

Typical Applications

The HMC996LP4E is ideal for:

- Point-to-Point Radio
- Point-to-Multi-Point Radio
- EW & ECM Subsystems
- X-Band Radar
- Test Equipment & Sensors

Functional Diagram

HMC996LP4E

VARIABLE GAIN AMPLIFIER 5 to 12 GHz

Features

Wide Gain Control Range: 22 dB Single Control Voltage: -1 to -4.5V Output IP3 @ Max Gain: +34 dBm Output P1dB: +22 dBm Low Noise Figure 2dB @ max gain No External Matching 24 Lead 4x4 mm SMT Package: 16 mm²

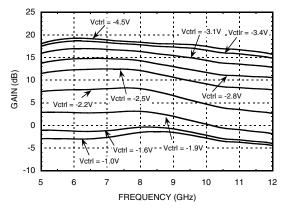
General Description

The HMC996LP4E is a GaAs PHEMT MMIC analog variable gain amplifier and / or driver amplifier which operates between 5 and 12 GHz. Ideal for microwave radio applications, the amplifier provides up to 18.5 dB of gain, output P1dB of up to +23 dBm, and up to +34 dBm of output IP3 at maximum gain, while requiring only 170 mA from a +5V supply. Gain control voltage pin (Vctrl) is provided to allow variable gain control up to 22 dB. Gain flatness is excellent making the HMC996LP4E ideal for EW, ECM and radar applications. The HMC996LP4E is housed in a RoHS compliant 4 x 4 mm QFN leadless package and is compatible with high volume surface mount manufacturing.

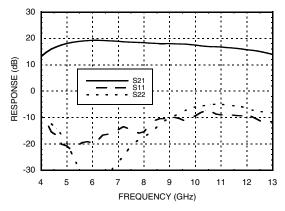
Electrical Specifications, $T_A = +25^{\circ}$ C, Vdd1, 2= 5V, Vctrl= -4.5V, Idd= 120 mA*

Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range		5 - 8.5	-		8.5 - 12	•	GHz
Gain	16	18.5		13	16		dB
Gain Flatness		±0.5			±1		dB
Gain Variation Over Temperature		0.006			0.006		dB/ °C
Gain Control Range	15	22		15	20		dB
Noise Figure		2.5			2		dB
Input Return Loss		17			9		dB
Output Return Loss		23			7		dB
Output Power for 1 dB Compression (P1dB)	19	22		20	23		dBm
Saturated Output Power (Psat)		23			24		dBm
Output Third Order Intercept (IP3)		34			34		dBm
Total Supply Current (Idd)		120			120		mA

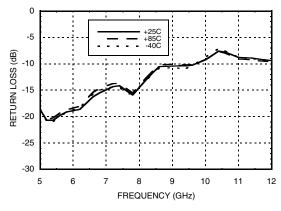
*Set Vctrl = -4.5V and then adjust Vgg1, 2 between -2V to 0V to achieve Idd = 120 mA typical.

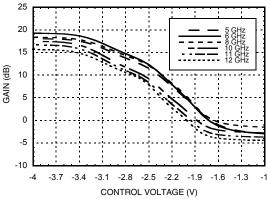


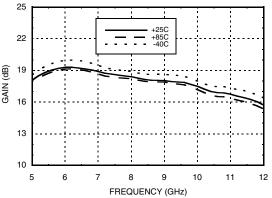
5 to 12 GHz

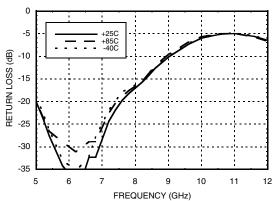

VARIABLE GAIN AMPLIFIER

ROHS V


Gain vs. Control Voltage Range

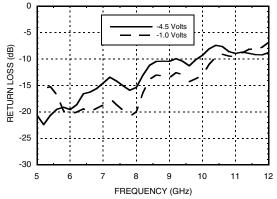

Broadband Gain & Return Loss


Input Return Loss vs. Temperature

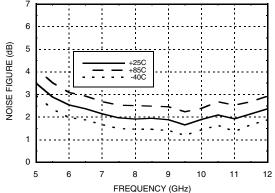

Gain vs. Control Voltage

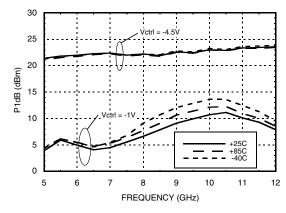
Gain vs. Temperature

Output Return Loss vs. Temperature

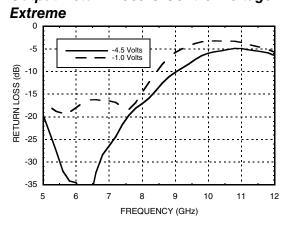


5 to 12 GHz

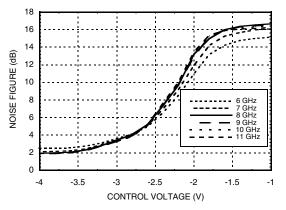



Input Return Loss @ Control Voltage Extreme

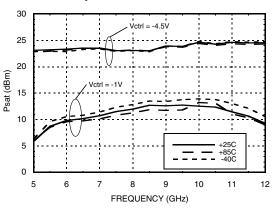
Noise Figure vs. Temperature



P1dB vs. Temperature



Output Return Loss @ Control Voltage

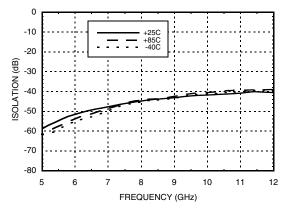

VARIABLE GAIN AMPLIFIER

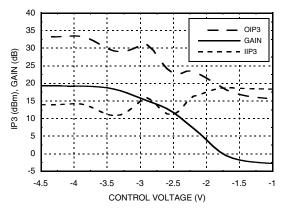
Noise Figure vs. Control Voltage

Psat vs. Temperature

0

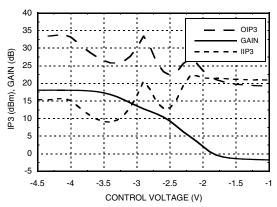
For price, delivery and to place orders: Hittite Microwave Corporation, 2 Elizabeth Drive, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373 Order On-line at www.hittite.com Application Support: Phone: 978-250-3343 or apps@hittite.com


VARIABLE GAIN AMPLIFIER 5 to 12 GHz


v00.0511

Reverse Isolation vs. Temperature


IP3 and Gain @ 6 GHz, Pin = -10 dBm


35 30 IP3 (dBm) 25 -85C 20 15 Vctrl=-1V dB 10 10 11 12 5 6 7 9 8 FREQUENCY (GHz)

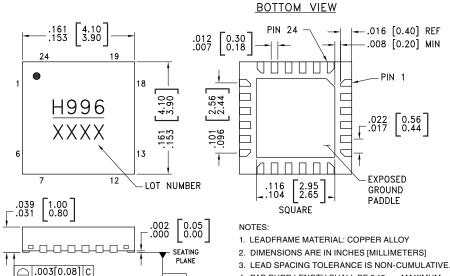
Output IP3 vs. Temperature

IP3 and Gain @ 8 GHz, Pin = -10 dBm

VARIABLE GAIN AMPLIFIER 5 to 12 GHz

Absolute Maximum Ratings

Drain Bias Voltage (Vdd1, 2)	+5.5V	
Gate Bias Voltage (Vgg1, 2)	-3 to 0V	
Gain Control Voltage (Vctrl)	-5 to 0V	
RF Power Input	+20 dBm	
Channel Temperature	175 °C	
Continuous Pdiss (T = 85 °C) (derate 11.5 mW/°C above 85 °C) ^[1]	1.03 W	
Thermal Resistance (Channel to ground paddle)	86.7 °C/W	
Storage Temperature	-65 to +150 °C	
Operating Temperature	-40 to +85 °C	
ESD Sensitivity (HBM)	Class 0 Passed 150V	


Bias Voltage

Vdd1,2(V)	Idd Total (mA)	
+5V	120 mA	
Vgg1,2 (V)	Igg Total (mA)	
0V to -2V	<0.1 mA	

ELECTROSTATIC SENSITIVE DEVICE **OBSERVE HANDLING PRECAUTIONS**

Outline Drawing

-C-

4. PAD BURR LENGTH SHALL BE 0.15mm MAXIMUM.

PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM.

5. PACKAGE WARP SHALL NOT EXCEED 0.05mm. 6. ALL GROUND LEADS AND GROUND PADDLE MUST

BE SOLDERED TO PCB RF GROUND.

7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED LAND PATTERN.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ^[2]	
HMC996LP4E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 ^[1]	<u>H996</u> XXXX	

[1] Max peak reflow temperature of 260 °C

[2] 4-Digit lot number XXXX

VARIABLE GAIN AMPLIFIER 5 to 12 GHz

Pin Descriptions

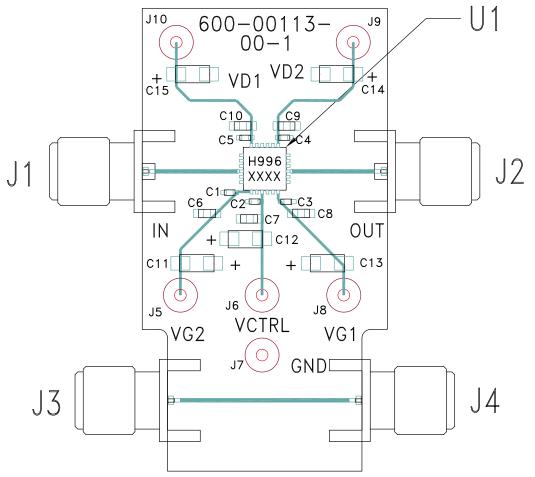
Pin Number	Function	Description	Interface Schematic
1, 2, 6, 8, 10, 11, 13, 17, 18, 20, 21, 22, 23	N/C	The pins are not connected internally: however all data shown herein was measured with these pins connected to RF/DC ground externally	
3, 5, 14, 16	GND	These pins and exposed ground paddle must be connected to RF/DC ground.	
4	RFIN	This pad is AC coupled and matched to 50 Ohm.	
7, 12	Vgg1, 2	Gate control for amplifier. Adjust voltage to achieve typical Idd. Please follow "MMIC Amplifier Biasing Procedure" application note.	Vgg1,2 0
9	Vctrl	Gain control Voltage for the amplifier. See assembly diagram for required external components.	
15	RFOUT	This pad is AC coupled and matched to 50 Ohm.	
19, 24	Vdd1, 2	Drain Bias Voltage for the amplifier. See assembly diagram for required external components	

VARIABLE GAIN AMPLIFIER 5 to 12 GHz

Application Circuit J10 J9 Vdd2 Vdd1 +C14 C15 2.2uF 2.2uF C10 C9 1000pF 1000pF N/C N/C N/C N/C C5 C4 100pF 100pF 20 24 23 22 21 19 N/C N/C 1N/C N/C 2 17 GND 3 16 GND RFIN RFOUT / J2 J1 15 4 5 14 GND GND N/C 6/ <u>\13</u> N/C 12 8 7 11 9 10 N/C N/C N/C C2 C1 100pF 100pF C3 100pF C7 C6 C8 1000pF 1000pF 1000pF C11 2.2uF C12 C13 2.2uF 2.2uF Vgg2 J5 Vgg1 J8 Vctrl

For price, delivery and to place orders: Hittite Microwave Corporation, 2 Elizabeth Drive, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373 Order On-line at www.hittite.com Application Support: Phone: 978-250-3343 or apps@hittite.com

J7



VARIABLE GAIN AMPLIFIER 5 to 12 GHz

Evaluation PCB

List of Materials for Evaluation PCB EVAL01-HMC996LP4E^[1]

F		
Item	Description	
J1, J4	PCB Mount SMA RF Connectors	
J5 - J10	DC Pin	
C1 - C5	100 pF Capacitor, 0402 Pkg.	
C6 - C10	1000 pF Capacitor, 0603 Pkg.	
C11 - C15	2.2 µF Capacitor, CASE A	
U1	HMC996LP4E Variable Gain Amplifier	
PCB [2]	600-00113-00 Evaluation PCB	

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Arlon 25FR

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.