

SANYO Semiconductors DATA SHEET

LA6579H — For CD-R

Four-Channel Bridge (BTL) Driver

Overview

The LA6579H is a 4-channel bridge (BTL) driver for CD-R.

Functions

- Bridge-connected (BTL) power amplifier incorporating four channels
- IO max 1A
- Level shift circuit incorporated
- MUTE circuit (all circuits ON/OFF)
- High output voltage (dynamic range) (6.5V: TYP, CH1 only)
- Input OP-AMP incorporated (CH1 only)
- Input OP-AMP (CH1) selector function incorporated

Specifications

Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V _{CC} max	*1	14	V
	V _{CC} _P*	V _{CC} P1, V _{CC} P2 *1	14	V
Allowable power dissipation	Pd max	Independent IC	0.8	W
		Specified board	1.8	W
Maximum input voltage	V _{IN} B		13	V
Maximum output current	I _O max	Each output	1	Α
MUTE pin voltage	VMUTE		13	V
Operating temperature	Topr		-30 to +85	°C
Storage temperature	Tstg		-55 to +150	°C

^{*} Specified board size: 114.3×76.1×1.6mm³, glass epoxy.

Recommended Operating Conditions at Ta = 25°C

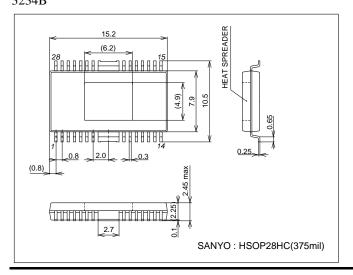
Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	Vcc		5 to 13	V

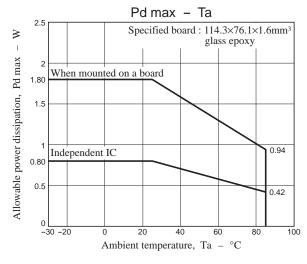
- Any and all SANYO Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO Semiconductor representative nearest you before using any SANYO Semiconductor products described or contained herein in such applications.
- SANYO Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor products described or contained herein.

^{*1} Note : Connect power pins of V_{CC} S, V_{CC} P1 and V_{CC} P2 externally.

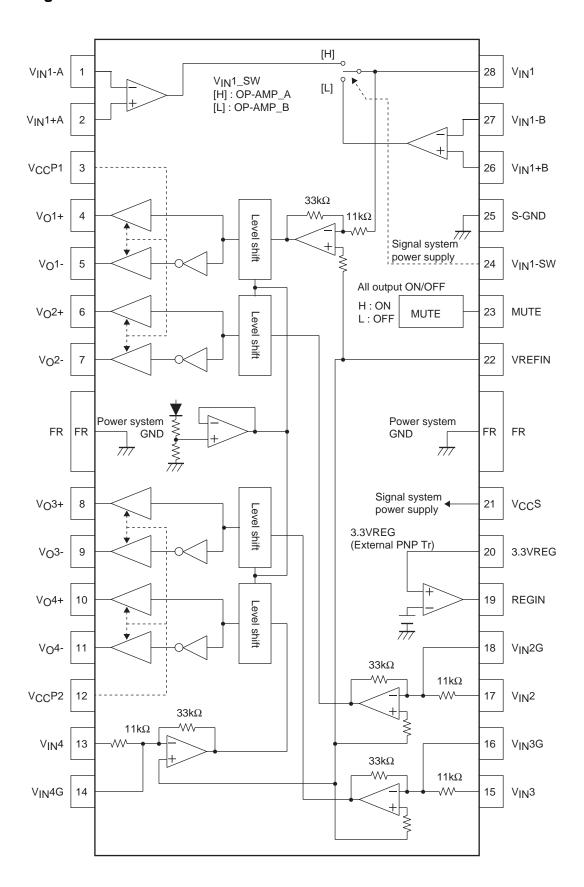
Electrical Characteristics at Ta = 25°C, $V_{CC_}S = V_{CC_}P1 = V_{CC_}P2 = 8V$, VREF = 1.65V, MUTE = 3.3V unless especially specified.

		0 ""	Ratings			11.7
Parameter	Symbol Conditions		min	typ	max	Unit
ALL Blocks						
No-load current drain ON 1	I _{CC} -ON	All outputs ON, MUTE:HI		30	45	mA
No-load current drain ON 2	I _{CC} -OFF	All channels ON, MUTE:LOW		5	10	mA
MUTE ON voltage	VMUTE-ON	MUTE *1	2			V
MUTE OFF voltage	VMUTE-OFF	MUTE *1			0.5	V
Output AMP Block (BTL-AMP) (C	CH1)					
Input AMP offset voltage	V _{OFF} _OP-AMP	CH1, input OP-AMP_A and B	-50		50	mV
Output voltage	V _O 1	R _L =8Ω *2	6.2	6.5		V
Input and output gain	VG1	*3	5.4	6	6.6	Times
Slew rate	SR1	AMP Independent Multiply 2 between outputs. *3		0.5		V/µs
Input OP_AMP						
Output offset voltage	V _{OFF} 1	Input OP-AMP_A and B	-10		10	mV
OP-AMP_SINK	OP_SINK	Input OP-AMP, SINK current	2			mA
OP-AMP_SOURCE	OP_SOURCE	Input OP-AMP, SOUECE current	300	500		μΑ
[Input OP_AMP changeover]						
Input AMP changeover voltage 1	V _{IN} 1-SW	Select CH1, input OP-AMP_B *5 1			0.5	V
Input AMP changeover voltage 2	V _{IN} 1-SW	Select CH1, input OP-AMP_B *5	2			V
Output AMP (CH2 to 4)						
Output offset voltage	V _{OFF} 2	Between + and – outputs of each CH	-50		50	mV
Output voltage	V _O 2	Between each plus and minus outputs *2	5	5.4		V
Input and output gain	VG2	*3 5.4		6	6.6	Times
Slew rate	SR2	AMP Independent Multiply 2 between outputs. *3		0.5		V/µs
3.3V power supply			•			
3.3 VREG output voltage	3.3VREG	I _O = 200mA 3.18 3.3		3.42	V	
REG-IN SINK current	REG-IN-SINK	Base current of external PNP transistor 5 10			mA	
Line regulation	ΔV _O LN	6V ≤ V _{CC} ≤ 12V, I _O = 200mA		20	150	mV
Load regulation	ΔV _O LD	5mA ≤ I _O ≤ 200mA 50 2			200	mV


Note *1: MUTE output ON with HI and OFF with LOW (AMP output OFF with HI impedance). Operative for all channels.


 $^{\star}2: Voltage \ at \ both \ ends \ of \ an \ 8\Omega \ load \ inserted \ between \ outputs. \ H \ or \ L \ for \ input. \ Output \ in \ the \ saturation \ condition.$

- *3 : CH1 input OP_AMP at 0dB (BUFFER)
- *4 : Design guarantee value
- $^{\star}5$: OP-AMP_A is operated when V_{IN}_SW is H. OP-AMP_B is operated when it is L.


Package Dimensions

unit: mm (typ) 3234B

Block Diagram

LA6579H

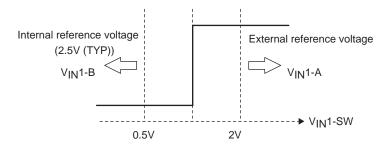
Pin Functions

Pin No.	Symbol	Pin descriptions		
1	V _{IN} 1-A	CH1 input AMP_A inverted input		
2	V _{IN} 1+A	CH1 input AMP_A non-inverted input		
3	V _{CC} P1	CH1 and CH2 power stage power supply		
4	V _O 1+	Output pin (+) for channel 1		
5	V _O 1-	CH1 Output pin (-) for channel 1		
6	V _O 2+	Output pin (+) for channel 2		
7	V _O 2-	Output pin (-) for channel 2		
8	V _O 3+	Output pin (+) for channel 3		
9	V _O 3-	Output pin (-) for channel 3		
10	V _O 4+	Output pin (+) for channel 4		
11	V _O 4-	Output pin (-) for channel 4		
12	V _{CC} P2	CH3 and CH4 power stage power supply		
13	V _{IN} 4	Input pin for channel 4		
14	V _{IN} 4G	Input pin for channel 4 (for gain adjustment)		
15	V _{IN} 3	Input pin for channel 3		
16	V _{IN} 3G	Input pin for channel 3 (for gain adjustment)		
17	V _{IN} 2	Input pin for channel 2		
18	V _{IN} 2G	Input pin for channel 2 (for gain adjustment)		
19	REGIN	External PNP transistor, base connection		
20	3.3VREG	3.3VREG output pin, external PNP transistor, collector connection		
21	V _{CC} S	Signal system GND		
22	VREFIN	Reference voltage application pin		
23	MUTE	Output ON/OFF pin		
24	V _{IN} 1_SW	CH1 input OP_AMP changeover pin		
25	S_GND	Signal system GND		
26	V _{IN} 1+B	CH1 AMP_B non-inverted input pin		
27	V _{IN} 1-B	CH1 AMP_B inverted input pin		
28	V _{IN} 1	CH1 input pin, input OP_AMP output pin		

Note: The center frame (FR) becomes GND (P-GND) for the power system. Keep this at the minimum potential together with the signal GND (S-GND). Short-circuit V_{CC} S (signal system power supply), V_{CC} P1, and V_{CC} P2 (output stage power supply) externally.

www.DataSheet/8U.com

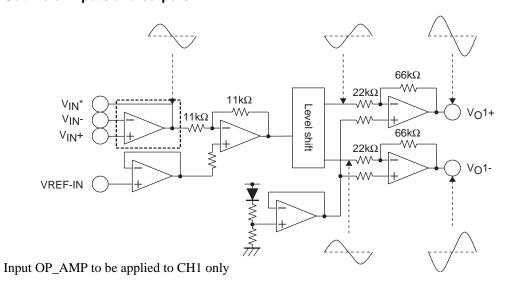
MUTE, VREF-SW


Relation of MUTE and VREF-SW

MUTE	Output			
MUTE	CH1	CH2	CH3	CH4
Н	ON			
L	OFF			

^{*1} Output to be HI impedance with output OFF.

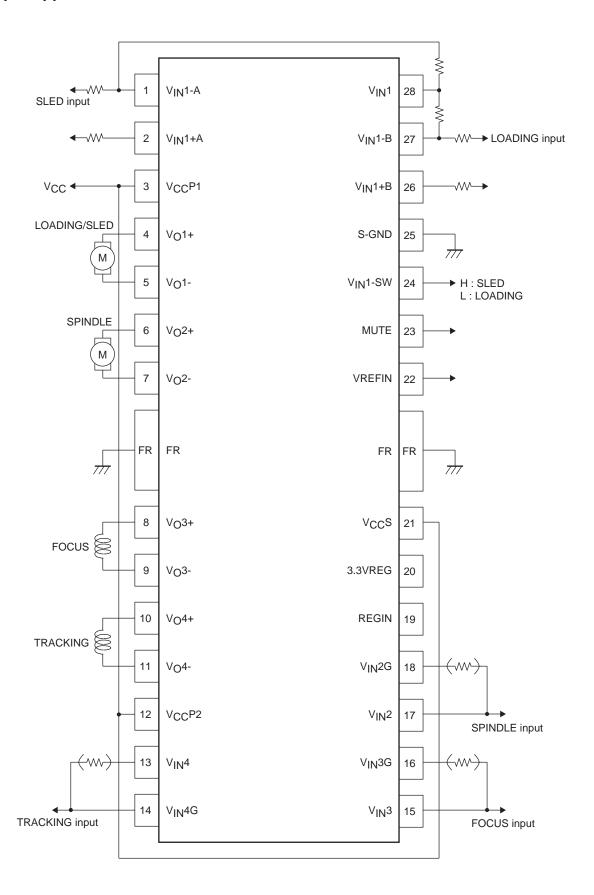
$V_{\mbox{IN}}1_{\mbox{SW}}$ and CH1 input OP_AMP


V _{IN} 1_SW	CH1 input OP_AMP
Н	AMP_A
L	AMP_B

On MUTE

MUTE	Output AMP	
L	OFF	
Н	ON	

Outline of inputs and outputs



^{*2} MUTE operative for all channels.

Pin Description

Pin No.	Symbol	Pin function	Description	Equivalent circuit
28	V _{IN} 1	Input	Input pin	
27	V _{IN} 1-B	Input	Set the total gain with	V _{CC} V _{IN*-} V _{IN*}
26	V _{IN} 1+B		the gain of this input	
18	V _{IN} 2G		AMP.	
			AIVII .	
17	V _{IN} 2			
16	V _{IN} 3G			V _{IN} *+
15	V _{IN} 3			
14	V _{IN} 4G			
13	V _{IN} 4			
				S-GND \$ \$ \$
4	V _O 1+	Output	Output pin for channel 1	
5	V _O 1-	(CH1)		<u> </u>
				
				\$
6	V _O 2+	Output	CH2 to 4 output pins	
7	V _O 2-	(CH2 to 4)		
8	V _O 3+			
9	V _O 3-			
10	V _O 4+			
11	V _O 4-			
23	MUTE	MUTE	ON/OFF of	
2.5	WOTE	MOTE	corresponding CH	V _{CC} 1 O
			output	
			MUTE : H output ON	
			MUTE : L output OFF	
			* Output OFF when the	MUTE O
			MUTE pin is open	100kΩ }
			(similarly to MUTE : L)	10010
				100kΩ 🔰
				S-GND ()
24	V _{IN} 1_SW	CH1	CH1 input OP-AMP	
		Input AMP	changeover function.	
		changeover	AMP_A or AMP_B is	
			selected according to	
			the voltage applied to V _{IN} 1_SW.	
			H:V _{IN} _A	V _{IN} 1_SW
			L:V _{IN} _B	
				_

Sample Application Circuit

- Specifications of any and all SANYO Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Semiconductor Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Semiconductor Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of December, 2006. Specifications and information herein are subject to change without notice.