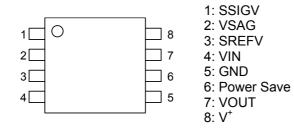
47μF AC-Coupling Capacitor Low Voltage Video Driver with LPF

■GENERAL DESCRIPTION

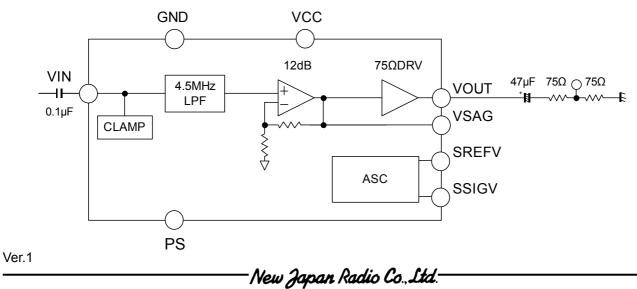
The **NJM2512A** is a Low Voltage Video Amplifier featuring small AC-coupling Capacitor.

The NJRC original Technology "ASC(Advanced SAG Correction)" realizes 47μ F AC-Coupling Capacitor which enables to downsize mounting space.

No worrying about beat noise caused by charge-pump circuit, and over-current caused by circuit short out than Capacitor-less video driver.


The **NJM2512A** is suitable for any video application. NJM2512: Gain=6dB NJM2512A : Gain=12dB

FEATURES


 Operating Voltage 	3.0 to 5.5V
 AC-Coupling capacitor 	47µF

- 6dB Amplifier
- 75Ω Driver
- Internal LPF
 OdBtyp.at 4.5MHz
 -33dBtyp.at 19MHz
- Power-save Circuit
- Bipolar Technology
- Package Outline TVSP8

PIN CONNECTION

BLOCK DIAGRAM

PACKAGE OUTLINE

NJM2512ARB1

EABSOLUTE MAXIMUM RATINGS (Ta=25°C)

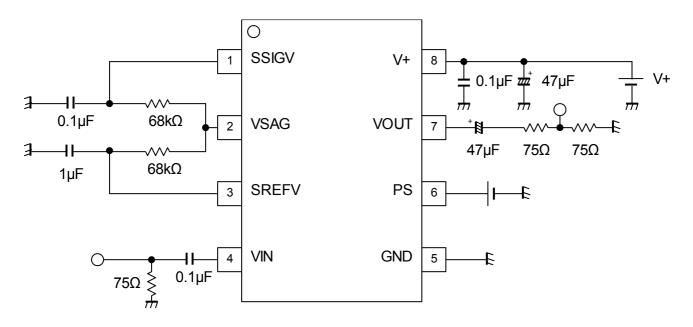
PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V ⁺	7.0	V
Power Dissipation	PD	580(Note1)	mW
Operating Temperature Range	Topr	-40 to +85	°C
Storage Temperature Range	Tstg	-40 to +150	°C

(Note1) At on a board of EIA/JEDEC specification. (114.3 x 76.2 x 1.6mm Two layers, FR-4)

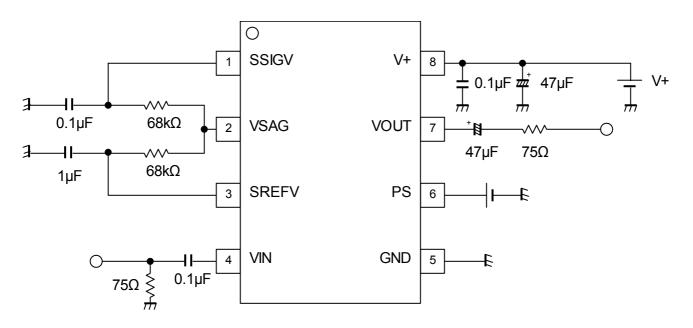
RECCOMENDED OPERATING CONDITIONS (Ta=25°C)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating voltage	Vopr		3.0	-	5.5	V

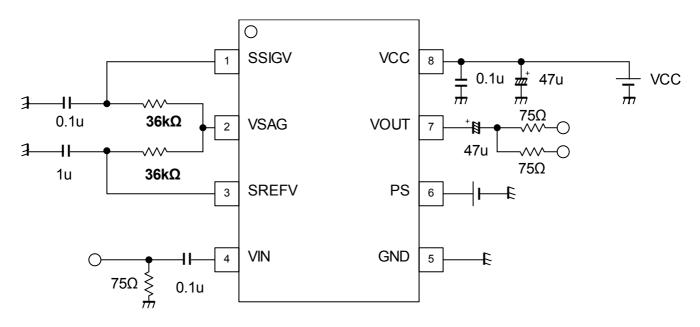
■ELECTRICAL CHRACTERISTCS(V⁺=3.3V, RL=150Ω,Ta=25°C)


PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Supply Current	I _{CC}	No signal		10	15	mA
Supply Current at Power Save Mode	Isave	Power save mode		20	50	μA
Maximum Output Level	Vom	Vin=100kHz,sin-signal, THD=1%,		-	-	Vp-p
Voltage Gain	Gv	Vin=1MHz, 1.0Vp-p sin-signal		12.0	12.5	dB
Lew Deep Filter Characteristic	Gf4.5M	Vin=4.5MHz/1MHz, 1.0Vpp sin-signal	-0.6	-0.1	+0.4	dB
Low Pass Filter Characteristic	Gf19 M	Vin=19MHz/1MHz, 1.0Vpp sin-signal	-	-33	-23	dB
Differential Gain	DG	Vin=1.0Vp-p 10step video signal	-	0.5	-	%
Differential Phase	DP	Vin=1.0Vp-p 10step video signal	-	0.5	-	deg
S/N Ratio	SN	100kHz to 6MHz, Vin=1.0Vp-p 100% White Video Signal, R∟=75Ω	-	60	-	dB
SW Voltage High Level	VthH	Active	1.8	-	V^{+}	V
SW Voltage Low Level	VthL	Non-Active		-	0.3	V
SW Sink Current High Level	lthH	V=5V	-	-	300	μA
SW Sink Current Low Level	lthL	V=0.3V		-	5	μA

CONTROL TERMINAL


PARAMETER	STATUS	MODE		
	Н	Power save: OFF Active mode		
Power Save	L	Power save: ON Non-Active mode (Mute)		
	OPEN	Power save: OFF Non-Active mode (Mute)		

-New Japan Radio Co.,Ltd.-


■ TEST CIRCUIT

■ APPLICATION CIRCUIT1

■ APPLICATION CIRCUIT2(2-line drive)

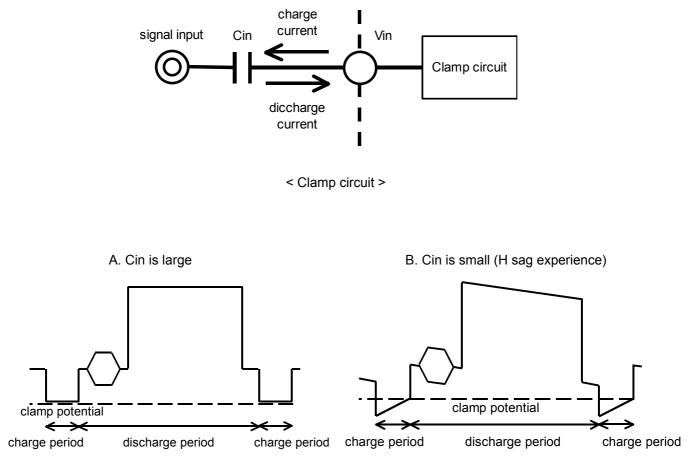
APPLICATION NOTE

NJM2512 Ahas possibilities that decrease in the capacitance in low-frequency band when the ceramic capacitor is used(pin7). It is a possibility that the sag is generated when the ceramic capacitor decreases capacity. Please verify it in consideration of the capacity drop of the ceramic capacitor.

Ver.1

♦ Clamp circuit

1. Operation of Sync-tip-clamp


Input circuit will be explained. Sync-tip clamp circuit (below the clamp circuit) operates to keep a sync tip of the minimum potential of the video signal. Clamp circuit is a circuit of the capacitor charging and discharging of the external input Cin. It is charged to the capacitor to the external input Cin at sync tip of the video signal. Therefore, the potential of the sync tip is fixed.

And it is discharged charge by capacitor Cin at period other than the video signal sync tip. This is due to a small discharge current to the IC.

In this way, this clamp circuit is fixed sync tip of video signal to a constant potential from charging of Cin and discharging of Cin at every one horizontal period of the video signal.

The minute current be discharged an electrical charge from the input capacitor at the period other than the sync tip of video signals. Decrease of voltage on discharge is dependent on the size of the input capacitor Cin.

If you decrease the value of the input capacitor, will cause distortion, called the H sag. Therefore, the input capacitor recommend on more than 0.1uF.

< Waveform of input terminal >

2. Input impedance

The input impedance of the clamp circuit is different at the capacitor discharge period and the charge period. The input impedance of the charging period is a few k Ω . On the other hand, the input impedance of the discharge period is several M Ω . Because is a small discharge-current through to the IC.

Thus the input impedance will vary depending on the operating state of the clamp circuit.

3. Impedance of signal source

Source impedance to the input terminal, please lower than 200Ω . A high source impedance, the signal may be distorted. If so, please to connect a buffer for impedance conversion.

[CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.

Ver.1

-New Japan Radio Co.,Ltd.-