

Li-ION/POLYMER 1/2/3-CELL PROTECTOR Second protection IC

NO.EA-324-140808

26V

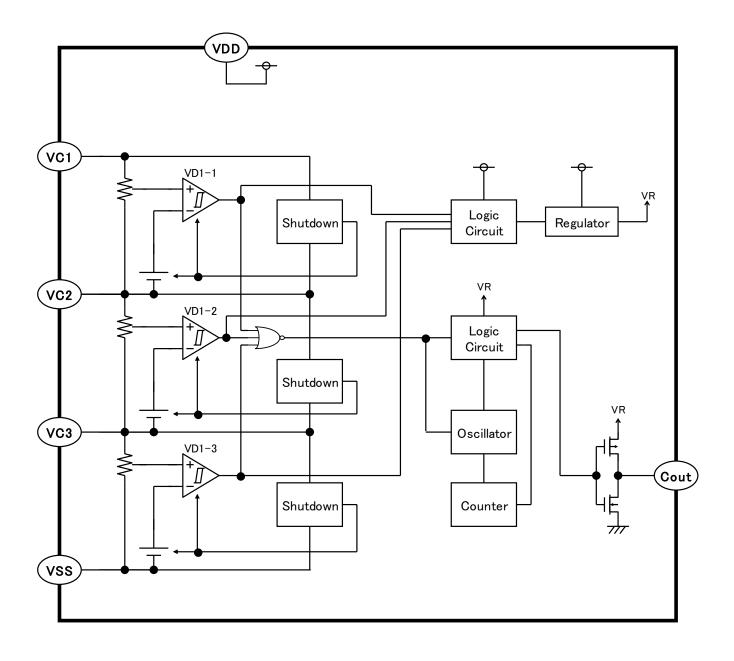
OUTLINES

R5437/R5438 Series are CMOS-based high voltage tolerant over-charge protection ICs for Li-ion/Li-polymer secondary battery. The R5437/R5438 can detect overcharge of 1-cell to 3-cell Li-ion/ Li-polymer batteries. The R5437/R5438 is consists of 3 voltage detectors, a voltage reference unit, an internal voltage regulator, an oscillator, a counter, a delay circuit, a logic circuit.

When the over-charge is detected, after the IC internally fixed delay time, the output of Cout becomes "H".

After detecting over-charge, when the cell voltage becomes lower than the over-charge released voltage, the over-charge state is released.

If all the cells voltages become equal or less than the shutdown detector threshold, all the circuits are halted and shut down, as a result, the consumption current of IC itself (Shutdown current) is extremely reduced.


• Manufactured with High Voltage Tolerant Process Absolute Maximum Rating

The output type is CMOS.

FEATURES

- Manadalaca With Flight Voltage Tolerant Frodess	/ Noodiate Maximum Na	ung	201
Low supply current	Cell voltage 3.9V, for 3	-cell	Typ. 0.85µA
High accuracy detector threshold	Over-charge detector	(Ta=25°C)	±20mV
		(Ta=0 to 60°C)	±25mV
 Variety of detector threshold 			
Over-charge detector threshold	4.1V-4.6V step of 0.005	V (V _{DET1} n) (n=1, 2, 3)	
Over-charge released voltage	VDET1N-0V to VDET1N-0.5	V step of 0.05V (VREL1n) (r	n=1, 2, 3)
Setting of Output delay time	Over-charge detector Out	put Delay options 2, 4, 6s(B	uilt-in delay)
Shutdown Function	When all the cell volta	ges become equal or less	than shutdown
detector threshold, the IC will be into shutdown	mode and the consumption of	current of IC itself becomes	extremely small.
Even if one of the cells becomes equal or more t	han shutdown released volta	ge, the shutdown mode is re	eleased.
Shutdown detector threshold	Typ. 3.5V±0.3V		
Shutdown Release Hysteresis	none		
Shutdown current	Max. 0.1μA		
1/2/3 cell protection enabler	By external wiring, 1 or	2 or 3-cell protection car	n be selected.
Over-charge released condition	Released by voltage ty	rpe	
• Cout output	Соит: 4.7V regulator po	ower supply CMOS output	t. Active "H"
Delay Time Shortening Function	By applying the voltag	e of 4V±0.2V to VDD-VC	1, over-charge
and released delay time can be shortened to	o 1/90.		
Small package	DFN1814-6		

BLOCK DIAGRAM

SELECTION GUIDE

In the R5437/R5438Lxxxxx Series, input threshold of over-charge and output delay time can be designated according to the application.

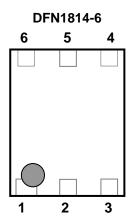
Part Number is designated as follows:

(ex.) R5437L 301BA
$$\leftarrow$$
 Part Number $\uparrow \uparrow \uparrow \uparrow \uparrow$ a b c d

Code	Contents			
а	Package Type L: DFN1814-6			
b	Serial Number for the R5437/R5438 Series designating input threshold for over-charge detector			
С	Designation of Output delay option			
d	Designation of version symbols.			

R5437 Code List

Code	V DET1 n(V) *1	V _{REL1} n(V) *1	tVDET1(s)
R5437L 301AA	4.450	4.150	2
R5437L 301BA	4.450	4.150	4
R5437L 303AA	4.350	4.050	2
R5437L 303BA	4.350	4.050	4
R5437L 303CA	4.350	4.050	6
R5437L 304AA	4.400	4.100	2
R5437L 304BA	4.400	4.100	4
R5437L 305AA	4.300	4.000	2
R5437L 305BA	4.300	4.000	4
R5437L 306CA	4.450	3.950	6
R5437L 307CA	4.500	4.100	6
R5437L 312AA	4.550	4.150	2
R5437L 312BA	4.550	4.150	4


^{*1:} n=1, 2, 3

R5438 Code List

Code	V _{DET1} n(V) *1	V REL1 n(V) *1	tVDET1(s)
R5438L 301AA	4.450	4.150	2
R5438L 301BA	4.450	4.150	4
R5438L 303AA	4.350	4.050	2
R5438L 303BA	4.350	4.050	4
R5438L 304AA	4.400	4.100	2
R5438L 304BA	4.400	4.100	4
R5438L 305AA	4.300	4.000	2
R5438L 305BA	4.300	4.000	4
R5438L 306CA	4.450	3.950	6
R5438L 308BA	4.400	4.000	4
R5438L 312AA	4.550	4.150	2
R5438L 312BA	4.550	4.150	4

^{*1:} n=1, 2, 3

PIN CONFIGURATIONS

PIN DESCRIPTION

R5437

Pin No.	Symbol	Description	
1	V _{C1}	Positive terminal pin for Cell-1	
2	V _{C2}	Positive terminal pin for Cell-2	
3	Vss	Vss pin. Ground pin for the IC	
4	V _{C3}	ositive terminal Pin for Cell-3	
5	V _{DD}	V _{DD} Pin	
6	Соит	Output pin of over-charge detection	

R5438

Pin No.	Symbol	Description	
1	Соит	Output pin of over-charge detection	
2	V_{DD}	V _{DD} Pin	
3	V _{C1}	Positive terminal pin for Cell-1	
4	V _{C2}	ositive terminal pin for Cell-2	
5	V _{C3}	Positive terminal Pin for Cell-3	
6	Vss	Vss pin. Ground pin for the IC	

ABSOLUTE MAXIMUM RATINGS

Ta=25°C, Vss=0V

Symbol	Item	Ratings	Unit
V _{DD}	Supply voltage	Vc1 -0.3 to Vc1+6.5	V
V 00	Supply voltage	V _{C1} -0.3 to 26	,
	Input voltage		
V _{C1}	Positive input pin voltage for Cell-1	Vc2 -0.3 to Vc2+6.5	V
V _{C2}	Positive input pin voltage for Cell-2	Vc3 -0.3 to Vc3+6.5	V
Vcз	Positive input pin voltage for Cell-3 -0.3 to 6.5		
	Output voltage		.,,
Vcout	Соит pin voltage	-0.3 to V _{ОН1} +0.3	V
PD	Power dissipation	150	mW
Та	Operating temperature range	-40 to 85	°C
Tstg	Storage temperature range	-55 to 125	°C

*Note: Exposure to the condition exceeded Absolute Maximum Ratings may cause the permanent damages and affects the reliability and safety of both device and systems using the device. The functional operations cannot be guaranteed beyond specified values in the recommended conditions.

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, Ta=25°C

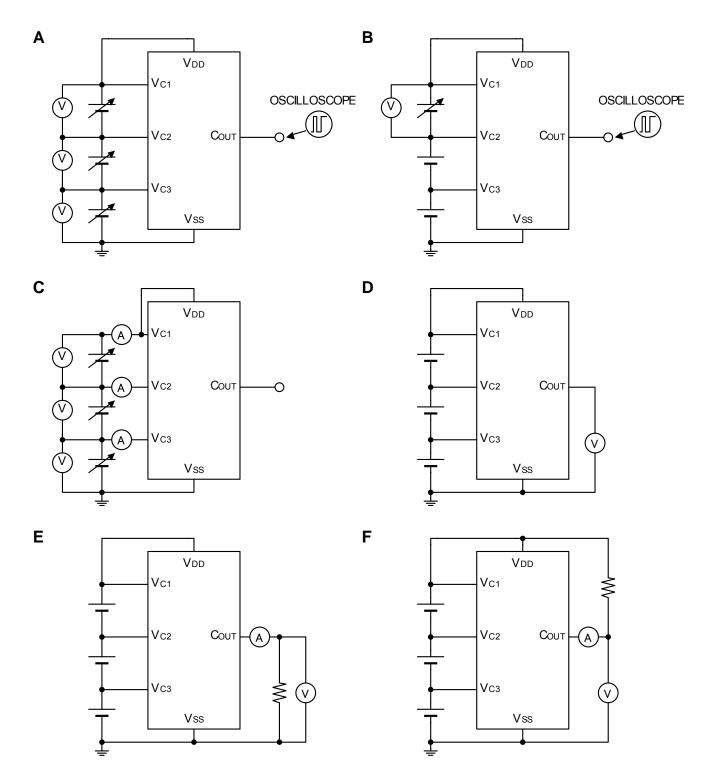
Symbol	Item	Conditions	Min.	Тур.	Max.	Unit	Test Circuit
V _{DD1}	Operating input voltage	Voltage defined as VDD-Vss	1.5		20	V	
V _{DET1} n	CELLn Over-charge	Detect rising edge of supply voltage (25°C)	V _{DET1} n -0.020	V _{DET1} n	V _{DET1} n +0.020	V	Α
VDETITI	threshold (n=1,2,3)	Detect rising edge of supply voltage (0 to 60°C) *Note1	V _{DET1} n -0.025	VDETITI	V _{DET1} n +0.025	V	^
V _{REL1} n	CELLn Over-charge released voltage (n=1,2,3)	Detect falling edge of supply voltage	V _{REL1} n -0.050	V _{REL1} n	V _{REL1} n +0.050	V	Α
tV _{DET1}	Output delay of over-charge	Vcelln=3.9V, Vcell1=3.9V to 4.7V (n=2,3)*Note2	tV _{DET1} ×0.8	tV _{DET1}	tV _{DET1} ×1.2	S	В
tV _{REL1}	Output delay of release from over-charge	Vcelln=3.9V, Vcell1=4.7V to 3.9V (n=2,3)	tV _{REL1} ×0.8	tV _{REL1}	tV _{REL1} ×1.2	ms	В
Vsht	Shutdown detector threshold	Detect falling edge	3.2	3.5	3.8	V	С
		Іон=0μA, Vcelln=4.7V (n=1,2,3)	4.0	4.7	5.4		
V он1	Соит Pch ON voltage1	Іон=0μA, V _{CELL} n=4.7V (n=1,1cell protection)		VDD		V	D
V _{OH2}	Соит Pch ON voltage2	Іон=-50μA, Vcelln=4.7V (n=1,2,3)	Vон1 -0.5	Vон1 -0.1		V	E
Vol	Cout Nch ON voltage	IoL=50μA, Vcelln=3.9V (n=1,2,3)		0.1	0.5	V	F
Іѕнт	Shutdown Current	Vcelln=3.1V (n=1,2,3)	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	0.1	μΑ	G
Iss	Supply current	Vcelln=3.9V (n=1,2,3)		0.85	1.7	μΑ	G

*Note1: This specification is guaranteed by design, not mass production tested.

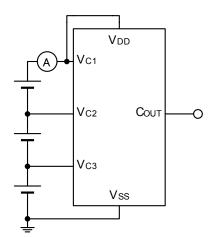
*Note2: Vcelln means Cell-n's voltage. n=1, 2, 3

RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.


Ta=-40 ~ 85°C

Symbol	Item	Conditions	Min.	Тур.	Max.	Unit	Test Circuit
V _{DD1}	Operating input voltage	Voltage defined as VDD-Vss	1.5		20	V	
V _{DET1} n	CELLn Over-charge threshold (n=1,2,3)	Detect rising edge of supply voltage	V _{DET1} n -0.038	V _{DET1} n	V _{DET1} n +0.037	V	Α
V _{REL1} n	CELLn Over-charge released voltage (n=1,2,3)	Detect falling edge of supply voltage	V _{REL1} n -0.069	V _{REL1} n	V _{REL1} n +0.067	V	Α
tV _{DET1}	Output delay of over-charge	Vcelln=3.9V, Vcell1=3.9V to 4.7V (n=2,3)*Note1	tV _{DET1} ×0.54	tV _{DET1}	tV _{DET1} ×1.39	S	В
tV _{REL1}	Output delay of release from over-charge	Vcelln=3.9V, Vcell1=4.7V to 3.9V (n=2,3)	tV _{REL1} ×0.54	tV _{REL1}	tV _{REL1} ×1.39	ms	В
Vsht	Shutdown detector threshold	Detect falling edge	3.120	3.5	3.878	V	С
		Іон=0μA, Vcelln=4.7V (n=1,2,3)	3.985	4.7	5.441		
V _{OH1}	Cout Pch ON voltage1	I _{OH} =0μA, V _{CELL} n=4.7V (n=1,1cell protection)		VDD		V	D
V _{OH2}	Cout Pch ON voltage2	Іон=-50μA, Vcelln=4.7V (n=1,2,3)	V _{ОН1} -0.61	V _{ОН1} -0.1		V	Е
Vol	Couт Nch ON voltage	I _{OL} =50μA, V _{CELL} n=3.9V (n=1,2,3)		0.1	0.515	V	F
Isht	Shutdown Current	Vcelln=3.1V (n=1,2,3)			0.12	μA	G
Iss	Supply current	Vcelln=3.9V (n=1,2,3)		0.85	1.91	μΑ	G


^{*}Note1: Vcelln means Cell-n's voltage. n=1, 2, 3

Note: All of this specification is guaranteed by design, not mass production tested.

TEST CIRCUITS

G

OPERATION

VDET1n / Over-Charge Detectors (n=1, 2, 3)

While the cells are charged, the voltage between V_{C1} pin and V_{C2} pin (voltage of the Cell-1), the voltage between V_{C2} pin and V_{C3} pin (voltage of the Cell-2), and the voltage between V_{C3} pin and V_{SS} pin (voltage of the Cell-3) are supervised. If at least one of the cells' voltage becomes equal or more than the over-charge detector threshold, the over-charge is detected, and an external charge control Nch MOSFET turns on with C_{OUT} pin being at "H" level and by cutting a fuse on the charger path, and charge stops.

To reset the over-charge and make the Cout pin level to "L" again after detecting over-charge, in such conditions that a time when all the cells' voltages are down to a level lower than over-charge released voltage.

Internal fixed output delay times for over-charge detection and release from over-charge exist. Even if one of voltage of the cells keeps its level more than the over-charge detector threshold, and output delay time passes, over-charge voltage is detected. After detecting over-charge, even if all the cell voltages become equal or less than the released voltage from over-charge, if at least one of the cells voltage becomes higher than the released voltage from over-charge within the output delay time of the release from over-charge, then over-charge is not released.

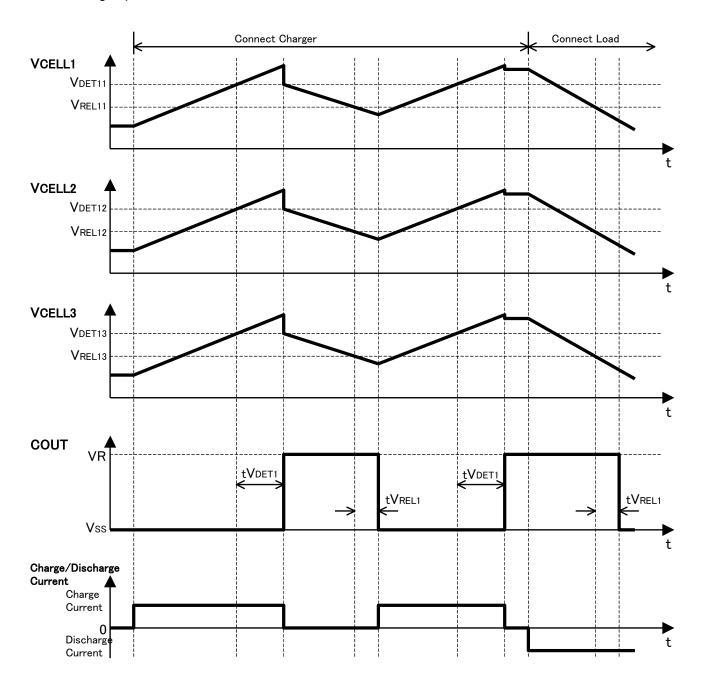
The output type of the Cout pin is CMOS output between Vss and the built-in regulator, and "H" level of Cout pin is the output voltage of the built-in regulator. (Typ. 4.7V)

Shutdown Function

The voltage between V_{C2} pin and V_{C2} pin (the voltage of Cell-1), the voltage between V_{C2} pin and V_{C2} pin and V_{C3} pin (Cell-2 voltage), and the voltage between V_{C3} pin and V_{SS} pin (Cell-3 voltage) are supervised. If all the cells voltages become equal or less than the shutdown detector threshold, all the circuits are halted and shut down, as a result, the consumption current of IC itself (Shutdown current) is extremely reduced. (Max. 0.1μ A)

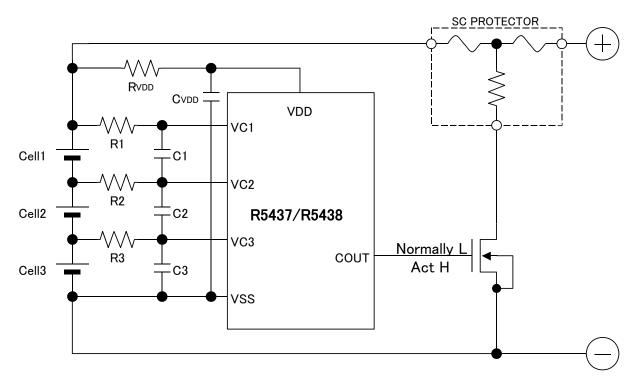
After detecting shutdown, at least one of the cell voltages becomes equal or more than the shutdown detector threshold, the shutdown state is released.

DS (Delay Shortening) Function

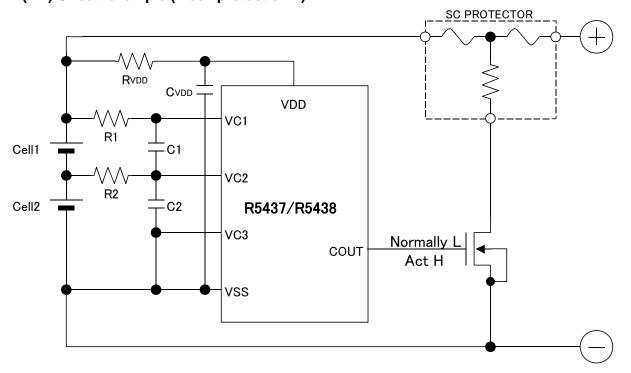

By applying the voltage of 4V±0.2V to VDD-VC1, over-charge delay time can be shortened to about 1/90 and released delay time can be shortened to about 1/60.

• 1-cell/ 2-cell/ 3-cell protection alternative

When the IC should be used as a 1-cell protection IC, connect short V_{C1} pin – V_{C2} pin and V_{C3} pin - V_{SS} pin. When the IC should be used as a 2-cell protection IC, connect short V_{C1} pin – V_{C2} pin or V_{C3} pin - V_{SS} pin.

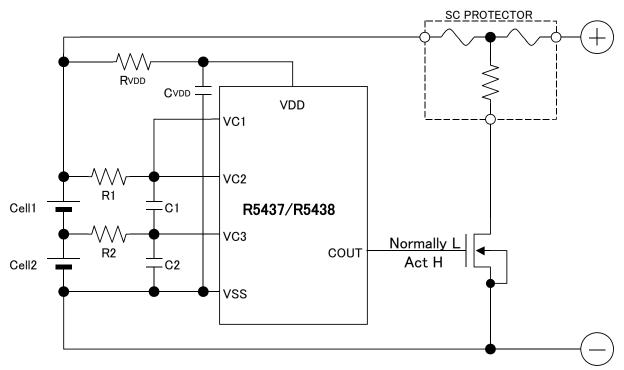

TIMING CHART

●Over-charge operation

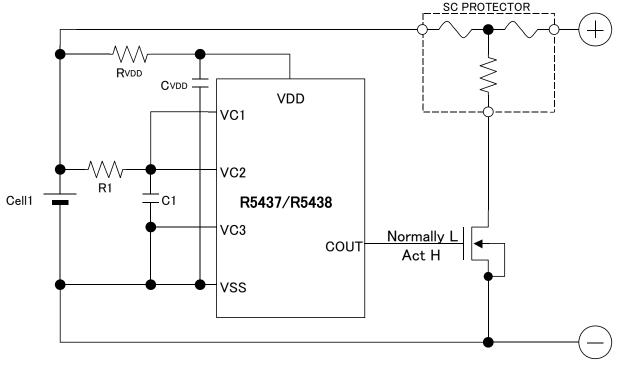


TYPICAL APPLICATIONS

(1) Circuit example (3-cell protection)



(2-1) Circuit example (2-cell protection 1)



*In terms of the order of connecting cells, the positive terminal of the cell 1 should be the last. Otherwise, COUT may output "H" tentatively, and the fuse may be fused.

(2-2) Circuit example (2-cell protection 2)

(3) Circuit example (1-cell protection)

*In terms of the order of connecting cells, the positive terminal of the cell 1 should be the last. Otherwise, COUT may output "H" tentatively, and the fuse may be fused.

External parts ratings

Symbol	Тур.	Unit	Range
Rvdd	100	Ω	100~1000
R1	1000	Ω	330~1000
R2	1000	Ω	330~1000
R3	1000	Ω	330~1000
C_{VDD}	0.1	uF	0.01~1
C1	0.1	uF	0.01~1
C2	0.1	uF	0.01~1
C3	0.1	uF	0.01~1

Technical Notes

The voltage fluctuation is stabilized with R_{VDD} and C_{VDD}. If a small R_{VDD} is set, in the case of the large transient may happen to the cell voltage, by the flowing current, the IC may be unstable. If a large R_{VDD} is set, by the consumption current of the IC itself, the voltage difference between V_{DD} pin and V_{C1} pin is generated, and unexpected operation may result. Therefore, the appropriate value range of R_{VDD} is from 100Ω to $1k\Omega$. To make a stable operation of the IC, the appropriate value range of C_{VDD} is from 0.01μ F to 1.0μ F.

The voltage fluctuation is stabilized with R1 to R3 and C1 to C3. If a R1 to R3 is too large, by the conduction current at detection, the detector threshold may shift higher. Therefore, the appropriate value range of R1 to R3 is equal or less than $1k\Omega$. To make a stable operation of the IC, the appropriate value range of C1 to C3 is $0.01\mu F$ or more.

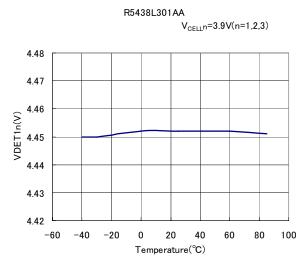
The typical application circuit diagrams are just examples. This circuit performance largely depends on the PCB layout and external components. In the actual application, fully evaluation is necessary.

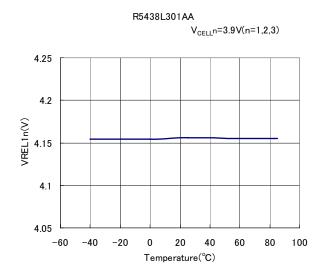
Over-voltage and the over current beyond the absolute maximum rating should not be forced to the protection IC and external components. During the time until the fuse is open after detecting over-charge, a large current may flow through the FET. Select an FET with large enough current capacity in order to endure the large current.

Ricoh cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Ricoh product. If technical notes are not complied with the circuit which is used Ricoh product, Ricoh is not responsible for any damages and any accidents.

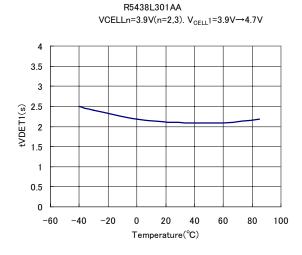
To connect the SC protector, connect the SC protector to the cell must be the last.

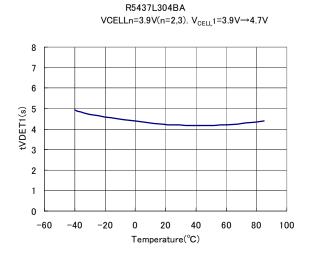
*SC protector

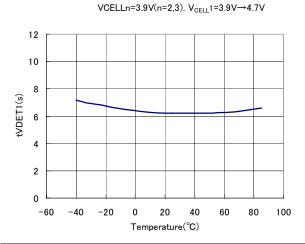

Contact: Dexerials Corporation (Sony Chemical & Information Device Company Ltd.) Zip code 141-0032


1-11-2 Osaki, Shinagawa, Tokyo Gate-city Osaki East Tower 8F Phone 03-5435-3946 http://www.dexerials.jp

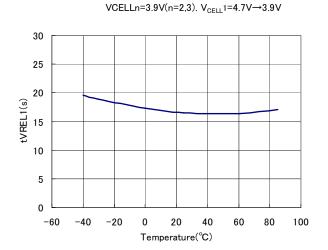
TYPICAL CHARACTERISTICS


• Part 1. vs. Temperature


1)Celln over-charge detector threshold vs. Temperature 2)Celln Over-charge released voltage vs. Temperature

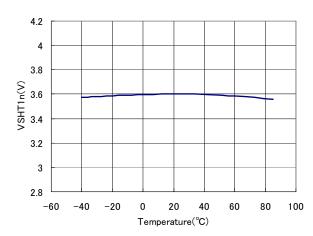


3) Over-charge output delay time vs. Temperature

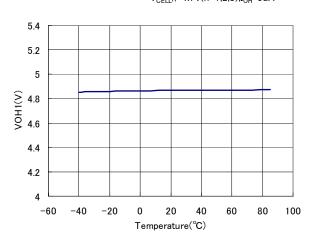


R5437L306CA

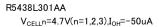
4) Released delay time from over-charge vs. Temperature

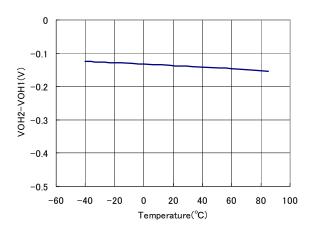

R5438L301AA

5) Celln shutdown threshold vs. Temperature

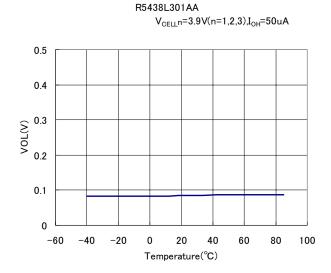

R5438L301AA

 $V_{CELL}n=3.1V(n=1,2,3)$

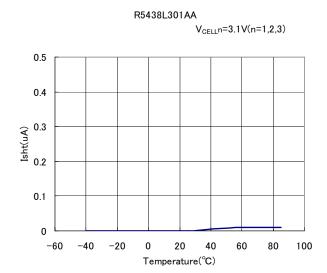


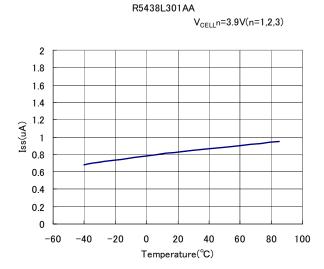

6) Cout P-channel On voltage (No Load)vs. Temperature

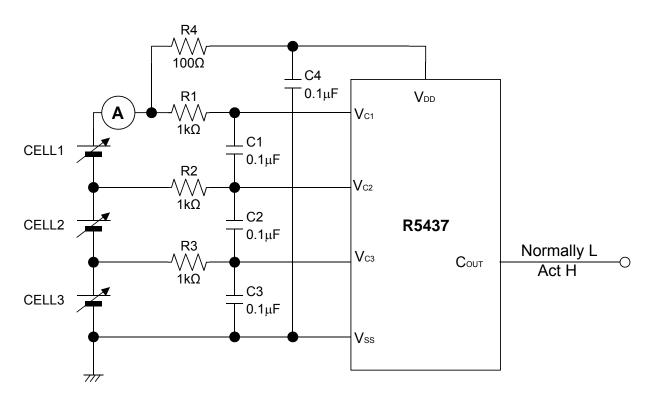
 $\begin{aligned} & \text{R5438L301AA} \\ & \text{V}_{\text{CELL}n} \text{=-4.7V} (\text{n=1,2,3}), & \text{I}_{\text{OH}} \text{=-0uA} \end{aligned}$

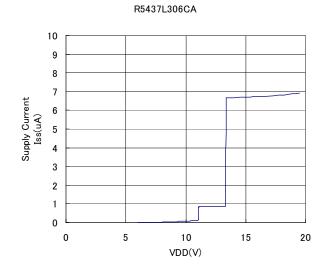


7) Cout P-channel On voltage vs. Temperature

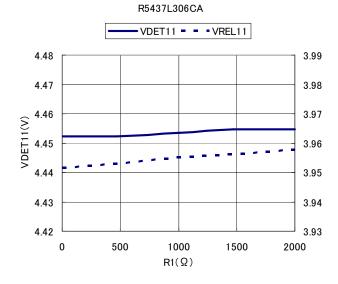



8) Cout N-channel On voltage vs. Temperature


9) Shutdown Current vs. Temperature


10) Supply Current vs. Temperature


Part2. Supply Current vs. VDD (R5437L306CA)


●3-cell protection Supply current vs. VDD

Part3. vs. External Resister dependence (R5437L306CA)

Overcharge detector threshold/ Over-charge released voltage vs. R1

- 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.
- 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
- 4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, firecontainment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. Anti-radiation design is not implemented in the products described in this document.
- Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

For the conservation of the global environment, Ricoh is advancing the decrease of the negative environmental impact material. After Apr. 1, 2006, we will ship out the lead free products only. Thus, all products that will be shipped from now on comply with RoHS Directive. Basically after Apr. 1, 2012, we will ship out the Power Management ICs of the Halogen Free products only. (Ricoh Halogen Free products are also Antimony Free.)

RICOH

RICOH COMPANY, LTD. **Electronic Devices Company**

http://www.ricoh.com/LSI/

RICOH COMPANY, LTD.

Electronic Devices Company

Higashi-Shinagawa Office (International Sales)
3-32-3, Higashi-Shinagawa, Shinagawa-ku, Tokyo 140-8655, Japan
Phone: +81-3-5479-2857 Fax: +81-3-5479-0502

RICOH EUROPE (NETHERLANDS) B.V.

Semiconductor Support Centre

"Nieuw Kronenburg" Prof. W.H. Keesomlaan 1, 1183 DJ, Amstelveen, The Netherlands P.O.Box 114, 1180 AC Amstelveen Phone: +31-20-5474-309 Fax: +31-20-5474-791

RICOH ELECTRONIC DEVICES KOREA Co., Ltd.

11 floor, Haesung 1 building, 942, Daechidong, Gangnamgu, Seoul, Korea Phone: +82-2-2135-5700 Fax: +82-2-2135-5705

RICOH ELECTRONIC DEVICES SHANGHAI Co., Ltd.

Room403, No.2 Building, 690#Bi Bo Road, Pu Dong New district, Shanghai 201203, People's Republic of China Phone: +86-21-5027-3200 Fax: +86-21-5027-3299

RICOH COMPANY, LTD.

Electronic Devices Company

● Taipei office
Room109, 10F-1, No.51, Hengyang Rd., Taipei City, Taiwan (R.O.C.)
Phone: +886-2-2313-1621/1622 Fax: +886-2-2313-1623