

DDR SDRAM DIMM MODULE

MT8VDDT1664A, MT16VDDT3264A

For the latest data sheet, please refer to the Micron Web site: www.micron.com/mti/msp/html/datasheet.html

FEATURES

- 184-pin dual in-line memory modules (DIMM)
- Utilizes 100 MHz and 133 MHz DDR SDRAM components
- ECC-optimized pinout
- 128MB (16 Meg x 64), 256MB (32 Meg x 64)
- $V_{DD} = +2.5V \pm 0.2V$, $V_{DD}Q = +2.5V \pm 0.2V$
- 2.5V I/O (SSTL_2 compatible)
- Commands entered on each positive CK edge
- DQS edge-aligned with data for READs; centeraligned with data for WRITEs
- Internal, pipelined double data rate (DDR) architecture; two data accesses per clock cycle
- Bidirectional data strobe (DQS) transmitted/ received with data, i.e., source-synchronous data capture
- Differential clock inputs (CKO and CKO#)
- Four internal banks for concurrent operation
- Programmable burst lengths: 2, 4 or 8
- Auto Precharge option
- Auto Refresh and Self Refresh Modes
- 15.6µs maximum average periodic refresh interval

OPTIONS


MARKING

• Package 184-pin DIMM (gold)

G

Frequency/CAS Latency
 266 MHz/CL = 2 (133 MHz DDR SDRAMs)
 266 MHz/CL = 2.5 (133 MHz DDR SDRAMs)
 265
 200 MHz/CL = 2 (100 MHz DDR SDRAMs)
 -202

184-Pin DIMM (front view)

PIN ASSIGNMENT

PIN	SYMBOL	PIN	SYMBOL	PIN	SYMBOL	PIN	SYMBOL
1	Vref	47	DQS8	93	Vss	139	Vss
2	DQ0	48	A0	94	DQ4	140	DQS17
3	Vss	49	CB2	95	DQ5	141	A10
4	DQ1	50	Vss	96	VDDQ	142	CB6
5	DQS0	51	CB3	97	DQS9	143	VddQ
6	DQ2	52	BA1	98	DQ6	144	CB7
7	VDD	53	DQ32	99	DQ7	145	Vss
8	DQ3	54	VddQ	100	Vss	146	DQ36
9	NC	55	DQ33	101	NC	147	DQ37
10	NC	56	DQS4	102	NC	148	VDD
11	Vss	57	DQ34	103	NC (A13)	149	DQS13
12	DQ8	58	Vss	104	VDDQ	150	DQ38
13	DQ9	59	BA0	105	DQ12	151	DQ39
14	DQS1	60	DQ35	106	DQ13	152	Vss
15	VddQ	61	DQ40	107	DQS10	153	DQ44
16	CK1	62	VDDQ	108	VDD	154	RAS#
17	CK1#	63	WE#	109	DQ14	155	DQ45
18	Vss	64	DQ41	110	DQ15	156	VddQ
19	DQ10	65	CAS#	111	CKE1	157	S0#
20	DQ11	66	Vss	112	VddQ	158	S1#
21	CKE0	67	DQS5	113	NC (BA2)	159	DQS14
22	VddQ	68	DQ42	114	DQ20	160	Vss
23	DQ16	69	DQ43	115	NC (A12)	161	DQ46
24	DQ17	70	VDD	116	Vss	162	DQ47
25	DQS2	71	NC (S2#)	117	DQ21	163	NC (S3#)
26	Vss	72	DQ48	118	A11	164	VDDQ
27	A9	73	DQ49	119	DQS11	165	DQ52
28	DQ18	74	Vss	120	V _{DD}	166	DQ53
29	A7	75	CK2#	121	DQ22	167	NC (FETEN)
30	VddQ	76	CK2	122	A8	168	VDD
31	DQ19	77	VDDQ	123	DQ23	169	DQS15
32	A5	78	DQS6	124	Vss	170	DQ54
33	DQ24	79	DQ50	125	A6	171	DQ55
34	Vss	80	DQ51	126	DQ28	172	VDDQ
35	DQ25	81	Vss	127	DQ29	173	NC
36	DQS3	82	VDDID	128	VDDQ	174	DQ60
37	A4	83	DQ56	129	DQS12	175	DQ61
38	VDD	84	DQ57	130	Ä3	176	Vss
39	DQ26	85	VDD	131	DQ30	177	DQS16
40	DQ27	86	DQS7	132	Vss	178	DQ62
41	A2	87	DQ58	133	DQ31	179	DQ63
42	Vss	88	DQ59	134	CB4	180	VDDQ
43	A1	89	Vss	135	CB5	181	SA0
44	CB0	90	WP	136	VDDQ	182	SA1
	CB1	91	SDA	137	CK0	183	SA2
45	CBI	, , ,					

NOTE: Symbols in parentheses are not used on this module but may be used for other modules in this product family. They are for reference only.

16, 32 MEG x 64 DDR SDRAM DIMMs

KEY DDR SDRAM COMPONENT TIMING PARAMETERS

MODULE	SPEED	CLOCK FREQUENCY (1/tCK)					
MARKING	GRADE	CL = 2*	CL = 2.5*				
-262/-265	-7	133 MHz	143 MHz				
-202	-75	100 MHz	133 MHz				

*CL = CAS (READ) latency

PART NUMBERS

PART NUMBER	CONFIGURATION	SYSTEM BUS SPEED
MT8VDDT1664AG-262	16 Meg x 64	CL = 2, 266 MHz
MT8VDDT1664AG-265	16 Meg x 64	CL = 2.5, 266 MHz
MT8VDDT1664AG-202	16 Meg x 64	CL = 2, 200 MHz
MT16VDDT3264AG-262	32 Meg x 64	CL = 2, 266 MHz
MT16VDDT3264AG-265	32 Meg x 64	CL = 2.5, 266 MHz
MT16VDDT3264AG-202	32 Meg x 64	CL = 2, 200 MHz

NOTE: All part numbers end with a two-place code (not shown), designating component and PCB revisions. Consult factory for current revision codes. Example: MT16VDDT3264AG-262A1

GENERAL DESCRIPTION

The MT8VDDT1664A and MT16VDDT3264A are high-speed CMOS, dynamic random-access, 64MB and 128MB memories organized in a x64 configuration. These modules use internally configured quad-bank DDR SDRAMs.

These DDR SDRAM modules use a double data rate architecture to achieve high-speed operation. The double data rate architecture is essentially a 2n-prefetch architecture with an interface designed to transfer two data words per clock cycle at the I/O pins. A single read or write access for the DDR SDRAM module effectively consists of a single 2n-bit wide, one-clock-cycle data transfer at the internal DRAM core and two corresponding n-bit wide, one-half-clock-cycle data transfers at the I/O pins.

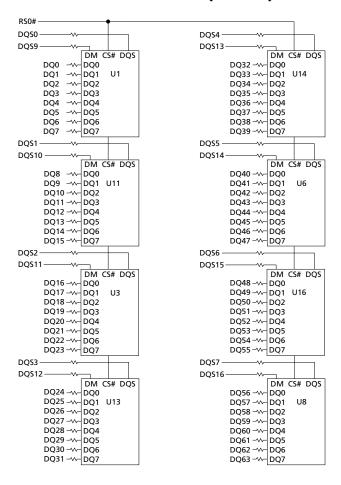
A bidirectional data strobe (DQS) is transmitted externally, along with data, for use in data capture at the receiver. DQS is an intermittent strobe transmitted by the DDR SDRAM during READs and by the memory controller during WRITEs. DQS is edge-aligned with data for READs and center-aligned with data for WRITEs.

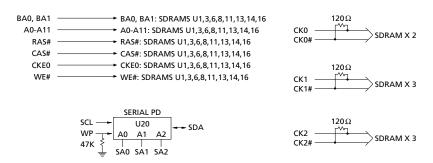
These DDR SDRAM modules operate from a differential clock (CK0 and CK0#); the crossing of CK0 going HIGH and CK0# going LOW will be referred to as the positive edge of CK0. Commands (address and control signals) are registered at every positive edge of CK0. Input data is registered on both edges of DQS, and output data is referenced to both edges of DQS, as well as to both edges of CK0.

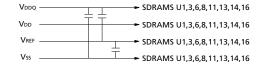
Read and write accesses to the DDR SDRAM modules are burst oriented; accesses start at a selected location and continue for a programmed number of locations in a programmed sequence. Accesses begin with the registration of an ACTIVE command, which is then followed by a READ or WRITE command. The address bits registered coincident with the ACTIVE command are used to select the bank and row to be accessed. The address bits registered coincident with the READ or WRITE command are used to select the bank and the starting column location for the burst access.

These DDR SDRAM modules provide for programmable READ or WRITE burst lengths of 2, 4 or 8 locations. An auto precharge function may be enabled to provide a self-timed row precharge that is initiated at the end of the burst access.

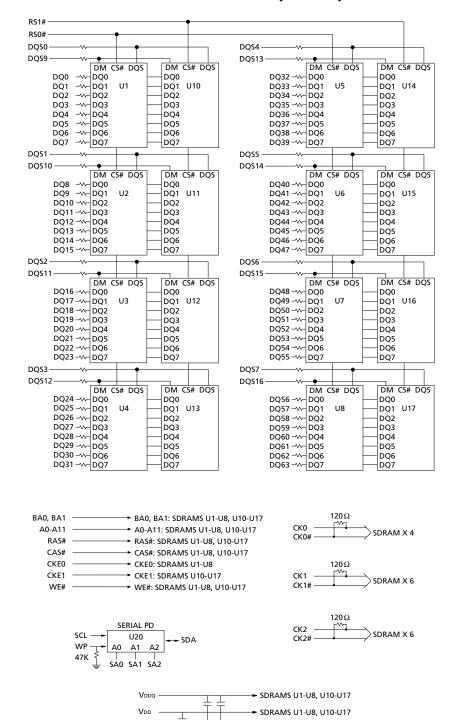
As with standard SDR SDRAM modules, the pipelined, multibank architecture of DDR SDRAM modules allows for concurrent operation, thereby providing high effective bandwidth by hiding row precharge and activation time.


An auto refresh mode is provided, along with a power-saving power-down mode. All inputs are compatible with the JEDEC Standard for SSTL_2. All outputs are SSTL_2, Class II compatible. For more information regarding DDR SDRAM operation, refer to the 128Mb x4, x8, x16 DDR SDRAM data sheet.


SERIAL PRESENCE-DETECT OPERATION


The DDR SDRAM modules incorporate serial presence-detect (SPD). The SPD function is implemented using a 2,048-bit EEPROM. This nonvolatile storage device contains 256 bytes. The first 128 bytes can be programmed by Micron to identify the module type and various SDRAM organizations and timing parameters. The remaining 128 bytes of storage are available for use by the customer. System READ/WRITE operations between the master (system logic) and the slave EEPROM device (DIMM) occur via a standard IIC bus using the DIMM's SCL (clock) and SDA (data) signals, together with SA(2:0), which provide eight unique DIMM/EEPROM addresses.

FUNCTIONAL BLOCK DIAGRAM MT8VDDT1664A (128MB)



NOTE: All resistor values are 22 ohms unless otherwise specified. U1,3,6,8,11,13,14,16 = MT46V16M8TG DDR SDRAMs

FUNCTIONAL BLOCK DIAGRAM MT16VDDT3264A (256MB)

NOTE: All resistor values are 22 ohms unless otherwise specified.

Vss

U1-U8, U10-U17 = MT46V16M8TG DDR SDRAMs

SDRAMS U1-U8, U10-U17

SDRAMS U1-U8, U10-U17

PIN DESCRIPTIONS

PIN NUMBERS	SYMBOL	TYPE	DESCRIPTION
63, 65, 154	WE#, CAS#, RAS#	Input	Command Inputs: WE#, CAS# and RAS# (along with S0#, S1#) define the command being entered.
137, 138, 16, 17, 76, 75	CK0, CK0#, CK1, CK1#, CK2, CK2#	Input	Clocks: CK and CK# are differential clock inputs. All address and control input signals are sampled on the crossing of the positive edge of CK and negative edge of CK#. Output data (DQs and DQS) is referenced to the crossings of CK and CK#.
21, 111	CKE0, CKE1	Input	Clock Enables: CKE0 and CKE1 activate (HIGH) and deactivate (LOW) internal clock signals, and device input buffers and output drivers. Deactivating the clock provides PRECHARGE POWER-DOWN and SELF REFRESH operation (all banks idle), or ACTIVE POWER-DOWN (row ACTIVE in any bank). CKE0 and CKE1 are synchronous for all functions except for disabling outputs, which is achieved asynchronously. CKE0 and CKE1 must be maintained HIGH throughout read and write accesses. Input buffers (excluding CK0, CK0# and CKE) are disabled during POWER-DOWN. Input buffers (excluding CKE0 and CKE1) are disabled during SELF REFRESH. CKE0 and CKE1 are SSTL_2 inputs but will detect an LVCMOS LOW level after VDD is applied.
157, 158	SO#, S1#	Input	Chip Selects: S0# and S1# enable (registered LOW) and disable (registered HIGH) the command decoder. All commands are masked when S0# and S1# are registered HIGH. S0# and S1# provide for external bank selection on systems with multiple banks. S0# and S1# are considered part of the command code.
59, 52	BA0, BA1	Input	Bank Addresses: BA0 and BA1 define to which bank an ACTIVE, READ, WRITE or PRECHARGE command is being applied.
48, 43, 41, 130, 37, 32, 125, 29, 122, 27, 141, 118	A0-A11	Input	Address Inputs: A0-A11 are sampled during the ACTIVE command (row-address A0-A11) and READ/WRITE command (column-address A0-A9, with A10 defining auto precharge) to select one location out of the memory array in the respective bank. A10 is sampled during a PRECHARGE command to determine whether the PRECHARGE applies to one bank (A10 LOW) or all banks (A10 HIGH). The address inputs also provide the op-code during a MODE REGISTER SET command.
1	Vref	Input	SSTL_2 reference voltage.
82	VDDID	Input	VDD identification flag.
90	WP	Input	Write Protect: Serial presence-detect hardware write protect.
92	SCL	Input	Serial Clock for Presence-Detect: SCL is used to synchronize the presence-detect data transfer to and from the module.

PIN DESCRIPTIONS

PIN NUMBERS	SYMBOL	TYPE	DESCRIPTION
181, 182, 183	SA0-SA2	Input	Presence-Detect Address Inputs: These pins are used to configure the presence-detect device.
44, 45, 49, 51, 134, 135, 142, 144	CB0-CB7	Input/ Output	Data I/Os: Check bits.
5, 14, 25, 36, 56, 67, 78, 86, 47, 97, 107, 119, 129, 149, 159, 169, 177, 140	DQS0-DQS17	Input/ Output	Data Strobes: Output with read data, input with write data. Edge-aligned with read data, centered in write data. Used to capture write data.
2, 4, 6, 8, 12, 13, 19, 20, 23, 24, 28, 31, 33, 35, 39, 40, 53, 55, 57, 60, 61, 64, 68, 69, 72, 73, 79, 80, 83, 84, 87, 88, 94, 95, 98, 99, 105, 106, 109, 110, 114, 117, 121, 123, 126, 127, 131, 133, 146, 147, 150, 151, 153, 155, 161, 162, 165, 166, 170, 171, 174, 175, 178, 179		Input/ Output	Data I/Os: Data bus.
91	SDA	Input/ Output	Serial Presence-Detect Data: SDA is a bidirectional pin used to transfer addresses and data into and out of the presence-detect portion of the module.
15, 22, 30, 54, 62, 77, 96, 104, 112, 128, 136, 143, 156, 164, 172, 180	VddQ	Supply	DQ Power Supply: +2.5V <u>+</u> 0.2V.
7, 38, 46, 70, 85, 108, 120, 148, 168	V _{DD}	Supply	Power Supply: +2.5V ±0.2V.
3, 11, 18, 26, 34, 42, 50, 58, 66, 74, 81, 89, 93, 100, 116, 124, 132, 139, 145, 152, 160, 176	Vss	Supply	Ground.
184	VDDSPD	Supply	Serial EEPROM positive power supply: 2.2V to 3.7V. This supply is isolated from the VDD/VDDQ supply.
9, 10, 71, 101, 102, 103, 113, 115, 163, 167, 173	NC	_	No Connects.

SPD CLOCK AND DATA CONVENTIONS

Data states on the SDA line can change only during SCL LOW. SDA state changes during SCL HIGH are reserved for indicating start and stop conditions (Figures 1 and 2).

SPD START CONDITION

All commands are preceded by the start condition, which is a HIGH-to-LOW transition of SDA when SCL is HIGH. The SPD device continuously monitors the SDA and SCL lines for the start condition and will not respond to any command until this condition has been met.

SPD STOP CONDITION

All communications are terminated by a stop condition, which is a LOW-to-HIGH transition of SDA when SCL is HIGH. The stop condition is also used to place the SPD device into standby power mode.

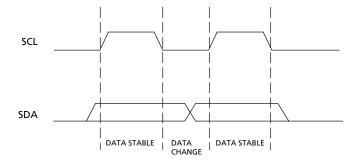


Figure 1
Data Validity

SPD ACKNOWLEDGE

Acknowledge is a software convention used to indicate successful data transfers. The transmitting device, either master or slave, will release the bus after transmitting eight bits. During the ninth clock cycle, the receiver will pull the SDA line LOW to acknowledge that it received the eight bits of data (Figure 3).

The SPD device will always respond with an acknowledge after recognition of a start condition and its slave address. If both the device and a WRITE operation have been selected, the SPD device will respond with an acknowledge after the receipt of each subsequent eightbit word. In the read mode the SPD device will transmit eight bits of data, release the SDA line and monitor the line for an acknowledge. If an acknowledge is detected and no stop condition is generated by the master, the slave will continue to transmit data. If an acknowledge is not detected, the slave will terminate further data transmissions and await the stop condition to return to standby power mode.

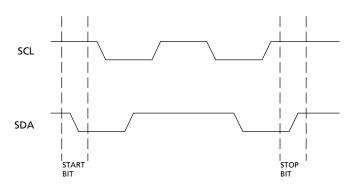


Figure 2
Definition of Start and Stop

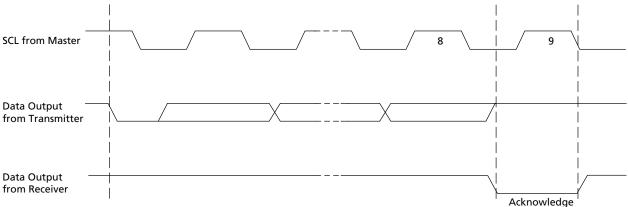


Figure 3
Acknowledge Response From Receiver

SERIAL PRESENCE-DETECT MATRIX

BYTE	DESCRIPTION	ENTRY (VERSION)	MT8VDDT1664A	MT16VDDT3264A
0	NUMBER OF BYTES USED BY MICRON	128	80	80
1	TOTAL NUMBER OF SPD MEMORY BYTES	256	08	08
2	MEMORY TYPE	SDRAM DDR	07	07
3	NUMBER OF ROW ADDRESSES	12	0C	0C
4	NUMBER OF COLUMN ADDRESSES	10	0A	0A
5	NUMBER OF BANKS	1 or 2	01	02
6	MODULE DATA WIDTH	64	40	40
7	MODULE DATA WIDTH (continued)	0	00	00
8	MODULE VOLTAGE INTERFACE LEVELS	SSTL 2.5V	04	04
9	SDRAM CYCLE TIME, ^t CK	7 (-262)	70	70
	(CAS LATENCY = 2.5)	7.5 (-265)	75	75
		8 (-202)	80	80
10	SDRAM ACCESS FROM CLOCK, ^t AC	0.75 (-262/-265)	75	75
	(CAS LATENCY = 2.5)	0.8 (-202)	80	80
11	MODULE CONFIGURATION TYPE	NON-ECC	00	00
12	REFRESH RATE/TYPE	15.6µs/SELF	80	80
13	SDRAM WIDTH (PRIMARY SDRAM)	8	08	08
14	ERROR-CHECKING SDRAM DATA WIDTH	NONE	00	00
15	MINIMUM CLOCK DELAY, BACK-TO-BACK	1	01	01
	RANDOM COLUMN ACCESS			
16	BURST LENGTHS SUPPORTED	2, 4, 8	0E	0E
17	NUMBER OF BANKS ON SDRAM DEVICE	4	04	04
18	CAS LATENCIES SUPPORTED	2, 2.5	0C	0C
19	CS LATENCY	1	02	02
20	WE LATENCY	1	02	02
21	SDRAM MODULE ATTRIBUTES		20	20
22	SDRAM DEVICE ATTRIBUTES: GENERAL		00	00
23	SDRAM CYCLE TIME, ^t CK	7.5 (-262)	75	75
	(CAS LATENCY = 2)	10 (-265/-202)	Α0	A0
24	SDRAM CYCLE TIME, ^t CK	7 (-262)	70	70
	(CAS LATENCY = 2)	7.5 (-265)	75	75
		8 (-202)	80	80
25	SDRAM CYCLE TIME, ^t CK (CAS LATENCY = 1)	_	00	00
26	SDRAM ACCESS FROM CLK, ^t AC (CAS LATENCY = 1)	_	00	00
27	· · · · · · · · · · · · · · · · · · ·	20	Γ0	F0
27	MINIMUM ROW PRECHARGE TIME, [†] RP	20	50	50
28	MINIMUM ROW ACTIVE TO ROW ACTIVE, ^t RRD	15	3C	3C
29	MINIMUM RAS# TO CAS# DELAY, ^t RCD	20	50	50
30	MINIMUM RAS# PULSE WIDTH, ^t RAS	45 (-262/-265)	2D	2D
		50 (-202)	32	32
31	MODULE BANK DENSITY	128MB	20	20

NOTE: "1"/"0": Serial Data, "driven to HIGH"/"driven to LOW."

SERIAL PRESENCE-DETECT MATRIX (continued)

BYTE	DESCRIPTION	ENTRY (VERSION)	MT8VDDT864A	MT16VDDT1664A
32	ADDRESS AND COMMAND SETUP TIME, ^t IS	0.75 (-262/-265)	75	75
		1.2 (-202)	C0	C0
33	ADDRESS AND COMMAND HOLD TIME, ^t IH	0.75 (-262/-265)	75	75
		1.2 (-202)	C0	C0
34	DATA/DATA MASK INPUT SETUP TIME, ^t DS	0.5 (-262/-265)	50	50
		0.6 (-202)	60	60
35	DATA/DATA MASK INPUT HOLD TIME, ^t DH	0.5 (-262/-265)	50	50
		0.6 (-202)	60	60
36-61	RESERVED		00	00
62	SPD REVISION	0	00	00
63	CHECKSUM FOR BYTES 0-62	-262	34	35
		-265	69	6A
		-202	45	46
64	MANUFACTURER'S JEDEC ID CODE	MICRON	2C	2C
65-71	MANUFACTURER'S JEDEC ID CODE (continued)		FF	FF
72	MANUFACTURING LOCATION		01	01
			02	02
			03	03
			04	04
			05 06	05 06
			07	07
			08	08
			09	09
73-90	MODULE PART NUMBER (ASCII)		Х	х
91	PCB IDENTIFICATION CODE	1	01	01
		2	02	02
		3	03	03
		4	04	04
		5 6	05	05
		7	06 07	06 07
		8	08	08
		9	09	09
92	IDENTIFICATION CODE (continued)	0	00	00
93	YEAR OF MANUFACTURE IN BCD		х	х
94	WEEK OF MANUFACTURE IN BCD		x	x
95-98	MODULE SERIAL NUMBER		Х	х
99-127	MANUFACTURER-SPECIFIC DATA (RSVD)		-	_

NOTE: 1. "1"/"0": Serial Data, "driven to HIGH"/"driven to LOW."

2. x = Variable Data.

COMMANDS

Truth Table 1 provides a general reference of available commands. For a more detailed description of

commands and operations, refer to the 128Mb: x4, x8, x16 SDRAM DDR data sheet.

TRUTH TABLE 1 - COMMANDS

(Note: 1)

NAME (FUNCTION)	CS#	RAS#	CAS#	WE#	ADDR	NOTES
DESELECT (NOP)	Н	Х	Х	Х	Х	9
NO OPERATION (NOP)	L	Н	Н	Н	Х	9
ACTIVE (Select bank and activate row)	L	L	Н	Н	Bank/Row	3
READ (Select bank and column, and start READ burst)	L	Н	L	Н	Bank/Col	4
WRITE (Select bank and column, and start WRITE burst)	L	Н	L	L	Bank/Col	4
BURST TERMINATE	L	Н	Н	L	Х	8
PRECHARGE (Deactivate row in bank or banks)	L	L	Н	L	Code	5
AUTO REFRESH or SELF REFRESH	L	L	L	Н	Х	6, 7
(Enter self refresh mode)						
LOAD MODE REGISTER	L	L	L	L	Op-Code	2

TRUTH TABLE 1A - DM OPERATION

NAME (FUNCTION)	DM	DQs	NOTES
Write Enable	L	Valid	10
Write Inhibit	Н	Х	10

- **NOTE**: 1. CKE is HIGH for all commands shown except SELF REFRESH.
 - 2. BA0-BA1 select either the mode register or the extended mode register (BA0 = 0, BA1 = 0 select the mode register; BA0 = 1, BA1 = 0 select extended mode register; other combinations of BA0-BA1 are reserved). A0-A11 provide the opcode to be written to the selected mode register.
 - 3. BA0-BA1 provide bank address and A0-A11 provide row address.
 - 4. BA0-BA1 provide bank address; A0-A9 provide column address; A10 HIGH enables the auto precharge feature (nonpersistent), and A10 LOW disables the auto precharge feature.
 - A10 LOW: BA0-BA1 determine which bank is precharged.A10 HIGH: all banks are precharged and BA0-BA1 are "Don't Care."
 - 6. This command is AUTO REFRESH if CKE is HIGH, SELF REFRESH if CKE is LOW.
 - 7. Internal refresh counter controls row addressing; all inputs and I/Os are "Don't Care" except for CKE.
 - 8. Applies only to read bursts with auto precharge disabled; this command is undefined (and should not be used) for READ bursts with auto precharge enabled and for WRITE bursts.
 - 9. DESELECT and NOP are functionally interchangeable.
 - 10. Used to mask write data; provided coincident with the corresponding data.

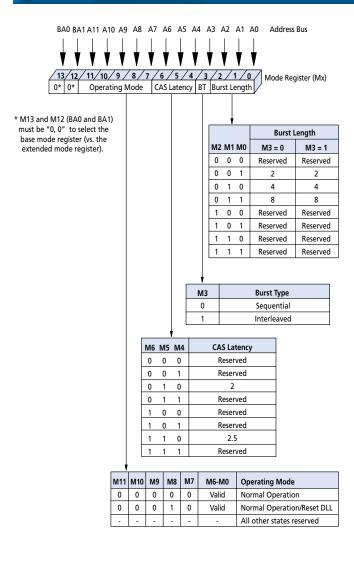


Figure 4 Mode Register Definition

Table 1 Burst Definition

Burst	Starting Column			Order of Access	es Within a Burst
Length	Address		ss	Type = Sequential	Type = Interleaved
	A0		Α0		
2			0	0-1	0-1
			1	1-0	1-0
		A 1	Α0		
		0	0	0-1-2-3	0-1-2-3
4		0	1	1-2-3-0	1-0-3-2
-		1	0	2-3-0-1	2-3-0-1
		1	1	3-0-1-2	3-2-1-0
	A2	A 1	A 0		
	0	0	0	0-1-2-3-4-5-6-7	0-1-2-3-4-5-6-7
	0	0	1	1-2-3-4-5-6-7-0	1-0-3-2-5-4-7-6
	0	1	0	2-3-4-5-6-7-0-1	2-3-0-1-6-7-4-5
8	0	1	1	3-4-5-6-7-0-1-2	3-2-1-0-7-6-5-4
0	1	0	0	4-5-6-7-0-1-2-3	4-5-6-7-0-1-2-3
	1	0	1	5-6-7-0-1-2-3-4	5-4-7-6-1-0-3-2
	1	1	0	6-7-0-1-2-3-4-5	6-7-4-5-2-3-0-1
	1	1	1	7-0-1-2-3-4-5-6	7-6-5-4-3-2-1-0

NOTE: 1. For a burst length of two, A1-A9 select the twodata-element block; A0 selects the first access within the block.

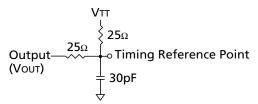
- 2. For a burst length of four, A2-A9 select the four-data-element block; A0-A1 select the first access within the block.
- 3. For a burst length of eight, A3-A9 select the eight-data-element block; A0-A2 select the first access within the block.
- 4. Whenever a boundary of the block is reached within a given sequence above, the following access wraps within the block.

16, 32 MEG x 64 DDR SDRAM DIMMs

ABSOLUTE MAXIMUM RATINGS*

Voltage on VDD Supply
Relative to Vss1V to +4.6V
Voltage on VDDQ Supply
Relative to Vss1V to +3.6V
Voltage on Vref and Inputs
Relative to Vss1V to +3.6V
Voltage on I/O Pins
Relative to Vss0.5V to VddQ +0.5V
Operating Temperature, T_A (ambient) 0°C to +70°C
Storage Temperature (plastic)55°C to +150°C
Power Dissipation
Short Circuit Output Current 50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.


DC ELECTRICAL CHARACTERISTICS AND OPERATING CONDITIONS

(Notes: 1-6) (0°C \leq T_A \leq +70°C; VDD = +2.5V \pm 0.2V, VDDQ = +2.5V \pm 0.2V)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES	
Supply Voltage	VDD	2.3	2.7	V		
I/O Supply Voltage		VddQ	2.3	2.7	V	
I/O Reference Voltage		VREF	0.49 x V _{DD} Q	0.51 x VDDQ	V	7
I/O Termination Voltage (system)		VTT	VREF - 0.04	VREF + 0.04	V	8
Input High (Logic 1) Voltage		Vih	VREF + 0.18	VDD + 0.3	V	9
Input Low (Logic 0) Voltage		VIL	-0.3	VREF - 0.18	V	9
Clock Input Voltage Level; CK0 and Cl	Vin	-0.3	V _{DD} Q + 0.3	V		
Clock Input Differential Voltage; CK0	VID	0.36	V _{DD} Q + 0.6	V	10	
Clock Input Crossing Point Voltage; Cl	K0 and CK0#	Vıx	1.15	1.35	V	11
INPUT LEAKAGE CURRENT Any input 0V ≤ V _{IN} ≤ V _{DD}	WE#, RAS#, CAS#, BA0 BA1	lı1	-32	32	μA	12
(All other pins not under test = 0V)	S0#, S1#, CKE0, CKE1	lı2	-16	16	μΑ	
	CK, CK#	lı3	-12	12	μΑ	12
OUTPUT LEAKAGE CURRENT DQ0-DQ63, (DQs are disabled; 0V ≤ Vout ≤ VDDQ) DQS0-DQS17			-10	10	μΑ	12
OUTPUT LEVELS Output High Current (Vout = 1.95V, maximum Vττ)			-15.2	_	mA	
Output Low Current (Vout = 0.35V, m		lol	15.2	_	mA	•

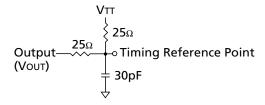
NOTE: 1. All voltages referenced to Vss.

- 2. Tests for AC timing, IDD, and electrical AC and DC characteristics may be conducted at nominal reference/supply voltage levels, but the related specifications and device operation are guaranteed for the full voltage range specified.
- 3. Outputs measured with equivalent load:

16, 32 MEG x 64 DDR SDRAM DIMMs

NOTES: (continued)

- 4. AC timing and IDD tests may use a VIL-to-VIH swing of up to 1.5V in the test environment, but input timing is still referenced to VREF (or to the crossing point for CK/CK#), and parameter specifications are guaranteed for the specified AC input levels under normal use conditions. The minimum slew rate for the input signals used to test the device is 1V/ns in the range between VIL(AC) and VIH(AC).
- 5. The AC and DC input level specifications are as defined in the SSTL_2 Standard (i.e., the receiver will effectively switch as a result of the signal crossing the AC input level, and will remain in that state as long as the signal does not ring back above [below] the DC input LOW [HIGH] level).
- 6. Inputs are not recognized as valid until VREF stabilizes. Exception: during the period before VREF stabilizes, CKE ≤ 0.3 x VDDQ is recognized as LOW.
- 7. VREF is expected to equal VDDQ/2 of the transmitting device and to track variations in the DC level of the same. Peak-to-peak noise on VREF may not exceed ±2 percent of the DC value. Thus, from VDDQ/2, VREF is allowed ±25mV for DC error and ±25mV for AC noise.
- 8. Vπ is not applied directly to the device. Vπ is a system supply for signal termination resistors, is expected to be set equal to VREF and must track variations in the DC level of VREF.
- 9. The DC values define where the input slew rate requirements are imposed, and the input signal must not violate these levels in order to maintain a valid level. The inputs require the AC value to be achieved during signal transition edge.
- 10. VID is the magnitude of the difference between the input level on CK and the input level on CK#.
- 11. The value of Vix is expected to equal VDDQ/2 of the transmitting device and must track variations in the DC level of the same.
- 12. 64MB module values will be half of those shown.


AC OPERATING CONDITIONS

(Notes: 1-7) (0°C \leq T_A \leq +70°C; VdD = +2.5V \pm 0.2V, VdDQ = +2.5V \pm 0.2V)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage; DQ, DQS and DM signals	Vih(AC)	VREF + 0.35	_	V	6, 8
Input Low (Logic 0) Voltage; DQ, DQS and DM signals	VIL(AC)	_	VREF - 0.35	V	6, 8
Clock Input Differential Voltage; CK and CK#	VID(AC)	0.7	V _{DD} Q + 0.6	V	9
Clock Input Crossing Point Voltage; CK and CK#	Vix(AC)	0.5 x V _{DD} Q - 0.2	0.5 x VddQ + 0.2	V	10

NOTE: 1. All voltages referenced to Vss.

- 2. Tests for AC timing, IDD, and electrical AC and DC characteristics may be conducted at nominal reference/supply voltage levels, but the related specifications and device operation are guaranteed for the full voltage range specified.
- 3. Outputs measured with equivalent load:

- 4. AC timing and IDD tests may use a VIL-to-VIH swing of up to 1.5V in the test environment, but input timing is still referenced to VREF (or to the crossing point for CK/CK#), and parameter specifications are guaranteed for the specified AC input levels under normal use conditions. The minimum slew rate for the input signals used to test the device is 1V/ns in the range between VIL(AC) and VIH(AC).
- 5. The AC and DC input level specifications are as defined in the SSTL_2 Standard (i.e., the receiver will effectively switch as a result of the signal crossing the AC input level, and will remain in that state as long as the signal does not ring back above [below] the DC input LOW [HIGH] level).
- 6. Input slew rate = 1V/ns. If the slew rate exceeds the maximum specified by 20 percent, functionality is uncertain. If the slew rate exceeds the minimum specified, timing is no longer referenced to the mid-point but to the VIL(AC) maximum and VIH(AC) minimum points. For slew rates between 0.5V/ns and 1V/ns, ¹IS and ¹IH must be increased by at least 20 percent.
- 7. Inputs are not recognized as valid until VREF stabilizes. Exception: during the period before VREF stabilizes, CKE ≤ 0.3 x VDDQ is recognized as LOW.
- 8. The DC values define where the input slew rate requirements are imposed, and the input signal must not violate these levels in order to maintain a valid level. The inputs require the AC value to be achieved during signal transition edge.
- 9. VID is the magnitude of the difference between the input level on CK and the input level on CK#.
- 10. The value of Vix is expected to equal VDDQ/2 of the transmitting device and must track variations in the DC level of the same.

IDD SPECIFICATIONS AND CONDITIONS*

(Notes: 1-8; notes appear below and on next page) (0°C \leq T_A \leq +70°C; VDDQ = +2.5V \pm 0.2V, VDD = +2.5V \pm 0.2V)

				MAX]	
PARAMETER/CONDITION		SYMBOL	SIZE	-262	-265	-202	UNITS	NOTES
OPERATING CURRENT: One bank; Active-Prech [†] RC MIN; [†] CK = [†] CK MIN; DQ, DM and DQS inputwice per clock cyle; Address and control input	uts changing	IDD0	64MB 128MB	1,040 1,560	1,000 1,480	960 1,440	mA	9
once per clock cycle; CL = 2.5	.s changing		IZOIVID	1,500	1,400	1,440		
OPERATING CURRENT: One bank; Active-Read-Precharge; Burst = 2; ^t RC = ^t RC MIN; CL = 2.5; ^t CK = ^t CK MIN; lout = 0mA;		IDD1	64MB	840	800	800	mA	9
Address and control inputs changing once per	clock cycle		128MB	1,360	1,280	1,280		
PRECHARGE POWER-DOWN STANDBY CURREN		IDD2P	64MB	280	240	240	mA	
idle; Power-down mode; CKE = LOW; t CK = t Ck	K MIN		128MB	560	480	480		
IDLE STANDBY CURRENT: CS# = HIGH; All bank CKE = HIGH; ^t CK = ^t CK MIN; Address and other		IDD2N	64MB	480	440	400	mA	
changing once per clock cycle			128MB	960	880	800		
ACTIVE POWER-DOWN STANDBY CURRENT: O		IDD3P	64MB	280	240	240	mA	
active; Power-down mode; CKE = LOW; ^t CK = ^t	CK MIN		128MB	560	480	480		
ACTIVE STANDBY CURRENT: CS# = HIGH; CKE = One bank; Active-Precharge; ^t RC = ^t RAS MAX; ^t		IDD3N	64MB	520	480	480	mA	9
DQ, DM and DQS inputs changing twice per classification. Address and other control inputs changing on			128MB	1,040	960	960		
OPERATING CURRENT: Burst = 2; Reads; Contir One bank active; Address and control inputs of		IDD4R	64MB	1,040	1,000	920	mA	
clock cycle; CL = 2.5; ^t CK = ^t CK MIN; lout = 0mA	١		128MB	1,560	1,480	1,400		
OPERATING CURRENT: Burst = 2; Writes; Conti One bank active; Address and control inputs of		IDD4W	64MB	920	840	800	mA	
clock cycle; $CL = 2.5$; ${}^{t}CK = {}^{t}CK$ MIN; DQ, DM archanging twice per clock cycle			128MB	1,440	1,320	1,280		
AUTO REFRESH CURRENT	${}^{t}RC = {}^{t}RFC MIN$	I _{DD5}	64MB	1,240	1,160	1,120	mA	9
			128MB	2,480	2,320	2,240		
	^t RC = 15.625µs lode	IDD6	64MB	200	200	200	mA	10
			128MB	400	400	400		
SELF REFRESH CURRENT: CKE ≤ 0.2V	Standard	IDD7	64MB	16	16	24	mA	11
			128MB	32	32	48		
Low power (L)	IDD8	64MB	8	8	8	mA	11	
			128MB	16	16	16		

^{*}Specifications based on 64Mb DDR SDRAM components.

NOTE: 1. All voltages referenced to Vss.

2. Tests for AC timing, IDD, and electrical AC and DC characteristics may be conducted at nominal reference/supply voltage levels, but the related specifications and device operation are guaranteed for the full voltage range specified.

NOTES: (continued)

3. Outputs measured with equivalent load:

$$\begin{array}{c|c} & & & \\ & & & \\ \hline \\ \text{Output} & & \\ \hline & & \\ \text{Output} & \\ \hline & & \\ \hline & & \\ \hline \\ & & \\ \hline \end{array}$$

- 4. AC timing and IDD tests may use a VIL-to-VIH swing of up to 1.5V in the test environment, but input timing is still referenced to VREF (or to the crossing point for CK/CK#), and parameter specifications are guaranteed for the specified AC input levels under normal use conditions. The minimum slew rate for the input signals used to test the device is 1V/ns in the range between VIL(AC) and VIH(AC).
- 5. The AC and DC input level specifications are as defined in the SSTL_2 Standard (i.e., the receiver will effectively switch as a result of the signal crossing the AC input level, and will remain in that state as long as the signal does not ring back above [below] the DC input LOW [HIGH] level).
- 6. lpb is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the outputs open.
- 7. IDD specifications are tested after the device is properly initialized.
- 8. Input slew rate = 1V/ns. If the slew rate exceeds the maximum specified by 20 percent, functionality is uncertain. If the slew rate exceeds the minimum specified, timing is no longer referenced to the mid-point but to the VIL(Ac) maximum and VIH(Ac) minimum points. For slew rates between 0.5V/ns and 1V/ns, ¹IS and ¹IH must be increased by at least 20 percent.
- 9. MIN ('RC or 'RFC) for IDD measurements is the smallest multiple of 'CK that meets the minimum absolute value for the respective parameter. 'RAS MAX for IDD measurements is the largest multiple of 'CK that meets the maximum absolute value for 'RAS.
- 10. This limit is actually a nominal value and does not result in a fail value. CKE is HIGH during REFRESH command period (*RFC [MIN]) else CKE is LOW (i.e., during standby).
- 11. Enables on-chip refresh and address counters.

SDRAM DDR COMPONENT* AC ELECTRICAL CHARACTERISTICS

(Notes: 1-9; notes appear below an don next page) (0°C \leq T_A \leq +70°C; VDDQ = +2.5V ±0.2V, VDD = +2.5V ±0.2V)

AC CHARACTERISTICS			-2	62	-2	265	2	202		
PARAMETER		SYMBOL	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Access window of DQs from CK/CK#		^t AC	-0.75	+0.75	-0.75	+0.75	-0.8	+0.8	ns	
CK high-level width		^t CH	0.45	0.55	0.45	0.55	0.45	0.55	^t CK	
CK low-level width		^t CL	0.45	0.55	0.45	0.55	0.45	0.55	^t CK	
Clock cycle time CL	= 2.5	^t CK	7	15	7.5	15	8	15	ns	
CL	= 2	^t CK	7.5	15	10	15	10	15	ns	
Auto precharge write recovery plus p	orecharge time	^t DAL	35		35		35		ns	
DQ and DM input hold time		^t DH	0.5		0.5		0.6		ns	
DQ and DM input setup time		^t DS	0.5		0.5		0.6		ns	
DQ and DM input pulse width (for ea	ach input)	^t DIPW	1.75		1.75		2		ns	
Access window of DQS from CK/CK#		^t DQSCK	-0.75	+0.75	-0.75	+0.75	-0.8	+0.8	ns	
DQS input high pulse width		^t DQSH	0.35		0.35		0.35		^t CK	
DQS input low pulse width		^t DQSL	0.35		0.35		0.35		^t CK	
DQS-DQ-DQ skew (first to last transit	ion per access)	^t DQSQ		0.5		0.5		0.6	ns	
Write command to first DQS latching	transition	^t DQSS	0.75	1.25	0.75	1.25	0.75	1.25	^t CK	
DQS falling edge to CK rising - setup	time	^t DSS	0.2		0.2		0.2		^t CK	
DQS falling edge from CK rising - ho	ld time	^t DSH	0.2		0.2		0.2		^t CK	
DQ/DQS output valid window		^t DV	0.35		0.35		0.35		^t CK	10
Data-out high-impedance window fr	om CK/CK#	^t HZ	-0.75	+0.75	-0.75	+0.75	-0.8	+0.8	ns	11
Data-out low-impedance window from	om CK/CK#	^t LZ	-0.75	+0.75	-0.75	+0.75	-0.8	+0.8	ns	11
Address and control input hold time		^t IH	0.75		0.75		1.1		ns	12
Address and control input setup time	9	^t IS	0.75		0.75		1.1		ns	12
Address and control input pulse wid	th	^t IPW	2		2		2.5		ns	
LOAD MODE REGISTER command cyc	le time	^t MRD	15		15		16		ns	
ACTIVE to PRECHARGE command		^t RAS	45	120,000	45	120,000	50	120,000	ns	
ACTIVE to ACTIVE/AUTO REFRESH con	nmand period	^t RC	65		65		70		ns	
AUTO REFRESH to ACTIVE/		^t RFC	75		75		80		ns	
AUTO REFRESH command period										
REFRESH to REFRESH command inter	val	^t REFC		31.2		31.2		31.2	μs	13
Average periodic refresh interval		^t REFI		15.6		15.6		15.6	μs	13
ACTIVE to READ or WRITE delay		^t RCD	20		20		20		ns	
PRECHARGE command period		^t RP	20		20		20		ns	
Read preamble		^t RPRE	0.9	1.1	0.9	1.1	0.9	1.1	^t CK	
Read postamble		^t RPST	0.4	0.6	0.4	0.6	0.4	0.6	^t CK	
ACTIVE bank a to ACTIVE bank b com	mand	^t RRD	15		15		15		ns	
Terminating voltage delay to VDD		^t VTD	0		0		0		ns	
DQS Write preamble		tWPRE	0.25		0.25		0.25		^t CK	
DQS Write preamble setup time		tWPRES	0		0		0		ns	14, 15
DQS Write postamble		tWPST	0.4	0.6	0.4	0.6	0.4	0.6	^t CK	16
DQS Write recovery time		^t WR	15		15		15		ns	
Internal WRITE to READ command de	elay	tWTR	1		1		1		^t CK	
Exit SELF REFRESH to non-READ com	mand	tXSNR	75		75		80		ns	
Exit SELF REFRESH to READ command		tXSRD	200		200		200		^t CK	

^{*}Specifications for the DDR SDRAM components used on the module.

NOTE: 1. All voltages referenced to Vss.

2. Tests for AC timing, IDD, and electrical AC and DC characteristics may be conducted at nominal reference/supply voltage levels, but the related specifications and device operation are guaranteed for the full voltage range specified.

NOTES: (continued)

3. Outputs measured with equivalent load:

$$\begin{array}{c|c} & & & \\ & & & \\ \hline \\ \text{Output} & & \\ \hline & & \\ \text{Output} & & \\ \hline \end{array}$$

- 4. AC timing and IDD tests may use a VIL-to-VIH swing of up to 1.5V in the test environment, but input timing is still referenced to VREF (or to the crossing point for CK/CK#), and parameter specifications are guaranteed for the specified AC input levels under normal use conditions. The minimum slew rate for the input signals used to test the device is 1V/ns in the range between VIL(AC) and VIH(AC).
- 5. The AC and DC input level specifications are as defined in the SSTL_2 Standard (i.e., the receiver will effectively switch as a result of the signal crossing the AC input level, and will remain in that state as long as the signal does not ring back above [below] the DC input LOW [HIGH] level).
- 6. Input slew rate = 1V/ns. If the slew rate exceeds the maximum specified by 20 percent, functionality is uncertain. If the slew rate exceeds the minimum specified, timing is no longer referenced to the mid-point but to the VIL(Ac) maximum and VIH(Ac) minimum points. For slew rates between 0.5V/ns and 1V/ns, ¹IS and ¹IH must be increased by at least 20 percent.
- 7. The CK/CK# input reference level (for timing referenced to CK/CK#) is the point at which CK and CK# cross; the input reference level for signals other than CK/CK# is VREF.
- 8. Inputs are not recognized as valid until VREF stabilizes. Exception: during the period before VREF stabilizes, CKE ≤ 0.3 x VDDQ is recognized as LOW.
- 9. The output timing reference level, as measured at the timing reference point indicated in Note 3, is $V\pi$.
- 10. ¹DV is derived assuming a 45/55 clock HIGH-to-LOW ratio. The ¹DV is improved directly proportional to the reduction in the clock HIGH-to-LOW ratio.
- 11. ¹HZ and ¹LZ transitions occur in the same access time windows as valid data transitions. These parameters are not referenced to a specific voltage level, but specify when the device output is no longer driving (HZ) or begins driving (17)
- 12. Input slew rate = 1V/ns. If the slew rate exceeds the maximum specified by 20 percent, functionality is uncertain. If the slew rate exceeds the minimum specified, timing is no longer referenced to the mid-point but to the VIL(AC) maximum and VIH(AC) minimum points. For slew rates between 0.5V/ns and 1V/ns, 'IS and 'IH must be increased by at least 20 percent.
- 13. The refresh period 64ms. This equates to an average refresh rate of 15.625µs. However, an AUTO REFRESH command must be asserted at least once every 31.2µs; burst refreshing or postings greater than 2 are not allowed.
- 14. The minimum limit for this parameter is not a device limit. The device will operate with a negative value for this parameter, but system performance (bus turnaround) will degrade accordingly.
- 15. The specific requirement is that DQS be valid (HIGH or LOW) on or before this CK edge. The case shown (DQS going from High-Z to logic LOW) applies when no WRITEs were previously in progress on the bus. If a previous WRITE was in progress, DQS could be HIGH at this time, depending on DQSS.
- 16. The maximum limit for this parameter is not a device limit. The device will operate with a greater value for this parameter, but system performance (bus turnaround) will degrade accordingly.

CAPACITANCE

(Note: 1) 64MB 128MB **SYMBOL UNITS PARAMETER** MIN **MAX** MIN MAX Input/Output Capacitance: DQs, DQSs, CBs 7.0 Cıo 5.0 10.0 14.0 рF Input Capacitance: CK, CK# Ci1 9 12 18 24 рF Input Capacitance: A0-A11, BA0/1, RAS#, CAS#, WE# Ci2 22 30 44 60 рF Input Capacitance: S0#, S1#, CKE0, CKE1 Ci3 22 30 22 30 рF

NOTE: 1. This parameter is sampled. Vdd = +2.5V ±0.2V, VddQ = +2.5V ±0.2V, f = 100 MHz, T_A = 25°C, Vout(dc) = VddQ/2, Vout (peak to peak) = 0.2V. DM input is grouped with I/O pins, reflecting the fact that they are matched in loading.

SERIAL PRESENCE-DETECT EEPROM DC OPERATING CONDITIONS

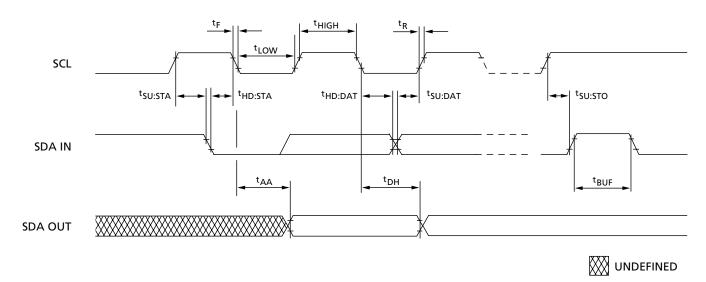
(Note: 1) $(V_{DD} = +3.3V \pm 0.3V)$

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
SUPPLY VOLTAGE	VDD	3	3.6	V	
INPUT HIGH VOLTAGE: Logic 1; All inputs	ViH	VDD x 0.7	VDD + 0.5	V	
INPUT LOW VOLTAGE: Logic 0; All inputs	VIL	-1	VDD x 0.3	V	
OUTPUT LOW VOLTAGE: IOUT = 3mA	Vol	_	0.4	V	
INPUT LEAKAGE CURRENT: VIN = GND to VDD	lu	_	10	μΑ	
OUTPUT LEAKAGE CURRENT: VOUT = GND to VDD	ILO	_	10	μΑ	
STANDBY CURRENT: SCL = SDA = VDD - 0.3V; All other inputs = GND or 3.3V +10%	Isb	_	30	μΑ	
POWER SUPPLY CURRENT: SCL clock frequency = 100 KHz	Icc	_	2	mA	

NOTE: 1. All voltages referenced to Vss.

SERIAL PRESENCE-DETECT EEPROM AC OPERATING CONDITIONS

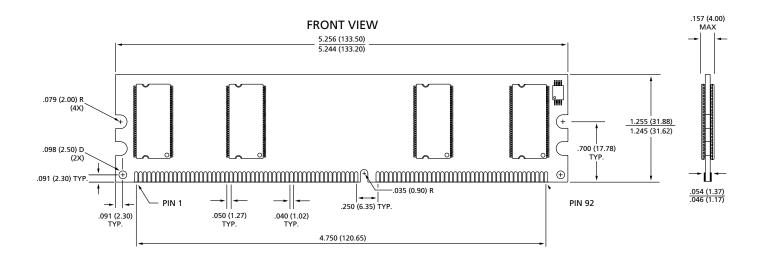
(Note: 1) $(V_{DD} = +3.3V \pm 0.3V)$


PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
SCL LOW to SDA data-out valid	^t AA	0.3	3.5	μs	
Time the bus must be free before a new transition can start	^t BUF	4.7		μs	
Data-out hold time	^t DH	300		ns	
SDA and SCL fall time	t _F		300	ns	
Data-in hold time	tHD:DAT	0		μs	
Start condition hold time	tHD:STA	4		μs	
Clock HIGH period	tHIGH	4		μs	
Noise suppression time constant at SCL, SDA inputs	tl		100	ns	
Clock LOW period	^t LOW	4.7		μs	
SDA and SCL rise time	^t R		1	μs	
SCL clock frequency	tSCL		100	KHz	
Data-in setup time	tSU:DAT	250		ns	
Start condition setup time	tSU:STA	4.7		μs	
Stop condition setup time	tSU:STO	4.7		μs	
WRITE cycle time	^t WRC		10	ms	2

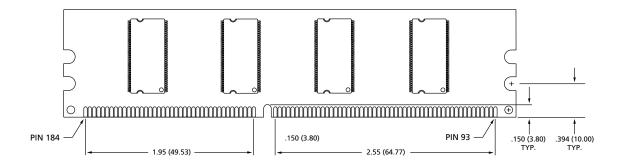
NOTE: 1. All voltages referenced to Vss.

2. The SPD EEPROM WRITE cycle time (*WRC) is the time from a valid stop condition of a WRITE sequence to the end of the EEPROM internal erase/program cycle. During the WRITE cycle, the EEPROM bus interface circuit is disabled, SDA remains HIGH due to pull-up resistor, and the EEPROM does not respond to its slave address.

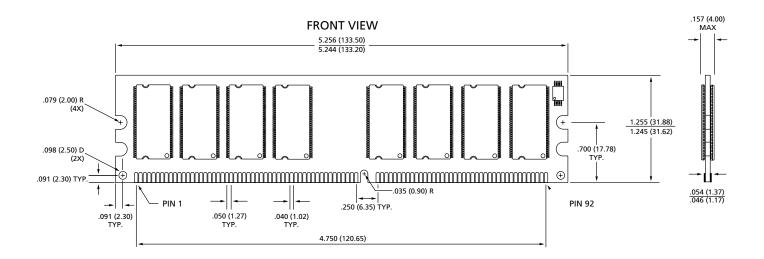
SPD EEPROM

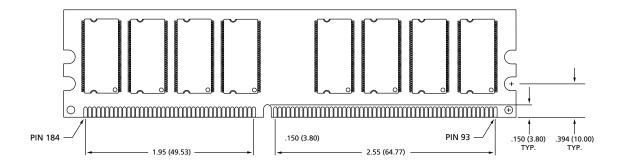

SERIAL PRESENCE-DETECT EEPROM TIMING PARAMETERS

SYMBOL	MIN	MAX	UNITS
^t AA	0.3	3.5	μs
^t BUF	4.7		μs
^t DH	300		ns
tF		300	ns
tHD:DAT	0		μs
tHD:STA	4		μs


SYMBOL	MIN	MAX	UNITS
^t HIGH	4		μs
^t LOW	4.7		μs
^t R		1	μs
^t SU:DAT	250		ns
^t SU:STA	4.7		μs
tSU:STO	4.7		μs

184-PIN DIMM (128MB)


BACK VIEW


NOTE: All dimensions in inches (millimeters) $\frac{MAX}{MIN}$ or typical where noted.

184-PIN DIMM (256MB)

BACK VIEW

NOTE: All dimensions in inches (millimeters) $\frac{MAX}{MIN}$ or typical where noted.

8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900
E-mail: prodmktg@micron.com, Internet: http://www.micron.com, Customer Comment Line: 800-932-4992
Micron is a registered trademark of Micron Technology, Inc.