\square
I/CSI

VOLTAGE CONTROLLED LIGHT DIMMER with SOFT ON/OFF

FEATURES:

- Analog input for direct control of illumination
- Soft turn-on or turn-off with touch or pushbutton
- Controls high-voltage Halogen or Incandescent lamps
- Controls low-voltage halogen lamps via magnetic or electronic transformers
- Automatic safety shutdown for magnetic transformers
- Controls CFLs and fluorescent lamps via dimming ballasts
- Extension input for remote operation
- Suited for 50 Hz or 60 Hz AC
- Single 5V power supply
- LS7642, LS7642FO (DIP); LS7642-S, LS7642FO-S (SOIC)
- See Figure 1 -

INPUT/OUTPUT DESCRIPTION:

Vdd (Pin 1) Supply voltage positive terminal.
BCV (Pin 2) Brightness control input. The voltage applied at the BCV input controls the triac conduction angle and hence the brightness of the lamp. The brightness varies in direct proportion to the applied voltage. For manual control of brightness, the BCV voltage can be supplied from the center tap of a potentiometer connected between VDD and Vss. In non-manual instrumentation application where a uC is the controlling agent, the BCV voltage can directly be provided by the uC. The dynamic range of the BCV voltage is between 25% and 88% of the applied power supply. For VDD $=5.0 \mathrm{~V}$ this translates to a range between 1.25 V for the minimum brightness and 4.4 V for the maximum brightness. There are 81 discrete brightness steps of $1.4 \% / 39 \mathrm{mV}$ increments in the dynamic range of 1.25 V and 4.4 V of the BCV voltage. The corresponding conduction angles are 45° at the dimmest and 159° at the brightest.

TEST (Pin 3) For factory use only, should be left unconnected.
SYNC (Pin 4) The AC line frequency is applied to this input for synchronizing all internal timings relative to the AC zero crossing. The load on/off status information is also derived from this input for enforcing the safety shutdown protocol.

SENS/ (Pin 5) A momentary logic low applied to this input either with a touch or a push-button switch, causes the state of the TRIG/ output to switch; the lamp is turned on if the pre-touch state was off and turned off if the pre-touch state was on. When turning on the brightness is softly ramped up from off through minimum to the brightness set by the BCV input. When turning off the brightness is softly ramped down from the pre-touch brightness to off. The ramp rate for either case is $1.4^{\circ} / 33.3 \mathrm{~ms}$ at 60 Hz or $1.4^{\circ} / 40 \mathrm{~ms}$ at 50 Hz .

EXT (Pin 6) The EXT input has the same functionality as the SENS/ input. It is designed to discriminate ac pick-ups when remotely located touch plates are connected to the dimmer units with long cables. A logic high is the active level at the EXT input.

Vss (Pin 7) Supply voltage negative terminal.

TRIG/ (Pin 8) The TRIG/ can be turned on or off by applying the active logic level at either the SENS/ or the EXT input for a brief duration. In the Off state, the TRIG/ sits at steady high level turning off the triac in series with the lamp. In the On state, the TRIG/ outputs a low going pulse once every half cycle of the AC at a conduction angle set by the voltage at the BCV input.

Upon power up the TRIG/ output defaults to the following states:
For LS7642 the TRIG/ is off.
For LS7642FO the TRIG/ is on

ABSOLUTE MAXIMUM RATINGS:

PARAMETER

DC supply voltage
Any input voltage Operating temperature Storage temperature
SYMBOL
VDD - Vss
VIN
TA
TSTG
VALUE
+7
Vss - 0.3 to VDD +0.3
0 to +90
-65 to +150
UNIT
V
V
${ }^{\circ} \mathrm{C}$
${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS:

($\mathrm{TA}=+25^{\circ} \mathrm{C}$, all voltages referenced to Vss . $\mathrm{VDD}=+5 \mathrm{~V}$ unless otherwise noted.)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	CONDITION
Supply voltage	Vdd	4.5	5.0	5.5	V	-
Supply current	IDD	-	300	400	$\mu \mathrm{A}$	Output unloaded, VdD $=5 \mathrm{~V}$
SYNC Lo	VISL	-	-	2.1	V	-
SYNC Hi	VISH	2.9	-	-	V	-
BCV input:						
Dynamic Voltage Range	Vb	1.25	-	4.4	V	$\mathrm{V} D \mathrm{D}=5 \mathrm{~V}$
Voltage increment per step	$\Delta \mathrm{Vb} / \Delta \varnothing$	-	39	-	mV	$\Delta \varnothing=1.4^{\circ}, \mathrm{VDD}=5 \mathrm{~V}$
EXT, SENS/ Lo	Viel	-	-	1.5	V	-
EXT, SENS/ Hi	Vieh	3.5	-	-	V	-
TRIG/ Lo	Vol	-	0.2	-	V	-
TRIG/ Hi	Voh	-	5.0	-	V	-
TRIG/ Sink Current	ITSNK	35	-	-	mA	VOtRIG $=2.5 \mathrm{~V}$

TRANSIENT CHARACTERISTICS (See Figures 2, 3 and 4):

PARAMETER	SYMBOL	MIN	TYP	MAX	UNI T	CONDITION
SYNC Frequency	fs	40	-	70	Hz	-
EXT, SENS/ Touch Duration	Ts1	67	-	infinite	ms	60 Hz
	Ts1	80	-	infinite	ms	50 Hz
TRIG/ pulse width (see Note 2)	Tw	-	130	-	$\mu \mathrm{s}$	60 Hz
	Tw	-	156	-	$\mu \mathrm{s}$	50 Hz
Conduction Angle	\varnothing	45	-	159	deg	-
\varnothing incremental steps (Note 1)	$\Delta \varnothing$	-	1.4	-	deg	-
On/Off slew rate	Ss	-	1.4	-	deg/33.33ms	60 Hz
	Ss	-	1.4	-	deg/40ms	50 Hz

Note 1: Total number of steps $=82$.
Note 2: $\mathrm{Tw}=488 \mathrm{us}(60 \mathrm{~Hz})$, $586 \mathrm{us}(50 \mathrm{~Hz})$ available. Contact factory for details.

FIGURE 2. BCV Volts vs TRIG/ Conduction Angle (VDD = 5V)

FIGURE 3. TOUCH to ON/OFF RAMP RATE

NOTE 3. On-state brightness level is set by the analog voltage, Vb , at the BCV input

FIGURE 4. TRIG/ OUTPUT CONDUCTION ANGLE, Ø

The information included herein is believed to be accurate and reliable. However, LSI Computer Systems, Inc. assumes no responsibilities for inaccuracies, nor for any infringements of patent rights of others which may result from its use.

1. All circuits connected by broken lines are optional.
2. C5 is used only with electronic extension and $\mathbf{R 7}$ is used only with pushbutton switch.
3. Connection between Pin 6 \& Pin 7 should be broken when EXT is used.
4. Magnetic transformer should have thermal protection.
5. Some electronic transformers may require larger values of C2, sensitive gate triacs and snubber networks. C2 values may have to be adjusted to be as high as 0.47 uF for 115VAC and 0.33uF for 220VAC. Sensitive gate triacs are chosen for their low holding current. Typical triacs are L4004L6 and L4004F51 for 115VAC and L6004L6 and L6004F51 for 220VAC applications, respectively. ${ }^{* *}$ C6-R9 is the snubber network:
C6 $=0.1 \mathrm{uF}, 200 \mathrm{~V}, \mathbf{R} 9=1 \mathrm{k}$ Ohm, $1 / 2 \mathrm{~W}$ (115VAC);
C6 $=0.05 \mathrm{uF}, 400 \mathrm{~V}, \mathrm{R} 9=1 \mathrm{k}$ Ohm, 1 W (220VAC)
6. The values selected for R10, R11, and R12 will produce the full dimming range. To reduce the maximum intensity, increase the value of R12. To increase the minimum intensity, increase the value of R10. Increasing either R10 or R12 will reduce the dimming range. R10 may have to be increased for very low wattage loads.

$$
\begin{aligned}
& \mathrm{C} 1=0.15 \mu \mathrm{~F}, 200 \mathrm{~V} \\
& * \mathrm{C} 1=0.15 \mu \mathrm{~F}, 400 \mathrm{~V} \\
& \mathrm{C} 2=0.22 \mu \mathrm{~F}, 200 \mathrm{~V} \\
& * \mathrm{C} 2=0.15 \mu \mathrm{~F}, 400 \mathrm{~V} \\
& \mathrm{C} 3=0.002 \mu \mathrm{~F}, 10 \mathrm{~V} \\
& * \text { Component change for 220VAC } \\
& * * \text { Snubber Network (See Note } 5 \text {) }
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{C} 4 & =100 \mu \mathrm{~F}, 10 \mathrm{~V} \\
\mathrm{C} 5 & =0.1 \mu \mathrm{~F}, 10 \mathrm{~V} \\
\mathrm{C} 6 & =0.01 \mathrm{uF}, 10 \mathrm{~V} \\
\mathrm{C} 7 & =0.1 \mathrm{uF}, 10 \mathrm{~V} \\
\mathrm{R} 1 & =270 \Omega, 1 / 2 \mathrm{~W} \\
* \mathrm{R} 1 & =1 \mathrm{k} \Omega, 1 \mathrm{~W} \\
\mathrm{R} 2 & =680 \mathrm{k} \Omega, 1 / 4 \mathrm{~W} \\
* \mathrm{R} 2 & =1.5 \mathrm{M} \Omega, 1 / 4 \mathrm{~W} \\
\mathrm{R} 3 & =1.5 \mathrm{M} \Omega, 1 / 4 \mathrm{~W}
\end{aligned}
$$

$R 4=1 \mathrm{M} \Omega$ to $5 \mathrm{M} \Omega, 1 / 4 \mathrm{~W}$
(Select for Sensitivity)
R5, R6 $=2.7 \mathrm{M} \Omega, 1 / 4 \mathrm{~W}$
${ }^{*} \mathrm{R} 5, \mathrm{R} 6=4.7 \mathrm{M} \Omega, 1 / 4 \mathrm{~W}$
R7 $=150 \mathrm{k} \Omega, 1 / 4 \mathrm{~W}$
$R 8=62 \Omega, 1 / 4 W$
$\mathrm{R} 10=33 \mathrm{k} \Omega, 1 / 4 \mathrm{~W}$
R11 $=100 \mathrm{k} \Omega$ Pot., $1 / 4 \mathrm{~W}$
$R 12=16 \mathrm{k} \Omega, 1 / 4 \mathrm{~W}$

$$
\begin{aligned}
\mathrm{D} 1 & =1 \mathrm{~N} 4148 \\
\mathrm{Z} & =5.6 \mathrm{~V}, 1 \mathrm{~W} \text { (Zener) } \\
\mathrm{T} & =\mathrm{Q} 4004 \mathrm{~L} 4 \text { Typical Triac (1) } \\
* \mathrm{~T} & =\text { Q5003L4 Typical Triac (1) } \\
\mathrm{L} & =100 \mu \mathrm{H} \text { (RFI Filter) } \\
* \mathrm{~L} & =200 \mu \mathrm{H} \text { (RFI Filter) }
\end{aligned}
$$

(1) For loads greater than 6A, use an alternistor

FIGURE 6. ELECTRONIC EXTENSION

EXTENSIONS: All On / Off switching functions can be implemented by utilizing the EXT input. Use a pushbutton or the electronic switch in conjunction with a Touch Plate as shown in Figure 6. When the plate is touched, a logic high level is generated at the EXT input of the IC for both half-cycles of the line frequency. (See Figure 5)

APPLICATION EXAMPLE:

A typical implementation of the light dimmer circuit is shown in Fig. 5. Here the lamp is turned on and off by touching the touch plate.
The function of different components are as follows:

- The 5V DC supply for the chip is provided by Z, D1, R1, C2 and C4.
- R2 and C3 generate the filtered signal for the SYNC input AC phase synchronization.
- R3 and C5 act as a filter circuit for the electronic extension If extensions are not used, the EXT input (Pin 6) should be tied to Vss (Pin 7).
- R4, R5 and R6 set up the sensitivity of the SENS/ input.
- R8 provides current limiting and isolation between the chip output and the triac gate.
- C1 and L are RFI filter circuits.
- R10, R11, R12 and C7 selects and adjusts the dimming level.

$\operatorname{VDD}(+\mathrm{V}) \quad 1 \longrightarrow$
Vss $(-V) \longrightarrow$

Figure 7. LS7642 Block Diagram

Figure 8. Digital Control of Brightness with a uC.

