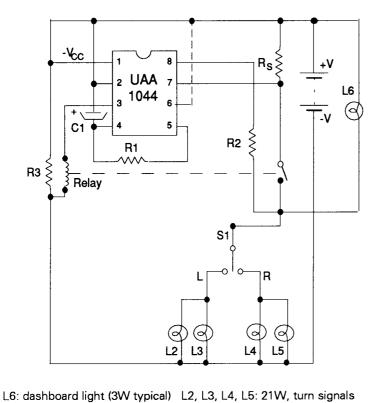
MOTOROLA SEMICONDUCTOR TECHNICAL DATA


Designer's Data Sheet

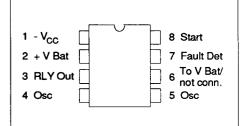
Automotive direction indicator

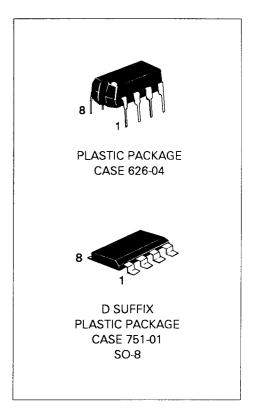
... designed for use in conjunction with a relay in automotive applications.

- Defective Lamp Detection
- Overvoltage Protection
- Reverse Battery Connection Protection
- Integrated Suppression Clamp Diode

FIGURE 1 - TYPICAL AUTOMOTIVE SYSTEM

Designer's is a trademark of MOTOROLA Inc.


 $R1 = 75 k\Omega$


 $Rs = 30 \text{ m}\Omega$

UAA1044

AUTOMOTIVE DIRECTION INDICATOR

SILICON MONOLITHIC INTEGRATED CIRCUIT

MOTOROLA

EDS0093

 $R2 = 3.3 \text{ k}\Omega$

 $C1 = 5.6 \,\mu\text{F}$

 $R3 = 220 \Omega$

MAXIMUM RATINGS

Rating	Pin	Value	Unit
Current: Continuous/Pulse*	1 2 3 8	+ 150/ + 500 - 35/ - 500 +/- 350/1900 +/- 300/1400 +/- 25/50	mA
Junction Temperature		150	°C
Operating Temperature Range		- 40 to + 100	°C
Storage Temperature Range		- 65 to + 150	°C

^{*} One pulse with an exponential decay and with a time constant of 500 ms.

ELECTRICAL CHARACTERISTICS (T₁ = 25°C)

Symbol	Min	Тур	Max	Unit
VB	8		18	V
VPin2 - VPin1	19	20.2	21.5	٧
VPin2 - VPin1	29	31.5	34	V
VPin2 - VPin7	25	<u> </u>	_	mV
VPin2 - VPin3		-	1.5	V
K _n	1.4	1.5	1.6	<u> </u>
kn	-	-1.5 x 10 ⁻³	_	1/°C
-	45	50	55	%
KF	0.63	0.68	0.73	_
_	35	40	45	%
K1	T —	0.180	_	
K2	-	0.270	_	
КЗ	-	0.130	_	
¹ CC				mA
	_	- 0.9	_	
	- 2	- 1.6		
		- 2.2	_	
		·		mA
		- 3.8	_	
	_	- 5.6	_	
	_	- 6.9	_	
Vp:-0 - Vp: -7		67		mV
				•
VPin2 - VPin7 VPin2 - VPin7		100		
	VB VPin2 - VPin1 VPin2 - VPin7 VPin2 - VPin3 Kn kn KF K1 K2 K3 ICC VPin2 - VPin7 VPin2 - VPin7	VB 8 VPin2 - VPin1 19 VPin2 - VPin7 25 VPin2 - VPin3 — Kn 1.4 kn — 45 KF 0.63 — 35 K1 — K2 — K3 — ICC — - - 2 — — VPin2 - VPin7 — VPin2 - VPin7 — VPin2 - VPin7 —	VB 8 — VPin2 - VPin1 19 20.2 VPin2 - VPin1 29 31.5 VPin2 - VPin7 25 — VPin2 - VPin3 — — Kn 1.4 1.5 kn — -1.5 x 10 - 3 Kn — -1.5 x 10 - 3 KF 0.63 0.68 — 35 40 K1 — 0.180 K2 — 0.270 K3 — 0.130 ICC — -0.9 -2 -1.6 — — -2.2 — -3.8 — — -5.6 — — -6.9 VPin2 - VPin7 — 67 VPin2 - VPin7 — 85.3	VB 8 — 18 VPin2 - VPin1 19 20.2 21.5 VPin2 - VPin1 29 31.5 34 VPin2 - VPin7 25 — — VPin2 - VPin3 — — 1.5 Kn 1.4 1.5 1.6 kn — -1.5 x 10 - 3 — — 45 50 55 KF 0.63 0.68 0.73 — 35 40 45 K1 — 0.180 — K2 — 0.270 — K3 — 0.130 — — - - - - — - - - - - — - - - - - K1 — - 0.270 — - K3 — - - - - - —

CIRCUIT DESCRIPTION

The circuit is designed to drive the direction indicator flasher relay. Figure 2 shows the typical system configuration with the external components. It consists of a network (R1, C1) to determine the oscillator frequency, shunt resistor ($R_{\rm g}$) to detect defective bulbs in the system, and two current limiting resistors ($R_{\rm g}/R_{\rm g}$) to protect the IC against load dump transients.

Light bulbs L2, L3, L4, L5 are the turn signal indicators with the dashboard-light L6. When switch S1 is closed, after a time delay of t_1 (in our example $t_1=75\,\text{ms}$), the relay will be actuated. The corresponding light bulbs L2, L3, (or L4, L5) will flash at the oscillator frequency, independent of the battery voltage of 8.0 V to 18 V. The flashing cycle stops and the circuit is reset to the initial position when the switch S1 is open.

The circuit features overvoltage and defective lamp detection.

Overvoltage detection:

Senses the battery voltage. When this voltage exceeds 20.2 V (this is the case when two batteries are connected in series), the relay will be turned off to protect the light bulbs.

Light bulb defect detector:

Senses the current through the shunt resistor R_s . When one of the light bulbs is defective, the failure is indicated by doubling the flashing frequency.

APPLICATION INFORMATION

1. The flashing cycle is started by closing S1. The switch position is sensed across resistor $\rm R_2$ and $\rm R_S.$

The maximum starting load is 40Ω

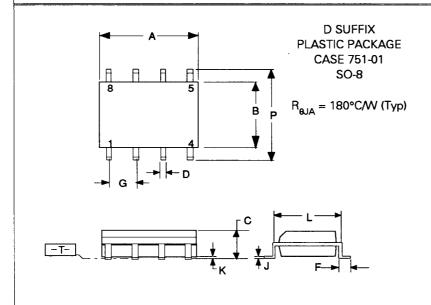
- f_n: Flashing frequency: $f_n = \frac{1}{R_1 C_1 K_n}$
- 3. f_F : Flashing frequency in the case of one defective light bulb of 21 W.

$$f_F = \frac{1}{R_1 C_1 K_1} K_n = 2.2 K_F$$

- 4. t₁: delay at the moment when S1 is closed and first flash t₁ = K₁R₁C₁
- 5. t_2 : defective light bulb detection delay $t_2 = K_2 R_1 C_1$
- When overvoltage is sensed (V_{Pin2}-V_{Pin1}) the relay is turned off to protect the relay and the light bulbs against excessive currents.

PLASTIC PACKAGE CASE 626-04

 $R_{eJA} = 100$ °C/W (Typ)


ſ	MILLIMETERS		INCHES			
DIM	MIN	MAX	MIN	MAX		
Α	9.40	10.16	0.370	0.400		
В	6.10	6.60	0.240	0.260		
С	3.94	4.45	0.155	0.175		
D	0.38	0.51	0.015	0.020		
F	1.02	1.52	0.040	0.060		
G	2.54	2.54 BSC		54 BSC		
H	0.76	1.27	0.030	0.050		
J	0.20	0.30	0.008	0.012		
K	2.92	3.43	0.115	0.135		
L	7.62 BSC		0.300	0 BSC		
М	_	10°		10°		
N	0.51	0.76	0.020	0.030		

NOTES:

1. LEAD POSITIONAL TOLERANCE

_							
⊕	ф	0.13 (0.005	<u>(</u>	Т	A M	В	M

- 2. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
- PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS).
- 4. DIMENSIONS A AND B ARE DATUMS.
- 5. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

Note 4

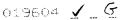
D PLANE

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	4.78	5.00	0.188	0.197
В	3.81	4.01	0.150	0.158
С	1.35	1.75	0.053	0.069
D	0.35	0.46	0.014	0.018
F	0.67	0.77	0.026	0.030
G	1.27	1.27 BSC		BSC
J	0.19	0.22	0.007	0.009
K	0.10	0.20	0.004	0.008
L	4.82	5.21	0.189	0.205
Р	5.79	6.20	0.228	0.244

NOTES:

- 1. -T- IS SEATING PLANE.
- 2. DIMENSION A IS DATUM.
- 3. POSITIONAL TOLERANCE FOR LEADS:

⊕ 0.25 (0.010) M A S


Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. Motorola products are not authorized for use as components in life support devices or systems intended for surgical implant into the body or intended tos upport or sustain life. Buyer agrees to notify Motorola of any such intended end use whereupon Motorola shall determine availability and suitability of its products for the use intended. Motorola and Antorola and Antorola of Motorola, Inc. Motorola, Inc. is an Equal Employment Opportunity/Affirmative Action Employer.

Literature Distribution Centres:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. EUROPE: Motorola Ltd; European Literature Centre; 88 Tanners Drive, Blakelands Milton Keynes, MK14 5BP, England. ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; P.O. Box 80300; Cheung Sha Wan Post Office; Kowloon, Hong Kong.

JAPAN: Nippon Motorola Ltd.; 3-20-1 Minamiazabu, Minato-ku, Tokyo 106 Japan.

OCT 1 7 1990

