

Vishay High Power Products

Thyristor/Thyristor, 105 A (ADD-A-PAKTM Generation 5 Power Modules)

ADD-A-PAKTM

PRODUCT SUMMARY					
I _{T(AV)}	105 A				

MECHANICAL DESCRIPTION

The Generation 5 of ADD-A-PAKTM module combines the excellent thermal performance obtained by the usage of direct bonded copper substrate with superior mechanical ruggedness, thanks to the insertion of a solid copper baseplate at the bottom side of the device. The Cu baseplate allows an easier mounting on the majority of heatsink with increased tolerance of surface roughness and improved thermal spread. The Generation 5 of AAP modules is manufactured without hard mold, eliminating in this way any possible direct stress on the leads.

The electrical terminals are secured against axial pull-out: they are fixed to the module housing via a click-stop feature already tested and proved as reliable on other Vishay HPP modules.

FEATURES

- · High voltage
- · Industrial standard package
- · Thick AI metal die and double stick bonding
- · Thick copper baseplate
- UL E78996 approved
- 3500 V_{RMS} isolating voltage
- · Totally lead (Pb)-free
- · Designed and qualified for industrial level

BENEFITS

- Up to 1600 V
- Full compatible TO-240AA
- High surge capability
- · Easy mounting on heatsink
- Al₂0₃ DBC insulator
- · Heatsink grounded

ELECTRICAL DESCRIPTION

These modules are intended for general purpose high voltage applications such as high voltage regulated power supplies, lighting circuits, temperature and motor speed control circuits, UPS and battery charger.

MAJOR RATINGS AND CHARACTERISTICS								
SYMBOL	CHARACTERISTICS	VALUES	UNITS					
I _{T(AV)}	85 °C	105						
I _{T(RMS)}		165	Α					
I	50 Hz	1785	A					
ITSM	60 Hz	1870						
l ² t	50 Hz	15.91	kA ² s					
I-(60 Hz	14.52	KA-5					
I ² √t		159.1	kA ^{2√} s					
V_{RRM}	Range	400 to 1600	V					
T _{Stg}		- 40 to 125						
TJ		- 40 to 130	°C					

Document Number: 94423 Revision: 24-Apr-08

VSKU/V105..PbF Series

Vishay High Power Products

Thyristor/Thyristor, 105 A (ADD-A-PAKTM Generation 5 Power Modules)

ELECTRICAL SPECIFICATIONS

VOLTAGE RATINGS								
TYPE NUMBER	VOLTAGE CODE	V _{RRM} , MAXIMUM REPETITIVE PEAK REVERSE VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V	V _{DRM} , MAXIMUM REPETITIVE PEAK OFF-STATE VOLTAGE, GATE OPEN CIRCUIT V	I _{RRM} , I _{DRM} AT 130 °C mA			
	04	400	500	400				
VCKUV10E	08	800	900	800	20			
VSKU/V105 12		1200	1300	1200	20			
	16	1600	1700	1600				

PARAMETER	SYMBOL	TE	ST CONDITIO	VALUES	UNITS	
Maximum average on-state current	I _{T(AV)}	180° conduction T _C = 85 °C	n, half sine wav	105	А	
Maximum continuous RMS on-state current	_	DC			165	
Maximum continuous RMS on-state current	I _{T(RMS)}	T _C			77	°C
		t = 10 ms	No voltage	Sinusoidal	1785	
		t = 8.3 ms	reapplied	half wave,	1870	
Maximum peak, one-cycle		t = 10 ms	100 % V _{RRM}	initial $T_J = T_J$	1500	
non-repetitive on-state current	I _{TSM}	t = 8.3 ms	reapplied	maximum	1570	Α
		t = 10 ms	T _J = 25 °C		2000	
		t = 8.3 ms	no voltage rea	applied	2100	
Maximum I ² t for fusing		t = 10 ms	No voltage		15.91	kA ² s
	l ² t	t = 8.3 ms	reapplied	Initial T _J = T _J maximum	14.52	
		t = 10 ms	100 % V _{RRM} reapplied		11.25	
		t = 8.3 ms			10.27	
		t = 10 ms	T _J = 25 °C		20.00	i
		t = 8.3 ms	no voltage rea	applied	18.30	
Maximum I²√t for fusing	2√t (1)	t = 0.1 to 10 m $T_J = T_J \text{ maximin}$	s, no voltage re	159.1	kA²√s	
Marian un value au thua ale alel valte de	V (2)	Low level (3)			0.80	.,
Maximum value or threshold voltage	V _{T(TO)} (2)	High level (4)	$T_J = T_J \text{ maxin}$	num	0.85	V
Maximum value of on-state	r _t ⁽²⁾	Low level (3)	T T		2.37	mΩ
slope resistance	r _t (=)	High level (4)	$T_J = T_J \text{ maxin}$	num	2.25	
Maximum neels on state or femurard valtage	V_{TM}	$I_{TM} = \pi \times I_{T(AV)}$	T _J = 25 °C		1.64	V
Maximum peak on-state or forward voltage	V _{FM}	$I_{FM} = \pi \times I_{F(AV)}$	1J=25 C		1.64	V
Maximum non-repetitive rate of rise of turned on current	dI/dt	$T_J = 25$ °C, from $I_{TM} = \pi \times I_{T(AV)}$,		: 0.5 μs, t _p > 6 μs	150	A/μs
Maximum holding current	I _H	-	ode supply = 6 \ gate open circui	200	mA	
Maximum latching current	ΙL	T _J = 25 °C, and	ode supply = 6	V, resistive load	400	

Notes

- $^{(1)}~I^2t$ for time $t_x=I^2\sqrt{t}~x~\sqrt{t}_x$
- (2) Average power = $V_{T(TO)} \times I_{T(AV)} + r_t \times (I_{T(RMS)})^2$
- (3) 16.7 % $\times \pi \times I_{AV} < I < \pi \times I_{AV}$
- (4) $I > \pi \times I_{AV}$

Thyristor/Thyristor, 105 A (ADD-A-PAKTM Generation 5 Power Modules)

Vishay High Power Products

TRIGGERING					•
PARAMETER	SYMBOL	TEST (VALUES	UNITS	
Maximum peak gate power	P _{GM}			12	w
Maximum average gate power	P _{G(AV)}			3	VV
Maximum peak gate current	I _{GM}			3	Α
Maximum peak negative gate voltage	- V _{GM}			10	V
Maximum gate voltage required to trigger		T _J = - 40 °C		4.0	
	V_{GT}	T _J = 25 °C	Anode supply = 6 V resistive load	2.5	
		T _J = 125 °C	resistive load	1.7	
		T _J = - 40 °C		270	
Maximum gate current required to trigger	I_{GT}	T _J = 25 °C	Anode supply = 6 V resistive load	150	mA
		T _J = 125 °C	Tesistive load	80	
Maximum gate voltage that will not trigger	V_{GD}	T 405 %C ===================================	0.25	V	
Maximum gate current that will not trigger	I _{GD}	$T_J = 125 ^{\circ}\text{C}$, rated V_I	6	mA	

BLOCKING								
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS				
Maximum peak reverse and off-state leakage current at V _{RRM} , V _{DRM}	I _{RRM} , I _{DRM}	T _J = 130 °C, gate open circuit	20	mA				
RMS insulation voltage	V _{INS}	50 Hz, circuit to base, all terminals shorted	2500 (1 min) 3500 (1 s)	V				
Maximum critical rate of rise of off-state voltage	dV/dt (1)	T_J = 130 °C, linear to 0.67 V_{DRM} , gate open circuit	500	V/µs				

Note

 $^{^{(1)}}$ Available with dV/dt = 1000 V/µs, to complete code add S90 i.e. VSKU105/16AS90

THERMAL AND MECHANICAL SPECIFICATIONS							
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS			
Junction operating temperature range	TJ		- 40 to 130	°C			
Storage temperature range	T _{Stg}		- 40 to 125	O			
Maximum internal thermal resistance, junction to case per module	R _{thJC}	DC operation	0.135	K/W			
Typical thermal resistance, case to heats	ink R _{thCS}	Mounting surface flat, smooth and greased	0.1				
to he Mounting torque ± 10 %	eatsink	A mounting compound is recommended and the torque should be rechecked after a period of	5	Nm			
,	ousbar	3 hours to allow for the spread of the compound.	3	INIII			
Approximate weight			110	g			
Approximate weight			4	OZ.			
Case style		JEDEC	TO-2	40AA			

AR CONDUCTION PER JUNCTION											
DEVICES	SI	SINE HALF WAVE CONDUCTION F						RECTANGULAR WAVE CONDUCTION			
DEVICES	180°	120°	90°	60°	30°	180°	120°	90°	60°	30°	UNITS
VSKU/V105	0.04	0.05	0.06	0.08	0.12	0.03	0.05	0.06	0.08	0.12	°C/W

Note

Document Number: 94423 Revision: 24-Apr-08

[•] Table shows the increment of thermal resistance R_{thJC} when devices operate at different conduction angles than DC

Vishay High Power Products

Thyristor/Thyristor, 105 A (ADD-A-PAKTM Generation 5 Power Modules)

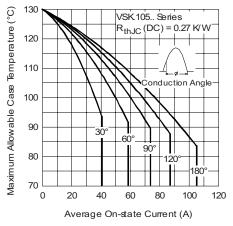


Fig. 1 - Current Ratings Characteristics



Fig. 2 - Current Ratings Characteristics

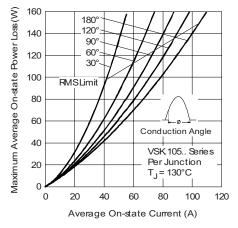


Fig. 3 - On-State Power Loss Characteristics

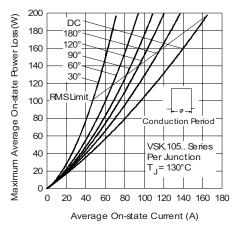


Fig. 4 - On-State Power Loss Characteristics

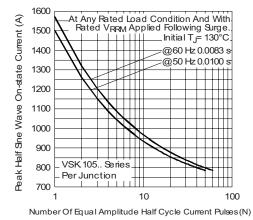


Fig. 5 - Maximum Non-Repetitive Surge Current

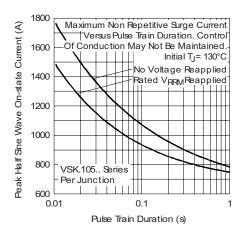


Fig. 6 - Maximum Non-Repetitive Surge Current

Thyristor/Thyristor, 105 A (ADD-A-PAKTM Generation 5 Power Modules)

Vishay High Power Products

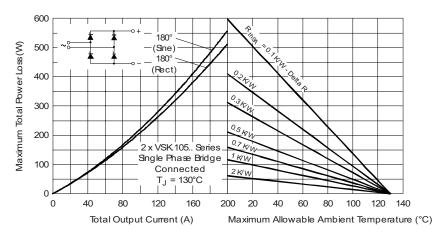


Fig. 7 - On-State Power Loss Characteristics (Single Phase Bridge VSKU + VSKV)

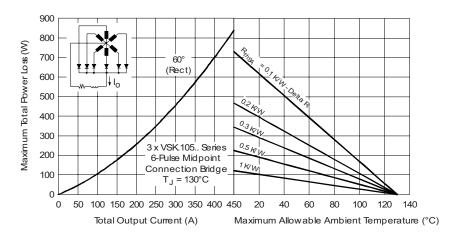


Fig. 8 - On-State Power Loss Characteristics

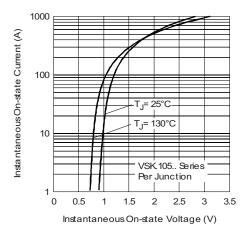


Fig. 9 - On-State Voltage Drop Characteristics

Vishay High Power Products

Thyristor/Thyristor, 105 A (ADD-A-PAKTM Generation 5 Power Modules)

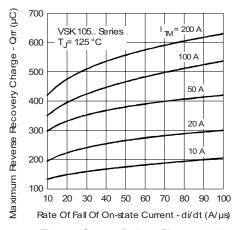


Fig. 10 - Current Ratings Characteristics

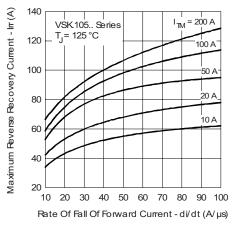


Fig. 11 - Current Ratings Characteristics

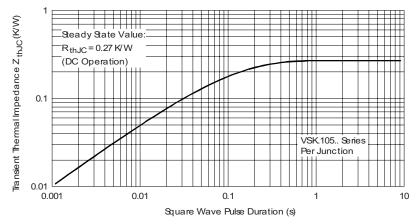


Fig. 12 - Thermal Impedance Z_{thJC} Characteristics

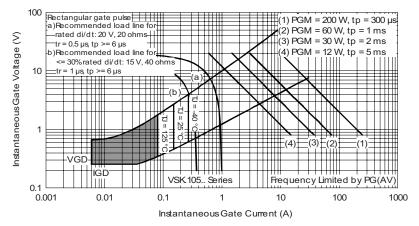
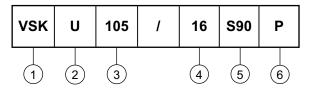


Fig. 13 - Gate Characteristics



Thyristor/Thyristor, 105 A (ADD-A-PAKTM Generation 5 Power Modules)

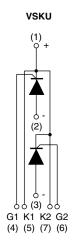
Vishay High Power Products

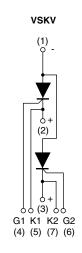
ORDERING INFORMATION TABLE

Device code

- 1 Module type
- Circuit configuration (see end of datasheet)
- 3 Current code (1)
- 4 Voltage code (see Voltage Ratings table)
- dV/dt code: S90 = dV/dt 1000 V/µs
 No letter = dV/dt 500 V/µs
- 6 P = Lead (Pb)-free

(for details see dimensions - link at the end of datasheet)


To specify change: 105 to 106


e.g.: VSKU106/16P etc.

Note

• To order the optional hardware go to www.vishay.com/doc?95172

CIRCUIT CONFIGURATION

LINKS TO RELATED DOCUMENTS					
Dimensions	http://www.vishay.com/doc?95087				

⁽¹⁾ Available with no auxiliary cathode

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Revision: 11-Mar-11