SIM Cards are supported.

The SIM interface is powered from an internal regulator in the module having normal voltage 3V. All pins reset as outputs driving low. Logic levels are as described in table

Table 12: Pin define of the SIM interface

Pin Name	Pin Number	Function
SIM_VDD	30	SIM Card Power output automatic output on SIM mode, one is 3.0V±10%, another is 1.8V±10%. Current is about 10mA.
SIM_DATA	31	SIM Card data I/O
SIM_CLK	32	SIM Card Clock
SIM_RST	33	SIM Card Reset
SIM_PRESENCE	34	SIM Card detection

Following is the reference circuit about SIM interface. We recommend an Electro-Static discharge device ST (www.st.com) ESDA6V1W5 or ON SEMI (www.onsemi.com) SMF05C for "ESD ANTI". The 22Ω resistors

showed in the following figure should be added in series on the IO line between the module and the SIM card for protecting the SIM I/O port. The pull up resistor (about $15K\Omega$) on the SIM_DATA line already added in the module. Note that the SIM peripheral circuit should be close to the SIM card socket.

The SIM_PRESENCE pin is used for detecting the SIM card insert or removal. You can use the AT command "AT+CSDT" to set the SIMCARD configuration. For detail of this AT command, please refer to *document* [1]:

You can select the 8 pins SIM card holder. The reference circuit about 8 pins SIM card holder illustrates as following figure.

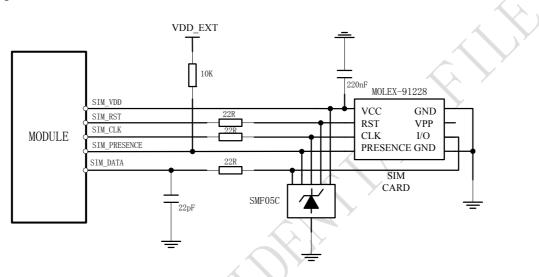


Figure 27: Reference circuit of the 8 pins SIM card

If you don't use the SIM card detection function, you can leave the SIM_PRESENCE pin open. The reference circuit about 6 pins SIM card illustrates as following figure.

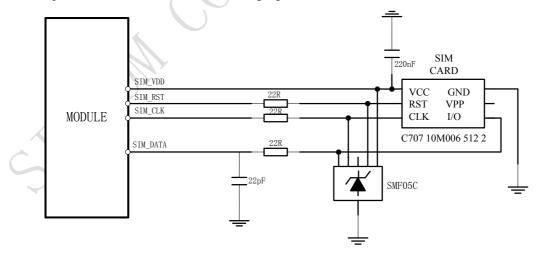


Figure 28: Reference circuit of the 6 pins SIM card

3.10.2 Design Considerations for SIM Card Holder

For 6 pins SIM card holder, we recommend to use Amphenol C707 10M006 512 2 .You can visit <u>http://www.amphenol.com</u> for more information about the holder.

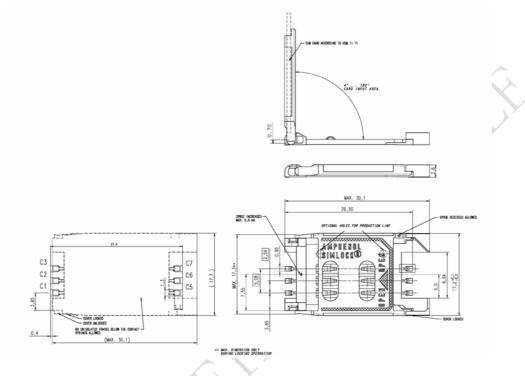


Figure 29: Amphenol C707 10M006 512 2 SIM card holder

		Y
Pin Name	Signal	Description
C1	SIM_VDD	SIM Card Power supply, it can identify automatically the SIM Card power mode, one is $3.0V\pm10\%$, another is $1.8V\pm10\%$. Current is about 10mA.
C2	SIM_RST	SIM Card Reset.
C3	SIM_CLK	SIM Card Clock.
C5	GND	Connect to GND.
C6	VPP	Not connect.
C7	SIM_DATA	SIM Card data I/O.

Table 13: Pin description (Ar	mphenol SIM card holder)
-------------------------------	--------------------------

For 8 pins SIM card holder, we recommend to use Molex 91228.You can visit <u>http://www.molex.com</u> for more information about the holder.

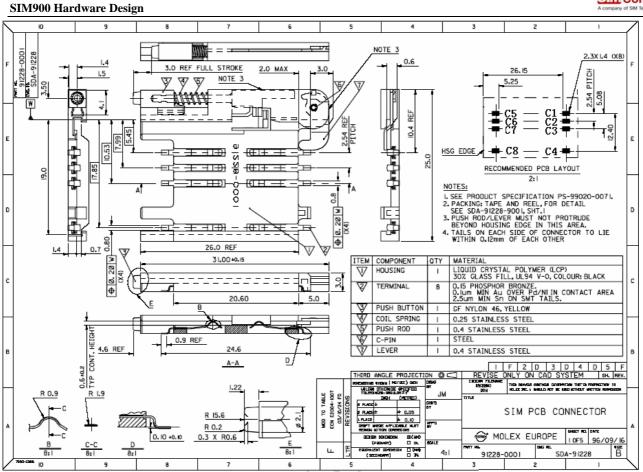


Figure 30: Molex 91228 SIM card holder

Table 14: Pin description	(Molex SIM card holder)
---------------------------	-------------------------

Pin Name	Signal	Description
C1	SIM_VDD	SIM Card Power supply, it can identify automatically the SIM Card power
		mode, one is 3.0V±10%, another is 1.8V±10%. Current is about 10mA.
C2	SIM_RST	SIM Card Reset
C3	SIM_CLK	SIM Card Clock
C4	GND	Connect to GND
C5	GND	Connect to GND
C6	VPP	Not connect
C7	SIM_DATA	SIM Card data I/O
C8	SIM_PRESENCE	Detect SIM Card Presence

3.11 LCD Display Interface

SIM900A provides a serial LCD display interface that supports serial communication with LCD device. When used as LCD interface, the following table is the pin definition. LCD interface timing should be united with the LCD device.

Pin Name	Pin Number	Function
DISP_CLK	11	Display clock for LCD
DISP_DATA	12	Display data output
DISP_D/C	13	Display data or command select

Table 15: Pin define of the LCD interface

14

Note: This function is not supported in the default firmware. There must be some customized firmware if you want. Please contact SIMCom for more details.

Display enable

3.12 Keypad Interface

DISP_CS

The keypad interface consists of 5 keypad column outputs and 5 keypad row inputs. The basic configuration is 5 keypad columns and 5 keypad rows, giving 25 keys.

Table 16: Pin define of the keypad interface
--

Pin Name	Pin Number	Default Function	Second Function*	Default State
GPIO1/KBR4	40	GPIO1		Output Pull down
GPIO2/ KBR3	41	GPIO2		Output Pull down
GPIO3/ KBR2	42	GPIO3	Keypad matrix column	Output Pull down
GPIO4/ KBR1	43	GPIO4		Output Pull down
GPIO5/ KBR0	44	GPIO5		Output Pull down
GPIO6/ KBC4	47	GPIO6		Output Pull down
GPIO7/ KBC3	48	GPIO7	Keypad matrix row	Output Pull down
GPIO8/ KBC2	49	GPIO8		Output Pull down
GPIO9/ KBC1	50	GPIO9		Output Pull down
GPIO10/ KBC0	51	GPIO10		Output Pull down

The keypad interface allows a direct external matrix connection. A typical recommended circuit about the keypad is as shown in the following figure.

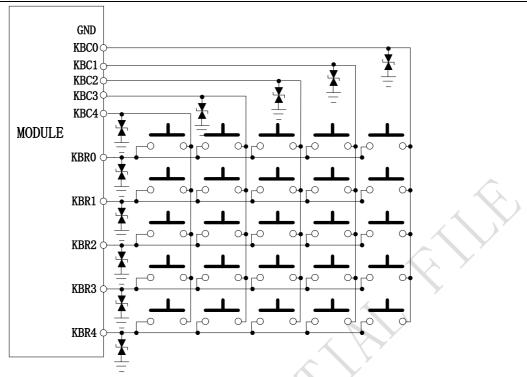


Figure 31: Reference circuit of the keypad interface

*Note: This function is not supported in the default firmware. There must be customized firmware if you want. Please contact SIMCom for more details.

3.13 ADC

SIM900A provides one auxiliary ADC (General purpose analog to digital converter.) as voltage input pin, which can be used to detect the values of some external items such as voltage, temperature etc. We can use AT command "AT+CADC" to read the voltage value on ADC. For detail of this AT command, please refer to *document [1]*.

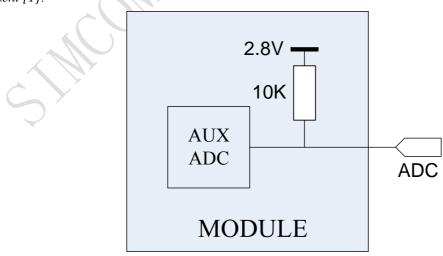


Figure 32: Architecture of ADC

~

SIM900 Hardware Design

Table 17: ADC specification

	MIN	Туре	MAX	Units
Voltage range	0	-	2.8	V
ADC Resolution	-	10	-	bits
Sampling rate	-	-	200K	Hz

3.14 Behaviors of the RI

Table 18: Behaviours of the RI

State	RI respond
Standby	HIGH
Voice calling	 Change LOW, then: (1) Change to HIGH when establish calling. (2) Use AT command ATH, the RI pin changes to HIGH. (3) Sender hangs up, change to HIGH.
Data calling	Change LOW, then:(1) Change to HIGH when establish calling.(2) Use AT command ATH, the RI changes to HIGH.
SMS	When receive SMS, The RI will change to LOW and hold low level about 120 ms, then change to HIGH.
URC	Some URCs triggers 120ms low level on RI. For more details, please refer to document [10]

If the module is used as caller, the RI will maintain high. However, when it is used as receiver, following is timing of ring.

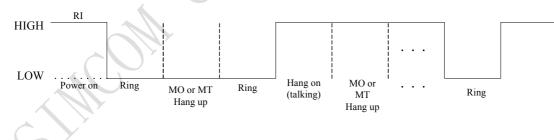
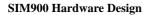
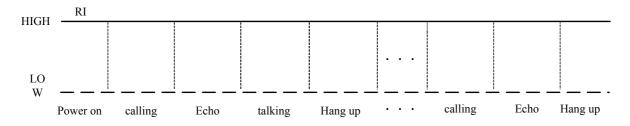




Figure 33: SIM900A Services as Receiver

SIM Com

Figure 34: SIM900A Services as caller

3.15 Network Status Indication

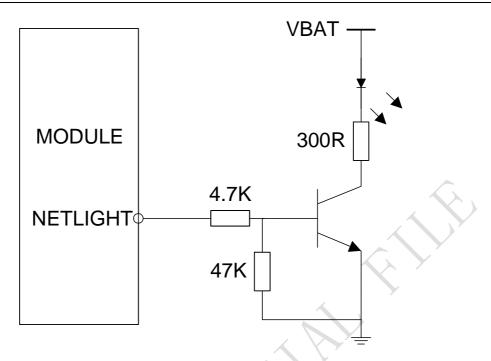

The NETLIGHT can be used to drive a network status indication LED lamp. The working state of this pin is listed in following table:

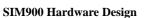
Table 19: Working state of the NETLIGHT

State	SIM900A function
Off	SIM900A is not running
64ms On/ 800ms Off	SIM900A does not find the network
64ms On/ 3000ms Off	SIM900A find the network
64ms On/ 300ms Off	GPRS communication

We provide a reference circuit for you, shown as following figure:

Figure 35: Reference circuit of NETLIGHT

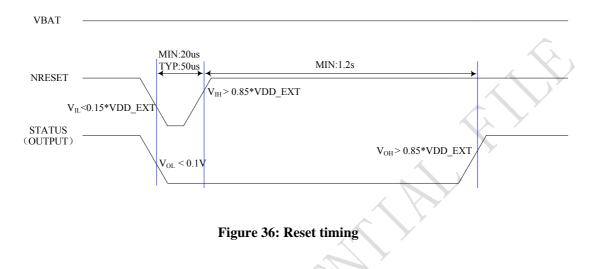
3.16 General Purpose Input Output (GPIO)


SIM900A provides a limited number of General Purpose Input/Output signal pin. The output and input voltage level of the GPIO can be set by AT command. *For more details, please refer to document* [1]

Pin Name	Pin Number	Default Function	Second Function*	Default State
GPIO1/KBR4	40	GPIO1	KBR4	Output Pull down
GPIO2/ KBR3	41	GPIO2	KBR3	Output Pull down
GPIO3/ KBR2	42	GPIO3	KBR2	Output Pull down
GPIO4/ KBR1	43	GPIO4	KBR1	Output Pull down
GPIO5/ KBR0	44	GPIO5	KBR0	Output Pull down
GPIO6/ KBC4	47	GPIO6	KBC4	Output Pull down
GPIO7/ KBC3	48	GPIO7	KBC3	Output Pull down
GPIO8/ KBC2	49	GPIO8	KBC2	Output Pull down
GPIO9/ KBC1	50	GPIO9	KBC1	Output Pull down
GPIO10/ KBC0	51	GPIO10	KBC0	Output Pull down
GPIO11	67	GPIO11		Output Pull down
GPIO12	68	GPIO12		Output Pull down

Table 20: Pin define of the GPIO interface

*Note: This function is not supported in the default firmware. There must be customized firmware if you want. Please contact SIMCom for more details.


SIM900_HD_V1.01

3.17 External Reset

The external NRESET pin provides a means for external circuitry to force the device into a reset state. This signal has to be considered as an emergency reset only. Asserting an active-low signal on the NRESET pin generates a reset; already pull up in module. A decoupling of the NRESET pin may be necessary to avoid erroneous noise-induced resets.

3.18 PWM

SIM900A contains two DC Pulse-Width Modulators (PWMs) which can be used in conjunction with an external transistor for driving a vibrator, or a backlight LED for illuminating an LCD display or keyboard. Each PWM features 7-bit resolution and a maximum conversion rate is 3.25 MHz. Each PWM uses two 7-bit unsigned binary numbers: one for the output period and one for the pulse width or the duty cycle.

Pin Name	Pin Number	
PWM1	35	Pulse-Width Modulator Signal
PWM2	36	Pulse-Width Modulator Signal

Note: This function is not supported in the default firmware. There must be customized firmware if you want. Please contact SIMCom for more details.

3.19 I2C Bus

The SIM900A initiates a data transfer on the bus and generates the clock signal to execute the transfer. The features include the following:

- Maximum output rate equal to 400 kbit/s
- Open-drain outputs
- Automatic Start and Stop generation
- Automatic acknowledge generation and checking

SIM900_HD_V1.01

- Automatically generates Start repeated pattern when performing read operations
- Automatically observes and generates the acknowledge bit
- Implements a hardware assisted I2C-bus protocol

Table 22: Pin define of the I2C Bus

Pin Name	Pin Number	Function
SCL	38	I2C Bus Clock
SDA	37	I2C Bus Data

Note: This function is not supported in the default firmware. There must be customized firmware if you want. Please contact SIMCom for more details.

4 Antenna Interface

SIM900A provides RF antenna interface. And customer's antenna should be located in the customer's main board and connect to module's antenna pad through microstrip line or other type RF trace which impendence must be controlled in 50Ω . To help you to ground the antenna, SIM900A comes with a grounding plane located close to the antenna pad. The Pin 60 is the RF antenna pad.

SIM900A material properties: SIM900A PCB Material: FR4 Antenna pad: Gold plated pad

4.2 Module RF Output Power

Table 23: SIM900A conducted RF output power

Frequency	Max	Min
EGSM900	33dBm ±2db	5dBm±5db
DCS1800	30 dBm ± 2 db	0dBm±5db

4.3 Module RF Receive Sensitivity

Table 24: SIM900A conducted RF receive sensitivity

Frequency	Receive sensitivity	
EGSM900	<-106dBm	
DCS1800	<-106dBm	

4.4 Module Operating Frequencies

Table 25: SIM900A operating frequencies

Frequency	Receive	Transmit
EGSM900	925 ~ 960MHz	880 ~ 915MHz
DCS1800	$1805 \sim 1880 \mathrm{MHz}$	$1710 \sim 1785 \mathrm{MHz}$

5 Electrical, Reliability and Radio Characteristics

5.1 Absolute Maximum Ratings

The absolute maximum ratings stated in Table 28 are stress ratings under non-operating conditions. Stresses beyond any of these limits will cause permanent damage to SIM900A.

Table 26: Absolute maximum ratings

Parameter	Min	Max	Unit
VBAT	-	5.5	V
Peak current of power supply	0	3.0	А
Voltage at digit pins*	-0.3	3.1	V
I _I *	-	10	mA
I _O *		10	mA

*For digital interface pins, such as keypad, GPIO, I2C, UART, LCD and PWMs.

5.2 Operating Temperatures

The operating temperature is listed in following table:

Table 27: SIM900A operating temperature

Parameter	Min	Тур	Max	Unit
Ambient temperature	-30	25	80	°C
Restricted operation*	-40 to -30		80 to 85	°C
Storage temperature	-45		90	°C

* The SIM900A does work, but deviations from the GSM specification may occur.

5.3 Power Supply Ratings

Table 28: SIM900A power supply ratings

Parameter	Description	Conditions	Min	Тур	Max	Unit
VBAT	Supply voltage	Voltage must stay within the min/max values, including voltage drop, ripple, and spikes.	3.4	4.0	4.5	V
	Voltage drop during transmit burst	Normal condition, power control level for Pout max			400	mV
	Voltage ripple	Normal condition, power control level for Pout max @ f<200kHz @ f>200kHz			50 2	mV
I _{VBAT}	Average supply current	POWER DOWN mode SLEEP mode		30 1.5		uA mA
		IDLE mode EGSM 900 DCS1800		22 22		mA
		TALK mode EGSM 900 DCS1800		241 158		mA
		DATA mode, GPRS (3 Rx,2Tx) EGSM 900 DCS1800		444 287		mA
		DATA mode, GPRS (4 Rx,1Tx) EGSM 900 DCS1800		270 191		mA
	Peak supply current (during Tx burst)	Power control level for Pout max.		2.0		Α

5.4 Current Consumption

Please refer to the following table for the values of current consumption.

Table 29: SIM900A current consumption

SIM900_HD_V1.01

Voice Call	
EGSM 900	@power level #5 <300mA,Typical 250mA
	@power level #10,Typical 110mA
	@power level #19,Typical 76mA
DCS 1800	@power level #0 <200mA,Typical 168mA
	@power level #10,Typical 89mA
	@power level #15, Typical 76mA
GPRS Data	
DATA mode, GPRS (1 Rx,1 Tx) CLASS 8	
EGSM 900	@power level #5 <300mA,Typical 240mA
	@power level #10,Typical 110mA
	@power level #19, Typical 83mA
DCS 1800	@power level #0 <200mA,Typical 170mA
	@power level #10,Typical 95mA
	@power level #15, Typical 80mA
DATA mode, GPRS (3 Rx, 2 Tx) CLASS 10	
EGSM 900	@power level #5 <450mA,Typical 440mA
	@power level #10, Typical 185mA
	@power level #19, Typical 130mA
DCS 1800	@power level #0 <350mA,Typical 300mA
	@power level #10, Typical 155mA
	@power level #15, Typical 122mA
DATA mode, GPRS (4 Rx,1 Tx) CLASS 8	
EGSM 900	@power level #5 <300mA,Typical 270mA
	@power level #10, Typical 150mA
	@power level #19,Typical 120mA
DCS 1800	@power level #0 <300mA,Typical 205mA
	@power level #10,Typical 130mA
	@power level #15,Typical 115mA

Class 10 is default set when the module works at data translation mode, the module can also work at class 8 set by AT command.

5.5 Electro-Static Discharge

The GSM engine is not protected against Electrostatic Discharge (ESD) in general. Therefore, it is subject to ESD handing precautions that typically apply to ESD sensitive components. Proper ESD handing and packaging procedures must be applied throughout the processing, handing and operation of any application using a SIM900A module.

The measured values of SIM900A are shown as the following table:

Table 30: The ESD endure statue measured table (Temperature: 25°C, Humidity:45%)

Part	Contact discharge	Air discharge	
VBAT	±5KV	±10KV	
GND	±4KV	±10KV	
RXD, TXD	±3KV	±6KV	
Antenna port	±5KV	±10KV	
SPK_P/N	±2KV		
MIC_P/N	$\pm 2KV$	±6KV	
PWRKEY	±1KV	±6KV	
Other port	TBD	TBD	

6 Mechanics

This chapter describes the mechanical dimensions of SIM900A.

6.1 Mechanical Dimensions of SIM900A

Following shows the Mechanical dimensions of SIM900A (top view, side view and bottom view).

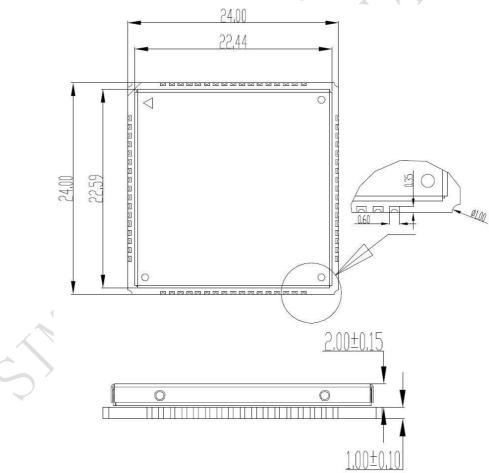


Figure 37: Top an Side Mechanical dimensions of module (Unit: mm)

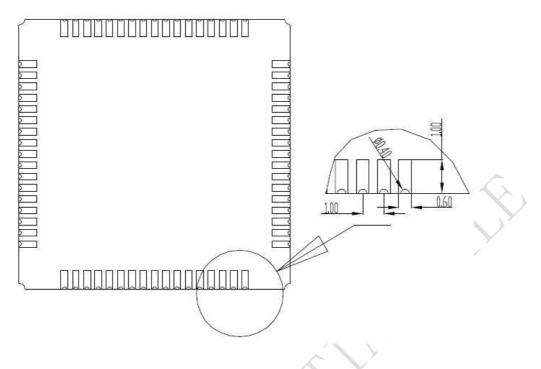


Figure 38: Bottom Mechanical dimensions of module (Unit: mm)

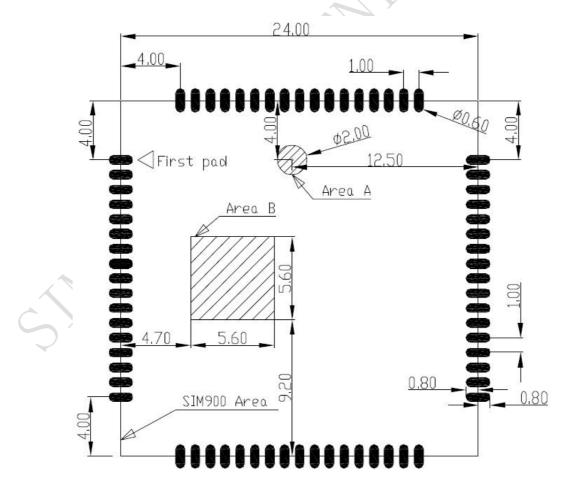


Figure 39: Recommended PCB decal (Unit: mm)

Note: Area A is keep route out area. Area B should be covered by silkscreen to prevent from the short between the via on customer board and the test points on the bottom side of the module.

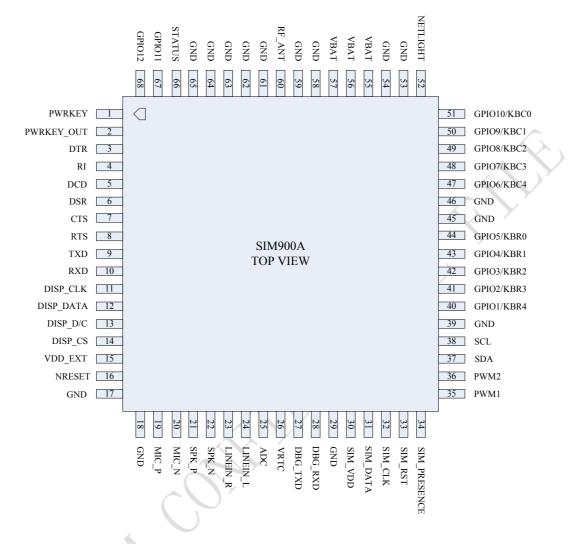

6.2 Top and Bottom View of the SIM900A

Figure 40: Top view of the SIM900A

6.3 PIN Assignment of SIM900A

Figure 41: SIM900A pin out diagram (Top View)

Table 31: PIN assignment

Pin Number	Pin Name	Pin Number	Pin Name
1	PWRKEY	35	PMW1
2	PWRKEY_OUT	36	PWM2
3	DTR	37	SDA
4	RI	38	SCL
5	DCD	39	GND
6	DSR	40	GPIO1/KBR4
7	CTS	41	GPIO2/KBR3
8	RTS	42	GPIO3/KBR2
9	TXD	43	GPIO4/KBR1

SIM900 Hard	lware Design		A company of SIM Tech
10	RXD	44	GPIO5/KBR0
11	DISP_CLK	45	GND
12	DISP_DATA	46	GND
13	DISP_D/C	47	GPIO6/KBC4
14	DISP_CS	48	GPIO7/KBC3
15	VDD_EXT	49	GPIO8/KBC2
16	NRESET	50	GPIO9/KBC1
17	GND	51	GPIO10/KBC0
18	GND	52	NETLIGHT
19	MIC_P	53	GND
20	MIC_N	54	GND
21	SPK_P	55	VBAT
22	SPK_N	56	VBAT
23	LINEIN_R	57	VBAT
24	LINEIN_L	58	GND
25	ADC	59	GND
26	VRTC	60	RF_ANT
27	DBG_TXD	61	GND
28	DBG_RXD	62	GND
29	GND	63	GND
30	SIM_VDD	64	GND
31	SIM_DATA	65	GND
32	SIM_CLK	66	STATUS
33	SIM_RST	67	GPIO11
34	SIM_PRESENCE	68	GPIO12

6.4 The Ramp-Soak-Spike Reflow Profile of SIM900A

STHROW CONTRA

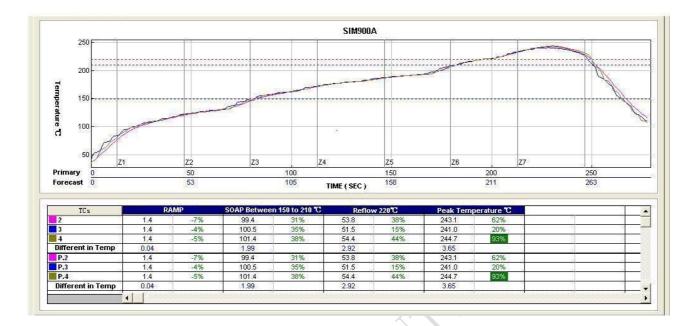


Figure 42: The ramp-soak-spike reflow profile of SIM900A

7

Contact us:

Shanghai SIMCom Wireless Solutions Ltd.

COM

Add: SIM Technology Building, No.633, Jinzhong Road, Changning District, Shanghai P.R. China 200335

Tel: +86 21 3235 3300 Fax: +86 21 3235 3301 URL: www.sim.com/wm

MOM