

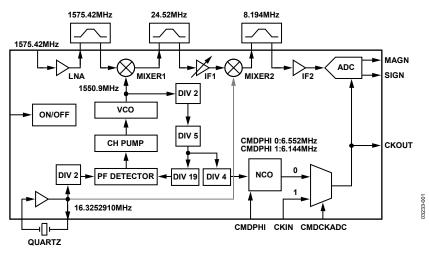
# GPS RF Downconverter ADSST-GPSRF01

#### FEATURES

Single chip GPS downconverter GPS L1 band C/A code (1575.42 MHz) receiver 2.7 V to 3.3 V power supply On-chip LNA On-chip PLL including complete VCO On-chip reference oscillator On-chip NCO for sampling clock Option to choose 6.144 MHz, or 6.552 MHz, or external sampling clock 60 dB AGC dynamic range SIGN and MAGN outputs Low power operation 55 mA Supports power-down mode

#### **APPLICATIONS**

Security applications Asset tracking Marine navigation Portable GPS receiver


#### **GENERAL DESCRIPTION**

The ADSST-GPSRF01 is a high performance, fully integrated, RF front-end chip for downconversion and amplification of GPS signals. It has been designed for L1 (1575.42 MHz), C/A GPS band receivers.

The ADSST-GPSRF01 is a dual conversion, superheterodyne receiver with an on-chip low noise amplifier (LNA), local oscillator, two downconversion IF stages (at 24.52 MHz and 8.194 MHz, respectively), an automatic gain controlled amplifier (AGC), and a 2-bit analog-to-digital converter (ADC).

Two selectable, fixed frequency sampling clocks from an on-chip NCO can be used for output sampling (6.144 MHz or 6.552 MHz). In addition, an external sampling clock can be used up to 32 MHz.

The chip can be interfaced with any active/passive GPS antenna.



#### FUNCTIONAL BLOCK DIAGRAM

Figure 1.

Rev. 0 Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

### TABLE OF CONTENTS

| Features 1                                  |
|---------------------------------------------|
| Applications1                               |
| General Description                         |
| Functional Block Diagram1                   |
| Revision History                            |
| Specifications                              |
| Absolute Maximum Ratings                    |
| ESD Caution                                 |
| Pin Configuration and Function Descriptions |
| Theory of Operation                         |
| Power Supplies                              |
| Matching Network                            |
| LNA Matching Network 8                      |

|   | Mixer Matching Network                  | 9  |
|---|-----------------------------------------|----|
|   | Reference Clock Generation              | 10 |
|   | PLL Filter                              | 10 |
|   | IF Input Network                        | 10 |
|   | Mixer2 Output Network                   | 10 |
|   | AGC/ADC                                 | 11 |
|   | Numerically Controlled Oscillator (NCO) | 11 |
|   | Power On/Standby Mode                   | 12 |
|   | ADC Sampling Clock Selection            | 12 |
| О | Outline Dimensions                      | 13 |
|   | Ordering Guide                          | 13 |

#### **REVISION HISTORY**

3/07—Revision 0: Initial Version

### **SPECIFICATIONS**

Recommended operating conditions: VCC = 2.7 V to 3.3 V, VEE = 0 V, typical is at VCC = 3 V, and  $T_A @ 25^{\circ}C$ .

#### Table 1.

| Parameter                                        | Conditions                                         | Min  | Тур       | Max  | Unit   |
|--------------------------------------------------|----------------------------------------------------|------|-----------|------|--------|
| LNA CHARACTERISTICS                              | See the LNA Matching Network<br>section            |      |           |      |        |
| RF Frequency                                     |                                                    | 1570 | 1575.42   | 1580 | MHz    |
| Input Impedance                                  | With external matching network                     |      | 50        |      | Ω      |
| Input VSWR                                       | With external matching network                     |      | 1         | 2    |        |
| Output Impedance                                 | With external matching network                     |      | 50        |      | Ω      |
| Output VSWR                                      | With external matching network                     |      | 1         | 2    |        |
| Gain                                             | With external matching network, typical simulation | 17   | 21        | 25   | dB     |
|                                                  | No external matching network                       | 12   | 16        | 20   | dB     |
| OP1dB                                            |                                                    |      | -4        |      | dBm    |
| Noise Figure                                     | Typical simulation                                 |      |           | 3    | dB     |
| MIXER CHARACTERISTICS                            | See the Mixer Matching Network section             |      |           |      |        |
| RF Frequency                                     |                                                    | 1570 | 1575.42   | 1580 | MHz    |
| LO Frequency                                     | 95 times the reference frequency                   |      | 1550.9    |      | MHz    |
| IF Frequency                                     |                                                    | 24   | 24.51     | 25.5 | MHz    |
| Input Impedance                                  | With external matching network                     |      | 50        |      | Ω      |
| Input VSWR                                       | With external matching network                     |      | 1         | 2    |        |
| Differential Output Impedance                    | See Mixer Matching Network section                 |      | 1000      |      | Ω      |
| Conversion Gain                                  | With external matching network                     | 7    | 12        | 16   | dB     |
|                                                  | No external matching network                       | 7    | 15        | 17   | dB     |
| OP1dB                                            |                                                    | -16  | -12       |      | dBm    |
| SSB Noise Figure                                 | Typical simulation                                 |      |           | 15   | dB     |
| PILOTE CHARACTERISTICS                           |                                                    |      |           |      |        |
| Reference Frequency                              |                                                    |      | 16.325291 |      | MHz    |
| Input Magnitude Level                            | On a 50 Ω load                                     |      | -4        | 0    | dBm    |
| Gain                                             |                                                    | 8    | 10        | 13   | dB     |
| Output Level High, Vон                           |                                                    |      | VCC       |      | V      |
| Output Level Low, Vol                            |                                                    |      | VCC – 0.8 |      | V      |
| VCO CHARACTERISTICS                              | See the PLL Filter section                         |      |           |      |        |
| Nominal Frequency                                | With the reference frequency                       | 1.45 | 1.55      | 1.68 | GHz    |
| Phase Noise (Free-Running VCO)                   | Typical simulations @ 400 kHz                      |      | -78       |      | dBc/Hz |
| Phase Noise (Closed Loop)                        |                                                    |      |           |      |        |
| With Proposed Filter (Loop Bandwidth<br>100 kHz) | Typical simulation @ 100 kHz                       |      | -66       |      | dBc/Hz |
| Nonharmonic Spurious (Closed Loop)<br>@ 8 kHz    | Typical simulations                                |      |           | -30  | dBc    |
| @ 16 kHz                                         |                                                    |      |           | -40  | dBc    |
| @ 24 kHz                                         |                                                    |      |           | -50  | dBc    |
| VCO Slope                                        | Typical simulations                                | 1.2  | 2.4       | 3.5  | GHz/V  |
| VTUNE Voltage                                    |                                                    | 0.6  |           | VCC  | V      |
| IF1/MIXER CHARACTERISTICS                        |                                                    |      |           |      |        |
| Input Frequency                                  | With the reference frequency                       |      | 24.51     |      | MHz    |
| Output Frequency                                 | With the reference frequency                       |      | 8.192     |      | MHz    |
| Differential Input Impedance                     | See the IF Input Network section                   |      | 1000      |      | Ω      |
| Differential Output Impedance                    | See the IF Input Network section                   |      | 1000      |      | Ω      |

| Parameter                                                  | Conditions                                                             | Min              | Тур   | Max              | Unit |
|------------------------------------------------------------|------------------------------------------------------------------------|------------------|-------|------------------|------|
| Gain (S21) (IF1 + MIXER2)                                  | Without AGC regulation                                                 |                  |       |                  |      |
| Maximum                                                    |                                                                        | +41              | +56   | +72              | dB   |
| Minimum                                                    |                                                                        | -29              | -26   | -20              | dB   |
| Noise Figure                                               | Typical simulations                                                    |                  |       |                  |      |
| S21 = +50 dB                                               |                                                                        |                  | 6     |                  | dB   |
| S21 = +20  dB                                              |                                                                        |                  | 15    |                  | dB   |
| S21 = -10  dB                                              |                                                                        |                  | 45    |                  | dB   |
| OP1dB                                                      | Typical simulations                                                    |                  |       |                  |      |
| S21 = +50 dB                                               |                                                                        |                  | -15   |                  | dBm  |
| S21 = +20 dB                                               |                                                                        |                  | -18   |                  | dBm  |
| S21 = -10  dB                                              |                                                                        |                  | -45   |                  | dBm  |
| AGC Dynamic Range                                          |                                                                        | 65               |       |                  | dB   |
| AGC Slope                                                  | Typical simulations for a gain within 20 dB ± 30 dB range              | 300              |       | 2500             | dB/V |
| AGC Voltage Range (on CAMP Pin)                            | Typical simulations                                                    |                  | 400   |                  | mV   |
| CAMP Pin Maximum Rating Voltage                            | If externally controlled                                               | 1                |       | VCC              | V    |
| Magnitude Bit Duty Cycle (Use for AGC<br>Regulation Point) | This rate allows ADSST-GPSRF01 to fix the conversion loss below 0.6 dB | 23               | 33    | 43               | %    |
| AGC Band-Pass                                              | Typical simulations                                                    | 1                | 3     | 10               | kHz  |
| LO2 Leakage on MIXER2 Output                               | .)pical sintalations                                                   |                  | -28   | -17              | dBm  |
| Output Offset                                              | For a gain within 20 dB $\pm$ 30 dB range                              |                  |       | <100             | mV   |
| IF2 CHARACTERISTICS                                        | See the IF Input Network section                                       |                  |       |                  |      |
| Frequency                                                  |                                                                        |                  | 8,192 |                  | MHz  |
| Differential Input Impedance                               | See the IF Input Network section                                       |                  | 1000  |                  | Ω    |
| Gain                                                       |                                                                        | 31               | 34    | 39               | dB   |
| OP1dB                                                      |                                                                        | -15              |       |                  | dBm  |
| LSB                                                        | Typical simulations                                                    |                  | 100   |                  | mV   |
| Output Test Attenuation                                    |                                                                        |                  | -20   |                  | dB   |
| Output Test Level                                          | On a 50 $\Omega$ load                                                  |                  | -40   |                  | dBm  |
| INPUT CMOS LEVELS CKIN, CMDCKADC,<br>CMDPHI, POWER ON      |                                                                        |                  |       |                  |      |
| Input CMOS Level High, V <sub>IH</sub>                     |                                                                        | VCC $\times$ 0.7 |       |                  | v    |
| Input CMOS Level Low, V <sub>IL</sub>                      |                                                                        |                  |       | $0.3 \times VCC$ | v    |
| OUTPUT CMOS LEVELS MAGN, SIGN, CKOUT                       |                                                                        |                  |       |                  |      |
| Output CMOS Level High, V <sub>OH</sub>                    |                                                                        | VCC × 0.85       |       |                  | v    |
| Output CMOS Level Low, Vol                                 |                                                                        |                  |       | 0.15 × VCC       | v    |
| Maximum Rating Output Load                                 |                                                                        |                  |       | 15               | pF   |
| CKOUT to MAGN/SIGN Skew                                    | Typical simulations                                                    |                  |       | 20               | ns   |
| POWER CONSUMPTION                                          | Standby measured                                                       |                  |       | 0.1              | mA   |
|                                                            | 3 V (min @ –40°C, max @ +85°C )                                        | 40               | 55    | 65               | mA   |

### **ABSOLUTE MAXIMUM RATINGS**

Table 2.

| Parameter                    | Rating                |
|------------------------------|-----------------------|
| VCC to VEE <sup>1</sup>      | –0.3 V to +5 V        |
| Analog I/O Voltage to VEE    | -0.3 V to VCC + 0.3 V |
| Digital I/O Voltage to VEE   | -0.3 V to VCC + 0.3 V |
| Operating Temperature Range  | -40°C to +85°C        |
| Storage Temperature Range    | -40°C to +150°C       |
| Maximum Junction Temperature | +125°C                |

 $^{1}$  VEE = 0 V.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

This device is a high performance RF integrated circuit with an ESD rating of <2 kV and it is ESD sensitive. Proper precautions should be taken for handling and assembly.

#### **ESD CAUTION**



**ESD** (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

### **PIN CONFIGURATION AND FUNCTION DESCRIPTIONS**

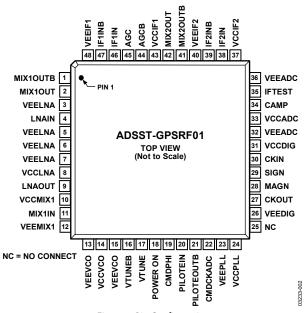



Figure 2. Pin Configuration

#### Table 3. Pin Function Descriptions

| Pin No.   | Mnemonic   | Pin Type | Description                                                  |
|-----------|------------|----------|--------------------------------------------------------------|
| 1         | MIX1OUTB   | Analog   | MIXER1 Output, IF1 Signal, (24.52 MHz).                      |
| 2         | MIX1OUT    | Analog   | Complementary MIXER1 Output.                                 |
| 3, 5 to 7 | VEELNA     | Ground   | LNA Ground.                                                  |
| 4         | LNAIN      | Analog   | LNA RF Input Signal, (1575.42 MHz).                          |
| 8         | VCCLNA     | Supply   | LNA Supply.                                                  |
| 9         | LNAOUT     | Analog   | LNA RF Output Signal, (1575.42 MHz).                         |
| 10        | VCCMIX1    | Supply   | MIXER1 Supply.                                               |
| 11        | MIX1IN     | Analog   | MIXER1 RF Input Signal, (1575.42 MHz).                       |
| 12        | VEEMIX1    | Ground   | MIXER1 Ground.                                               |
| 13, 15    | VEEVCO     | Ground   | VCO Ground.                                                  |
| 14        | VCCVCO     | Supply   | VCO Supply.                                                  |
| 16        | VTUNEB     | Analog   | VCO Input Command. This pin is used for internal decoupling. |
| 17        | VTUNE      | Analog   | External PLL Filter Connection.                              |
| 18        | POWER ON   | CMOS     | Power-On Input.                                              |
| 19        | CMDPHI     | CMOS     | NCO Frequency Switch Input Control.                          |
| 20        | PILOTEIN   | Analog   | Reference Clock Input.                                       |
| 21        | PILOTEOUTB | Analog   | Reference Clock Output with 180° Phase Shift.                |
| 22        | CMDCKADC   | CMOS     | NCO/CKIN Switch Input Control.                               |
| 23        | VEEPLL     | Ground   | PLL Ground.                                                  |
| 24        | VCCPLL     | Supply   | PLL Supply.                                                  |
| 25        | NC         |          | Not Connected.                                               |
| 26        | VEEDIG     | Ground   | Digital Ground.                                              |
| 27        | CKOUT      | CMOS     | Clock Output.                                                |
| 28        | MAGN       | CMOS     | Magnitude Bit Data Output.                                   |
| 29        | SIGN       | CMOS     | Sign Bit Data Output.                                        |
| 30        | CKIN       | CMOS     | External Sampling Clock Input.                               |
| 31        | VCCDIG     | Supply   | Digital Supply.                                              |
| 32, 36    | VEEADC     | Ground   | ADC Ground.                                                  |
| 33        | VCCADC     | Supply   | ADC Supply.                                                  |
| 34        | CAMP       | Analog   | Amplitude Bit Capacitor Signal.                              |

| Pin No. | Mnemonic | Pin Type | Description                              |
|---------|----------|----------|------------------------------------------|
| 35      | IFTEST   | Analog   | IF Test Output.                          |
| 37      | VCCIF2   | Supply   | IF2 Supply.                              |
| 38      | IF2IN    | Analog   | Second Amplifier IF Input, (8.194 MHz).  |
| 39      | IF2INB   | Analog   | Complementary Second Amplifier IF Input. |
| 40      | VEEIF2   | Ground   | Substrate Connection to Die Paddle.      |
| 41      | MIX2OUTB | Analog   | MIXER2 Output, IF2 Signal, (8.194 MHz).  |
| 42      | MIX2OUT  | Analog   | Complementary MIXER2 Output, IF2 Signal. |
| 43      | VCCIF1   | Supply   | IF1 Supply.                              |
| 44      | AGCB     | Analog   | AGC Capacitor Signal.                    |
| 45      | AGC      | Analog   | Complementary AGC Capacitor Signal.      |
| 46      | IF1IN    | Analog   | First Amplifier IF Input, (24.52 MHz).   |
| 47      | IF1INB   | Analog   | Complementary First Amplifier IF Input.  |
| 48      | VEEIF1   | Ground   | IF1 Ground.                              |

### **THEORY OF OPERATION**

#### **POWER SUPPLIES**

The ADSST-GPSRF01 uses eight different power supply groups as follows:

- a. VCCLNA and VEELNA
- b. VCCMIX1 and VEEMIX1
- c. VCCVCO and VEEVCO
- d. VCCIF1 and VEEIF1
- e. VCCIF2 and VEEIF2
- f. VCCADC and VEEADC
- g. VCCDIG and VEEDIG
- h. VCCPLL and VEEPLL

These separate power groups increase isolation between internal components. Each power supply group is externally decoupled by a single low value capacitor for oscillation risk reduction. There should be only one regulated 3 V power supply on the board and only one common ground. If isolation is not high enough, a separate 3 V regulated power supply should be used.

#### **MATCHING NETWORK**

The RF input has an unmatched input impedance. The necessary 50  $\Omega$  RF external input matching components must be mounted as close to the RF input as possible. Input and output matching networks provide 50  $\Omega$  source and load impedance.

#### LNA MATCHING NETWORK

LNA input is internally biased; therefore, it should be externally ac-coupled.

Tests were made with lumped matching elements, performing maximum power transfer between LNA and input and output. Input matching impedances given in Table 4 are designed for simultaneous input and output matching. Input and output RF signals should be connected to the external devices via a 50  $\Omega$  line.

#### Table 4. External Components Used for LNA Matching

| Component Name  |               | Unit |
|-----------------|---------------|------|
| Component Name  | Typical Value | Unit |
| L <sub>IN</sub> | 3.3           | nH   |
| C <sub>IN</sub> | 2.7           | pF   |
| Lout            | 5.6           | nH   |
| Cout            | 1.2           | pF   |
| CLINK           | 100           | pF   |

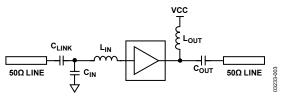



Figure 3. LNA Matching Network Connections

#### **MIXER MATCHING NETWORK**

The mixer structure is double-balanced with open-collector outputs. The local oscillator (LO) input and IF output are fully differential. One of the RF differential port inputs is internally decoupled. The other RF input must be externally ac-coupled. The RF inputs have unmatched input impedance. The 50  $\Omega$  matching is obtained with external components.

The IF outputs require external dc bias to VCC. This bias is provided through two inductors that also cancel the imaginary part of the output impedance.

RF input requires 50  $\Omega$  matching to ensure maximum power transfer.

Due to its high impedance, the IF output is not matched, but external components must be added to provide the filter input

with a 1000  $\Omega$  load. An external 1000  $\Omega$  parallel resistor performs this task and also decreases the sensitivity to component tolerances. This 1000  $\Omega$  external resistor must not be confused with the 1000  $\Omega$  load that represents the filter input.

#### Table 5. External Components Used for Mixer Matching

| Component Name    | Typical Value | Unit |
|-------------------|---------------|------|
| Lin               | 5.6           | nH   |
| C <sub>IN</sub>   | Not connected | pF   |
| CLINK             | 100           | pF   |
| L <sub>COIL</sub> | 10            | μН   |
| Rout              | 1             | kΩ   |
|                   |               |      |

Note that  $C_{\text{IN}}$  can be omitted due to the parasitic capacitor displayed by the board.

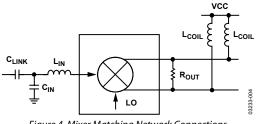



Figure 4. Mixer Matching Network Connections

Table 6.

| Mode        | Crystal Frequency with an<br>Equivalent C∟Load Capacitance | Equivalent Series<br>Resistances (Typical) | Shunt Capacitance<br>(Typical) | Drive Level<br>(Typical) | C1,<br>C2 | C∟    |
|-------------|------------------------------------------------------------|--------------------------------------------|--------------------------------|--------------------------|-----------|-------|
| Fundamental | 16.3252910 MHz                                             | 10 Ω                                       | 5.5 pF                         | 50 μW                    | 39 pF     | 22 pF |

#### **REFERENCE CLOCK GENERATION**

The PILOTE input/output are internally biased, therefore, they must be externally ac-coupled.

The PILOTE structure allows the ADSST-GPSRF01 to be directly driven by an external reference clock or to be used as an oscillator with an external crystal (see Figure 5 for the circuit connection and Table 6 for the component values).

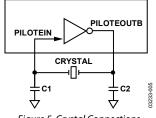



Figure 5. Crystal Connections

#### **PLL FILTER**

The PLL generates the local oscillation. It includes a VCO with an on-chip tank circuit, dividers, and a phase detector with external loop filter components. A reference frequency is required for the PLL. The PLL is a second- or a third-order loop, Type 2 for zero frequency error.

This VCO is a monolithic LC voltage controlled oscillator. The loop gain is maintained high enough to ensure oscillations in all process, temperature, and power supply conditions. The voltage control is amplified by a low gain differential amplifier.

The divider chain involves three dividers. The first one is a fast divider by two. The second one is a divider by five. The third one divides by 19. The whole divider divides the local oscillator (LO) frequency by 190 before being compared with the reference clock divided by 2.

The PLL provides a local oscillator frequency divided by a 40 MHz CMOS output clock to an NCO that, in turn, delivers either a 6.144 MHz or 6.552 MHz clock for the DSP serial link. The PILOTE provides a 16.3252910 MHz clock.

The design of the PLL depends on two criteria: the filtering of the reference frequency signal and the phase noise of the output signal of the PLL. The phase noise of the VCO is filtered by the PLL.

The PLL includes a charge-pump active filter to perform a second-order loop. The PLL loop filter components are selected to give a PLL loop bandwidth of approximately 100 kHz to minimize phase noise.

An additional on-chip LPF (R = 10 k $\Omega$  and C = 10 pF) is present in series in the VTUNE command and allows better rejection harmonics of the comparison frequency.

The PLL filter is listed in Table 7 and displayed in Figure 6.

| Table 7. External Com | ponents Used for the PLL Filter |
|-----------------------|---------------------------------|
|-----------------------|---------------------------------|

| Component Name | Typical Value | Unit |  |  |
|----------------|---------------|------|--|--|
| C1             | 22            | nF   |  |  |
| C2             | 1             | nF   |  |  |
| R2             | 390           | Ω    |  |  |
| L2             | Shorted       | nH   |  |  |

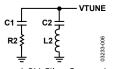



Figure 6. PLL Filter Connections

#### **IF INPUT NETWORK**

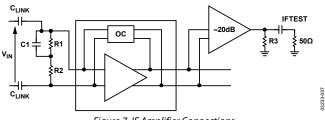



Figure 7. IF Amplifier Connections

Both IF amplifier stages have to display, at minimum,  $1000 \Omega$  at dc to get a good offset compensation. Table 8 lists the limit offset values. These stages are internally biased requiring them to be ac-coupled.

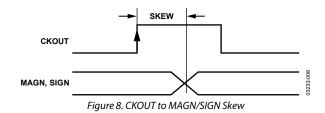
The IFTEST output is used for test purposes only; it checks the RF chain gain.

| Table 8. External Components | Used with IF | Amplifiers |
|------------------------------|--------------|------------|
|------------------------------|--------------|------------|

| Component Name | Typical Value | Unit |  |
|----------------|---------------|------|--|
| R1             | 3             | kΩ   |  |
| R2             | 1             | kΩ   |  |
| R3             | 2             | kΩ   |  |
| C1             | 1             | nF   |  |
| CLINK          | 1             | nF   |  |

#### **MIXER2 OUTPUT NETWORK**

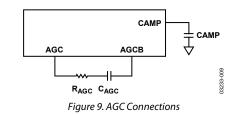
The mixer structure is double-balanced with open-collector outputs. The IF1 input, LO input, and IF2 output are fully differential. The IF1 outputs require external dc bias to VCC. This bias is provided through two 500  $\Omega$  resistors that fix the differential output impedance to 1000  $\Omega$ .


#### AGC/ADC

To maximize the signal-to-noise ratio (SNR) with a 2-bit ADC, the AGC regulation point is fixed at 1  $\sigma$  to activate the amplitude bit 33% of the time. This mean time allows the ADSST-GPSRF01 to fix the conversion loss below 0.6 dB.

When the whole chain gain is too high, the CAMP pin is at a high voltage (around 2 V depending on VCC) to reduce the IF1 gain stage. When the whole chain gain is too low, the CAMP pin is at a low voltage (around 1.5 V depending on VCC) to reduce the IF1 gain stage.

In Table 9, IF2 is the signal at the ADC input and the LSB is the magnitude reference level. The data rate of the ADC is dependent on the sampling clock employed in the design.

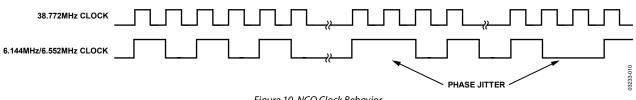

| IF2             | SIGN        | MAGN        |
|-----------------|-------------|-------------|
| Magnitude Level | Logic Level | Logic Level |
| LSB < IF2       | 1           | 1           |
| 0 < IF2 < LSB   | 1           | 0           |
| –LSB < IF2 < 0  | 0           | 0           |
| IF2 < -LSB      | 0           | 1           |



It is also necessary to stabilize the AGC and to set the AGC band-pass to be less sensitive to external strong spurious noise. Therefore, some passive components are used on CAMP, AGC, and AGCB pins.

#### Table 10. External Components Used with the AGC

| Component Name | Typical Value | Unit |
|----------------|---------------|------|
| RAGC           | 2             | kΩ   |
| CAGC           | 20            | nF   |
| CAMP           | 20            | nF   |




#### NUMERICALLY CONTROLLED OSCILLATOR (NCO)

The NCO works with a 38.772 MHz ( $F_{CRYSTAL} \times 19/8$ ) master clock delivered by the PLL. It includes a phase accumulator and delivers a fixed clock that has an average frequency of the NCO clock selected.

Two frequencies are available: 6.144 MHz or 6.552 MHz. This clock has a phase jitter equal to a 38.772 MHz clock period. It is applied to both the ADC and the clock input of the DSP serial link. The clock waveform is shown in Figure 10.

The NCO provides a 6.144 MHz/6.552 MHz clock with an accuracy of less than 2 Hz.



#### **POWER ON/STANDBY MODE**

One digital input pad permits the ADSST-GPSRF01 circuit to enter standby mode.

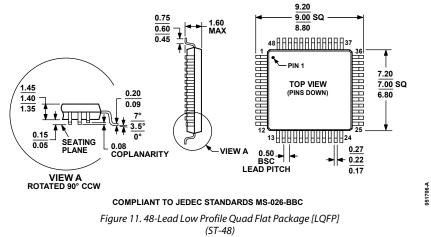
#### Table 11. POWER ON Logic Control Signal

| Mode     | Logic Level POWER ON |  |  |
|----------|----------------------|--|--|
| Active   | 1                    |  |  |
| Stand By | 0                    |  |  |

#### ADC SAMPLING CLOCK SELECTION

Two digital input pins (CMDCKADC and CMDPHI) select the sampling clock. The sampling clock can come from the NCO or from an external clock. This selection is performed by the CMDCKADC pin (see Table 12).

#### Table 12. CMDCKADC Logic Control Signal


| Mode                | Logic Level CMDCKADC |
|---------------------|----------------------|
| NCO Sampling Clock  | 0                    |
| CKIN Sampling Clock | 1                    |

Then, the CMDPHI pin selects one of the two available frequencies generated by NCO as listed in Table 13.

#### Table 13. CMDPHI Logic Control Signal

| NCO Frequency Logic Level CMDPHI |   |
|----------------------------------|---|
| 6.552 MHz                        | 0 |
| 6.144 MHz                        | 1 |

### **OUTLINE DIMENSIONS**



Dimensions shown in millimeters

#### **ORDERING GUIDE**

| Model                          | Operating Voltage | Temperature Range | Package Description | Package Option |
|--------------------------------|-------------------|-------------------|---------------------|----------------|
| ADSST-GPSRF01BSTZ <sup>1</sup> | 3 V               | –40°C to +85°C    | 48-Lead LQFP        | ST-48          |

 $^{1}$  Z = Pb-free part.

### NOTES

### NOTES

### NOTES

©2007 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D03233-0-3/07(0)



www.analog.com

Rev. 0 | Page 16 of 16