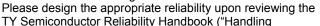
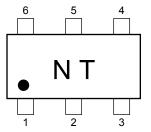
SSM6N44FE

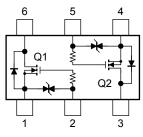

High Speed Switching Applications Analog Switching Applications

- Compact package suitable for high-density mounting
- Low ON-resistance : $R_{DS(ON)} = 4.0 \Omega (max) (@V_{GS} = 4 V)$: $R_{DS(ON)} = 7.0 \Omega (max) (@V_{GS} = 2.5 V)$

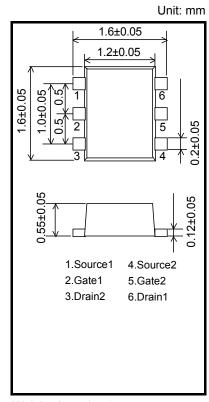
Absolute Maximum Ratings (Ta = 25°C) (Q1, Q2 Common)

Characteristics		Symbol	Rating	Unit	
Drain-Source voltage		V _{DSS}	30	V	
Gate-Source voltage		V _{GSS}	±20	V	
Drain current	DC	I _D	100	mA	
	Pulse	I _{DP}	200		
Drain power dissipation (Ta = 25° C)		P _D (Note 1)	150	mW	
Channel temperature		T _{ch}	150	°C	
Storage temperature range		T _{stg}	–55 to 150	°C	


Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings.


Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Note 1: Total rating, mounted on FR4 board (25.4 mm \times 25.4 mm \times 1.6 mm, Cu Pad: 0.135 mm² \times 6)



Equivalent Circuit (top view)

Handling Precaution

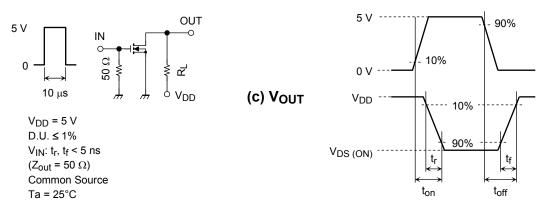
When handling individual devices (which are not yet mounting on a circuit board), be sure that the environment is protected against electrostatic electricity. Operators should wear anti-static clothing, and containers and other objects that come into direct contact with devices should be made of anti-static materials.

Weight: 3 mg (typ.)

TY Semicondutor[®]

TY Semicondutor®

SSM6N44FE


Electrical Characteristics (Ta = 25°C) (Q1, Q2 Common)

Characteristics		Symbol	Test Condition	Min	Тур.	Max	Unit	
Gate leakage current		I _{GSS}	V_{GS} = ±14 V, V_{DS} = 0 V	_	_	±1	μA	
Drain-Source breakdo	wn voltage	V (BR) DSS	I _D = 0.1 mA, V _{GS} = 0 V	30			V	
Drain cut-off current		I _{DSS}	V _{DS} = 30 V, V _{GS} = 0 V			1	μA	
Gate threshold voltage	9	V _{th}	V _{DS} = 3 V, I _D = 0.1 mA	0.8	—	1.5	V	
Forward transfer admi	ttance	Y _{fs}	V _{DS} = 3 V, I _D = 10 mA	25			mS	
Drain-Source ON resistance		R _{DS (ON)}	I _D = 10 mA, V _{GS} = 4 V		2.2	4.0	Ω	
			I _D = 10 mA, V _{GS} = 2.5 V		4.0	7.0	52	
Input capacitance		C _{iss}			8.5		pF	
Reverse transfer capacitance		C _{rss}	V _{DS} = 3 V, V _{GS} = 0 V, f = 1 MHz		5.3			
Output capacitance		C _{oss}	1		9.4			
Switching time	Turn-on time	t _{on}	V _{DD} = 5 V, I _D = 10 mA,	—	50	—	ns	
	Turn-off time	t _{off}	V_{GS} = 0 to 5 V		200	—		

Switching Time Test Circuit

(a) Test circuit

(b) V_{IN}

Precaution

Let V_{th} be the voltage applied between gate and source that causes the drain current (I_D) to be low (0.1mA for the SSM6N44FE). Then, for normal switching operation, V_{GS(on)} must be higher than V_{th}, and V_{GS(off)} must be lower than V_{th}. This relationship can be expressed as: V_{GS(off)} < V_{th} < V_{GS(on)}.

Take this into consideration when using the device