DATA SHEET

NPN SILICON GERMANIUM RF TRANSISTOR NESG3032M14

NPN SIGE RF TRANSISTOR FOR LOW NOISE, HIGH-GAIN AMPLIFICATION 4-PIN LEAD-LESS MINIMOLD (M14, 1208 PACKAGE)

FEATURES

- The device is an ideal choice for low noise, high-gain amplification
 NF = 0.6 dB TYP. @ VcE = 2 V, Ic = 6 mA, f = 2.0 GHz
- Maximum stable power gain: MSG = 20.5 dB TYP. @ VcE = 2 V, Ic = 15 mA, f = 2.0 GHz
- SiGe HBT technology (UHS3) adopted: fmax = 110 GHz
- 4-pin lead-less minimold (M14, 1208 package)

<R> ORDERING INFORMATION

Part Number	Order Number	Package	Quantity	Supplying Form
NESG3032M14	NESG3032M14-A	4-pin lead-less minimold (M14, 1208 package)	50 pcs (Non reel)	8 mm wide embossed taping Pin 1 (Collector), Pin 4 (NC) face the
NESG3032M14-T3	NESG3032M14-T3-A	(Pb-Free)	10 kpcs/reel	perforation side of the tape

Remark To order evaluation samples, contact your nearby sales office. Unit sample quantity is 50 pcs.

ABSOLUTE MAXIMUM RATINGS (TA = +25°C)

Parameter	Symbol	Ratings	Unit
Collector to Base Voltage	Vcво	12.0	V
Collector to Emitter Voltage	VCEO	4.3	٧
Emitter to Base Voltage	V _{EBO}	1.5	٧
Collector Current	lc	35	mA
Total Power Dissipation	Ptot Note	150	mW
Junction Temperature	Tj	150	ç
Storage Temperature	T _{stg}	-65 to +150	ô

Note Mounted on 1.08 cm² × 1.0 mm (t) glass epoxy PWB

Caution Observe precautions when handling because these devices are sensitive to electrostatic discharge.

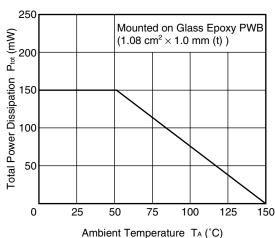
The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.

ELECTRICAL CHARACTERISTICS (TA = +25°C)

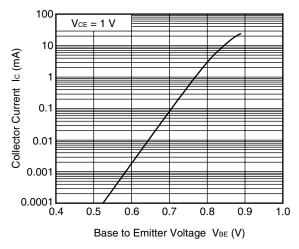
Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
DC Characteristics						
Collector Cut-off Current	Ісво	VcB = 5 V, IE = 0 mA	-	-	100	nA
Emitter Cut-off Current	ІЕВО	V _{EB} = 1 V, I _C = 0 mA	-	-	100	nA
DC Current Gain	hfE Note 1	VcE = 2 V, Ic = 6 mA	220	300	380	1
RF Characteristics						
Insertion Power Gain	S _{21e} ²	VcE = 2 V, Ic = 15 mA, f = 2.0 GHz	15.0	17.5	-	dB
Noise Figure	NF	$V_{CE} = 2 \text{ V, } I_{C} = 6 \text{ mA, } f = 2.0 \text{ GHz,}$ $Z_{S} = Z_{Sopt}, Z_{L} = Z_{Lopt}$	_	0.60	0.85	dB
Associated Gain	Ga	$V_{CE} = 2 \text{ V, } I_{C} = 6 \text{ mA, } f = 2.0 \text{ GHz,}$ $Z_{S} = Z_{Sopt}, Z_{L} = Z_{Lopt}$	_	17.5	_	dB
Reverse Transfer Capacitance	Cre Note 2	VcB = 2 V, IE = 0 mA, f = 1 MHz	-	0.15	0.25	pF
Maximum Stable Power Gain	MSG ^{Note 3}	VcE = 2 V, Ic = 15 mA, f = 2.0 GHz	17.5	20.5	-	dB
Gain 1 dB Compression Output Power	Po (1 dB)	$\begin{split} &V_{\text{CE}} = 3 \text{ V, Ic (set)} = 20 \text{ mA,} \\ &f = 2.0 \text{ GHz, Zs} = Z_{\text{Sopt, ZL}} = Z_{\text{Lopt}} \end{split}$	_	12.5	_	dBm
3rd Order Intermodulation Distortion Output Intercept Point	OIP ₃	$\begin{split} &V_{\text{CE}} = 3 \text{ V, Ic (set)} = 20 \text{ mA,} \\ &f = 2.0 \text{ GHz, Zs} = Z_{\text{Sopt, ZL}} = Z_{\text{Lopt}} \end{split}$	_	24.0	_	dBm

Notes 1. Pulse measurement: PW \leq 350 μ s, Duty Cycle \leq 2%

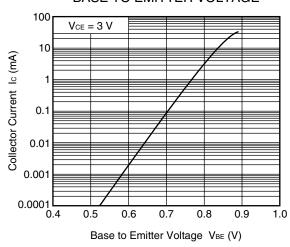
2. Collector to base capacitance when the emitter grounded


3. MSG =
$$\frac{S_{21}}{S_{12}}$$

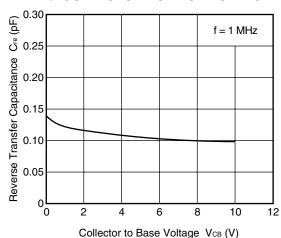
hfe CLASSIFICATION


Rank	FB		
Marking	zN		
h _{FE} Value	220 to 380		

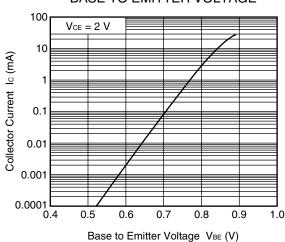
<R> TYPICAL CHARACTERISTICS (TA = +25°C, unless otherwise specified)


TOTAL POWER DISSIPATION vs. AMBIENT TEMPERATURE

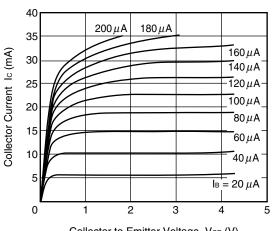
COLLECTOR CURRENT vs. BASE TO EMITTER VOLTAGE



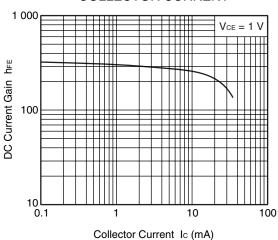
COLLECTOR CURRENT vs. BASE TO EMITTER VOLTAGE



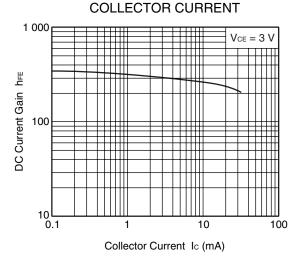
Remark The graphs indicate nominal characteristics.


REVERSE TRANSFER CAPACITANCE vs. COLLECTOR TO BASE VOLTAGE

COLLECTOR CURRENT vs.
BASE TO EMITTER VOLTAGE

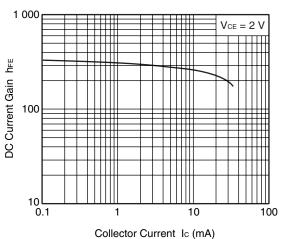


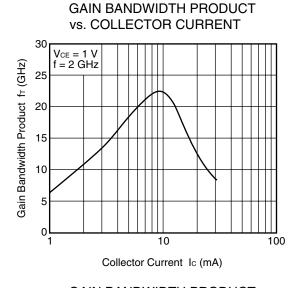
COLLECTOR CURRENT vs.
COLLECTOR TO EMITTER VOLTAGE

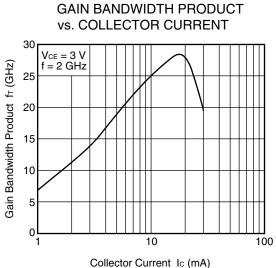


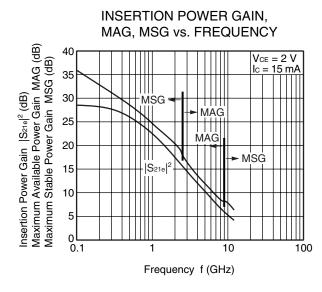
Collector to Emitter Voltage $\ V_{CE}(V)$

DC CURRENT GAIN vs. COLLECTOR CURRENT

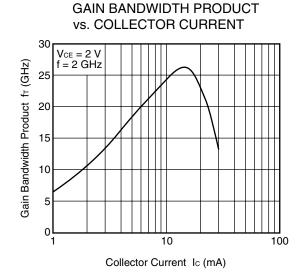


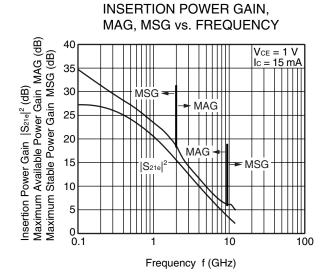

DC CURRENT GAIN vs.

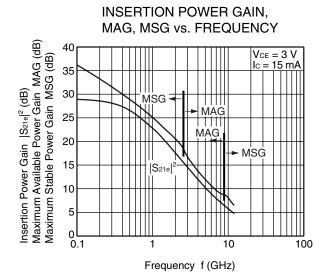


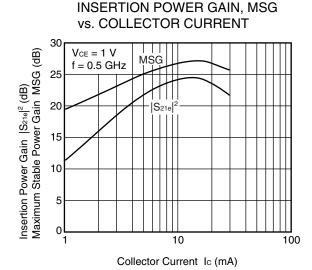

Remark The graphs indicate nominal characteristics.

DC CURRENT GAIN vs. COLLECTOR CURRENT

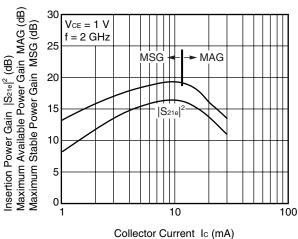


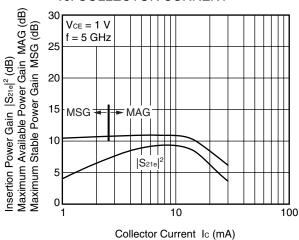




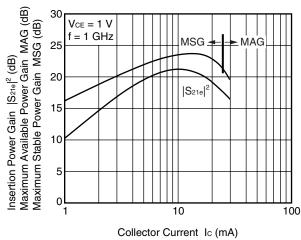


Remark The graphs indicate nominal characteristics.

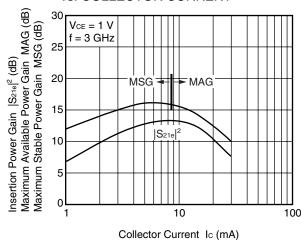




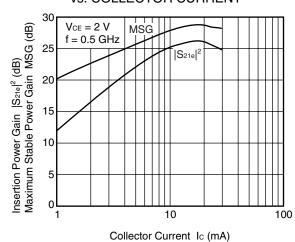
INSERTION POWER GAIN, MAG, MSG vs. COLLECTOR CURRENT

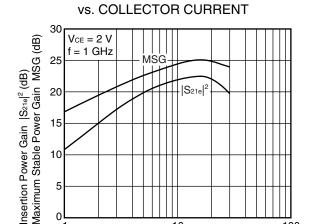


INSERTION POWER GAIN, MAG, MSG vs. COLLECTOR CURRENT



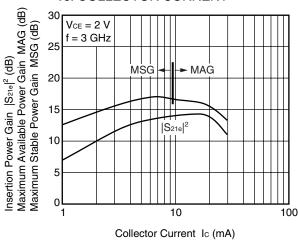
Remark The graphs indicate nominal characteristics.


INSERTION POWER GAIN, MAG, MSG vs. COLLECTOR CURRENT

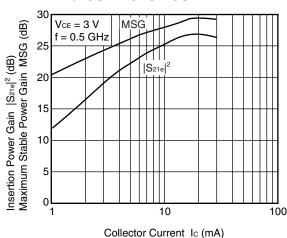

INSERTION POWER GAIN, MAG, MSG vs. COLLECTOR CURRENT

INSERTION POWER GAIN, MSG vs. COLLECTOR CURRENT

0

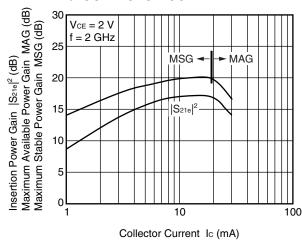

INSERTION POWER GAIN, MSG

INSERTION POWER GAIN, MAG, MSG vs. COLLECTOR CURRENT

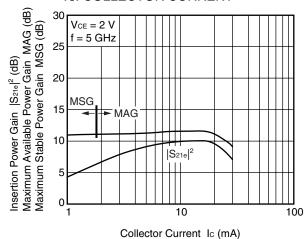

10

Collector Current Ic (mA)

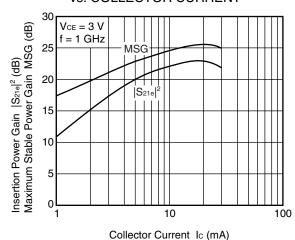
100

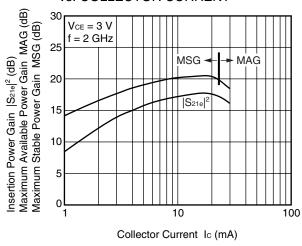


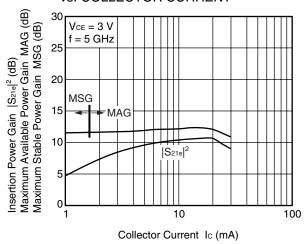
INSERTION POWER GAIN, MSG vs. COLLECTOR CURRENT



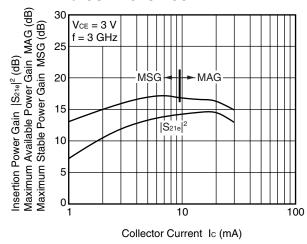
Remark The graphs indicate nominal characteristics.


INSERTION POWER GAIN, MAG, MSG vs. COLLECTOR CURRENT

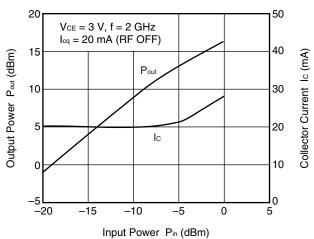

INSERTION POWER GAIN, MAG, MSG vs. COLLECTOR CURRENT


INSERTION POWER GAIN, MSG vs. COLLECTOR CURRENT

INSERTION POWER GAIN, MAG, MSG vs. COLLECTOR CURRENT

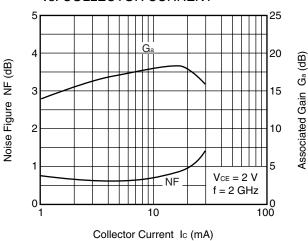


INSERTION POWER GAIN, MAG, MSG vs. COLLECTOR CURRENT



Remark The graphs indicate nominal characteristics.

INSERTION POWER GAIN, MAG, MSG vs. COLLECTOR CURRENT



OUTPUT POWER, COLLECTOR CURRENT vs. INPUT POWER

Measuring method: Measured at power matched with external sleeve tuner. (The load resistance is not inserted between the base DC power supply and Bias Tee.)

NOISE FIGURE, ASSOCIATED GAIN vs. COLLECTOR CURRENT

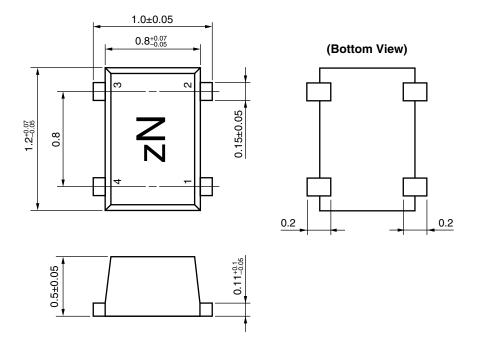
Remark The graphs indicate nominal characteristics.

<R> S-PARAMETERS

S-parameters/Noise parameters are provided on our web site in a form (S2P) that enables direct import to a microwave circuit simulator without keyboard input.

Click here to download S-parameters.

 $[RF and Microwave] \rightarrow [Device Parameters]$


URL http://www.ncsd.necel.com/microwave/index.html

9

NESG3032M14

<R> PACKAGE DIMENSIONS

4-PIN LEAD-LESS MINIMOLD (M14, 1208 PACKAGE) (UNIT: mm)

PIN CONNECTIONS

- 1. Collector
- 2. Emitter
- 3. Base
- 4. NC (Connected with Pin 2)

Note A NC pin is Non-connection in the mold package (When NC-pin is open state, It will get an influences of floating capacitance. Therefore, we recommend connect to NC pin and Emitter pin).

- The information in this document is current as of September, 2007. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior
 written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may
 appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these
 circuits, software and information in the design of a customer's equipment shall be done under the full
 responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by
 customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".
 - The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).