
UTC UNISONIC TECHNOLOGIES CO., LTD

UT3243 **CMOS IC**

+3.0V TO +5.5V POWER SUPPLY, 235KBPS, **MULTICHANNAEL RS-232 LINE** DRIVERS/RECEIVERS

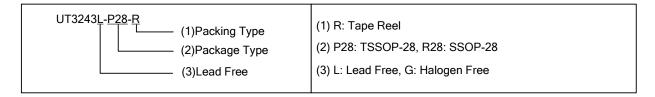
DESCRIPTION

The UTC UT3243 consists of 3 drivers and 5 receivers. It meets EIA/TIA-232 and V.28/V.24 specifications, it intended for notebook computer applications. A high-efficiency, dual charge-pumps power supply and a low-dropout transmitter combine to deliver true RS-232 performance from a single +3.0V ~ +5.5V power supply. A guaranteed data rate of 120kbps provides compatibility with popular software for communicating with PCs.

The UTC UT3243 achieves 1µA supply current in shutdown condition. When the UT3243 doesn't detect a valid signal level on its receiver inputs, the on-board power supply and drivers will shutdown, and when a valid level is applied to any RS-232 receiver input, then the system turns on again. Therefore, the system saves power without changes to the existing BIOS or operating system.

The UTC UT3243 requires only 0.1µF capacitors in 3.3V operation, and can operate from input voltages ranging from +3.0V ~ +5.5V. It is ideal for 3.3V-only systems, 5.0V-only systems, or mixed 3.3V and 5.0V systems that require true RS-232 performance.

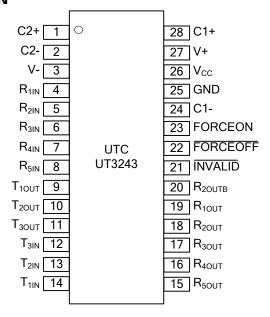
The UTC UT3243 includes one complementary always-active receiver that can monitor an external device (such as a modem) in shutdown, without forward biasing the protection diodes in a UART that may have V_{CC} completely removed.


FEATURES

- * Operates With 3.0V ~ 5.5V Power Supply
- * Three Drivers and Five Receivers
- * Operates Up To 235 kbps
- * Designed to Transmit at a Data Rate of 235 kbps
- * Low Standby Current (1uA Typical)

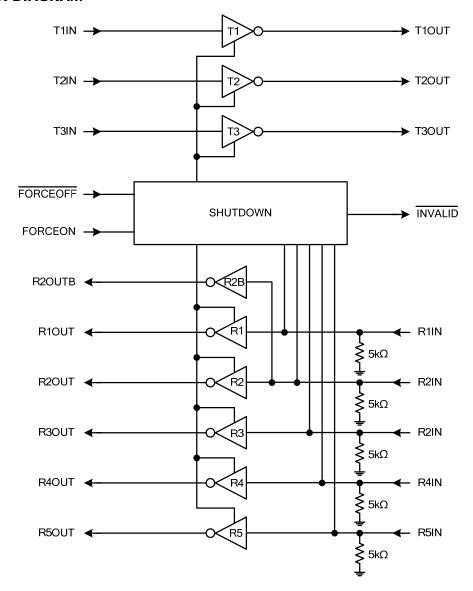
- * External Capacitors (4*0.1µF)
- * Accepts 5.0V Logic Input With 3.3V Supply
- * Always-Active Non-inverting Receiver Output (R_{2OUTB})
- * Serial-Mouse Drivability
- * ESD(HBM) Protected ±8KV(MIN.)

ORDERING INFORMATION


Orderin	g Number	Deelsone	Packing	
Lead Free	Halogen Free	Package		
UT3243L-P28-T	UT3243G-P28-T	TSSOP-28	Tube	
UT3243L-P28-R	UT3243G-P28-R	TSSOP-28	Tape Reel	
UT3243L-R28-T	UT3243G-R28-T	SSOP-28	Tube	
UT3243L-R28-R	UT3243G-R28-R	SSOP-28	Tape Reel	

www.unisonic.com.tw 1 of 9 UT3243

CMOS IC


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	C2+	Positive terminal of inverting charge-pump capacitor
2	C2-	Negative terminal of inverting charge-pump capacitor
3	V-	-5.5V generated by the charge pump
4~8	R _{XIN}	RS-232 Receiver Inputs
9~11	T_{XOUT}	RS-232 Transmitter Outputs
12~14	T_{XIN}	TTL/CMOS Transmitter Inputs
15~19	R_{XOUT}	TTL/CMOS Receiver Outputs
20	R _{2OUTB}	Noninverting Receiver Output—active in shutdown
21	INVALID	Output of the valid signal detector. Indicates if a valid RS-232 level is present on receiver inputs logic "1".
22	FORCEOFF	Drive low to shut down transmitters and on-board power supply. This over-rides all automatic circuitry and FORCEON (Table 1).
23	FORCEON	Drive high to override automatic circuitry keeping transmitters on (FORCEOFF must be high) (Table 1).
24	C1-	Negative terminal of the voltage doubler charge-pump capacitor
25	GND	Ground
26	Vcc	+3.0V ~ +5.5V Supply Voltage
27	V+	+5.5V generated by the charge pump
28	C1+	Positive terminal of the voltage doubler charge-pump capacitor

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING

PARAMETER		SYMBOL	RATINGS	UNIT
V_{CC}		V _{CC}	-0.3~+6	V
V+ (Note 2)		V+	-0.3~+7	V
V- (Note 2)		V-	+0.3~-7	V
V+ + V- (Note 2)		V_{PUMP}	+13	V
Innut Valtages	T_IN, FORCEOFF, FORCEON		-0.3~+6	V
Input Voltages	R_IN	V_{IN}	±25	V
Output Valtages	T_OUT	V	±13.2	V
Output Voltages	R_OUT, INVALID	V_{OUT}	-0.3~(V _{CC} +0.3)	V
Short-Circuit Duration	T_OUT	SC	Continuous	
Power Dissipation(T _A = 70°C)		נ	696	mW
Derating above T _A =70°C		P_D	8.70	mW/°C
Operating Temperature		T_OPR	-40~+85	°C
Storage Temperature		T_{STG}	-65~+150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +3.0V \sim +5.5V, C1 \sim C4 = 0.1 \mu F \text{ (Note 2)}, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise specified)}$ TYP MAX UNIT PARAMETER SYMBOL **TEST CONDITIONS** MIN DC CHARACTERISTICS All R IN open, FORCEOFF = Vcc. μΑ 1.0 10 V_{CC}= 3.3V FORCEON = GND Supply Current, Shutdown I_{SHDN} or 5.0V, FORCEOFF = GND 1.0 10 μΑ $T_A = 25^{\circ}C$ | FORCEON = FORCEOFF = V_{CC} , Supply Current, mΑ 0.3 1 I_{CC} Shutdown Disabled no load LOGIC INPUTS AND RECEIVER OUTPUTS V_{LGL} T IN, FORCEON, FORCEOFF 8.0 ٧ Input Logic Threshold T IN, EN, FORCEON, 2.0 $V_{CC} = 3.3V$ V_{IGH} V FORCEOFF $V_{CC} = 5.0V$ 2.4 Input Leakage Current T IN, EN, FORCEON, FORCEOFF ±0.01 ±1.0 μΑ $I_{IN(LK)}$ Output Leakage Current $I_{ROUT(LK)}$ Receivers disabled ±0.05 ±10 μΑ $I_{OUT} = 1.6 mA$ 0.4 ٧ Low V_{ROUTL} Output Voltage High V_{ROUTH} $I_{OUT} = -1.0 mA$ ٧ V_{CC} - 0.6 V_{CC} - 0.1 SHUTDOWN (FORCEON = GND, $\overline{\text{FORCEOFF}} = V_{CC}$ Positive threshold ٧ Receiver Input 2.7 Enabled $V_{R(EN)}$ Fig.1 Thresholds to Negative threshold -2.7 Transmitters Disabled $V_{R(DIS)}$ 1µA supply current, Fig.1 -0.3 0.3 V ٧ INVALID Output Low V_{INVL} $I_{OUT} = 1.6mA$ 0.4 Voltage High V_{INVH} $I_{OUT} = -1.0 \text{mA}$ ٧ V_{CC} - 0.6 Receiver Threshold to Fig.2 250 μs twu Transmitters Enabled

^{2.} V+ and V- can have maximum magnitudes of 7V, but their absolute difference cannot exceed 13V.

■ ELECTRICAL CHARACTERISTICS(Cont.)

 $(V_{CC} = +3.0V \sim +5.5V, C1 \sim C4 = 0.1 \mu F \text{ (Note 2)}, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ Unless Otherwise Specified)}$

(VCC = 13.0V-13.5V, C1-	-C4-0. ιμι		I A = I MIN to I MAX, Unitess Of					
PARAMETER		SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT
Receiver Positive or	High	t _{INVH}	5. 0			1		μs
Negative Threshold to	Low	t _{INVL}	Fig.2			30		μs
INVALID	LOW	UNVL				30		μδ
RECEIVER INPUTS			<u> </u>					
Input Voltage Range		V_{RR}		T	-25		25	V
Input Threshold Low		V_{RINL}	T _A = 25°C	V _{CC} =3.3V	0.6	1.2		V
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		TUITE	, , , , , , , , , , , , , , , , , , ,	V _{CC} =5.0V	8.0	1.5		
Input Threshold High		V_{RINH}	T _A = 25°C	V _{CC} =3.3V		1.5	2.4	V
			- A	V _{CC} =5.0V		1.8	2.4	-
Input Hysteresis		V _{RINHYS}				0.3		V
Input Resistance		V _{RINRES}	T _A = 25°C		3	5	7	kΩ
TRANSMITTER OUTPU	ΓS							
Output Voltage Swing		V _{TOUTSW}	All transmitter outputs load $3k\Omega$ to ground	led with	±4.8	±5.4		V
Output Resistance		V _{TOUTRES}	V _{CC} = V+ = V- = 0V, Transmitter output = ±2V		300	10M		Ω
Output Short-Circuit Curr	ent	I _{TSC}				±35	±60	mA
Output Leakage Current		I _{TOUT(LK)}	V _{OUT} =±12V, Transmitters disabled				±25	μA
MOUSE DRIVABILITY						•		
			$T_{1IN} = T_{2IN} = GND, T_{3IN} = V_{CC},$ T_{3OUT} loaded with $3k\Omega$ to GND, T_{1OUT} and T_{2OUT} loaded with 2.5mA each					
Transmitter Output Voltag	ge	V_{TOUT}			±4.8		V	
TIMING CHARACTERIS	TICS							
Maximum Data Rate	$R_{i} = 3kO$, $C_{i} = 1000pF$			120	235		kbps	
D : D :: D		t _{PHL}	Receiver input to receiver output,			0.3		
Receiver Propagation Delay		t _{PLH}	C _L = 150pF			0.3		μs
	Enable	t _{R(EN)}	·			200		ns
Receiver Output Time Disable		t _{R(DIS)}	Normal operation			200		ns
Transmitter Skew		t _{TS}	tphl - tplh			200	1000	ns
Receiver Skew		t _{RS}	t _{PHL} - t _{PLH}			100	500	ns
Transition-Region Slew Rate		SR	V_{CC} =3.3V, T_A =25°C, C_L = 3	200pF~2500pF	4	8.0	30	
		SK	measured from +3V $\sim -3V \text{ or } -3V \sim +3V$ $C_L = 200 \text{pF} \sim 1000 \text{pF}$		6		30	V/µs

Notes: 1. Typical values are at $T_A = 25$ °C.

^{2.} $C1\sim C4 = 0.1 \mu F$, measured at 3.3V $\pm 10\%$. $C1 = 0.047 \mu F$, $C2\sim C4 = 0.33 \mu F$, measured at 5.0V $\pm 10\%$.

■ DETAILED DESCRIPTION

Charge-Pump Voltage Converter

The UTC **UT3243** consists of a regulated dual charge pumps that provide output voltages of +5.5V and -5.5V, regardless of the input voltage (V_{CC}) changing from +3.0V to +5.5V.

The charge pumps operate in a discontinuous mode: if the output voltages are less than 5.5V, the charge pumps are enabled; if the output voltages exceed 5.5V, the charge pumps are disabled.

Each charge pump requires a flying capacitor (C1, C2) and a reservoir capacitor (C3, C4) to generate the V+ and V- supplies, refer to application circuit.

RS-232 Transmitters

UTC **UT3243**'s transmitters are inverting level translators that convert CMOS-logic levels to 5.0V EIA/TIA-232 levels. They guarantee a 120kbps data rate with worst-case loads of $3k\Omega$ in parallel with 1000pF, providing compatibility with PC-to-PC communication software. Typically, the UTC **UT3243** can operate at data rates of 235kbps.

Transmitters can be paralleled to drive multiple receivers or mouse. When FORCEOFF is driven to ground, or shutdown circuitry senses invalid voltage levels at all receiver inputs, the transmitters are disabled and the outputs are forced into a high-impedance state.

RS-232 Receivers

The UTC **UT3243**'s receivers convert RS-232 signals to CMOS-logic output levels. All receivers have one inverting three-state output. If the receivers is in shutdown, the outputs of receivers are high impedance.

The UTC **UT3243** has an always-active complementary output (R_{2OUTB}). R_{2OUTB} is an extra output that monitors receiver activity while the other receivers are high impedance. This allows Ring Indicator to be monitored without forward biasing other devices connected to the receiver outputs. This is ideal for systems where V_{CC} is set to 0V in shutdown to accommodate peripherals.

Table 1. FORCEOFF Control Truth Table

FORCEOFF	T_OUT	R_OUT	R2OUTB
0	High-Z	High-Z	Active
1	Active (Note 3)	Active (Note 3)	Active

Note: 3. If the part is in shutdown mode ($\overline{\text{FORCEOFF}} = V_{CC}$, FORCEON = GND), it is shutdown if no valid RS-232 levels are present on all receiver inputs.

Shutdown Function

A 1µA supply current is achieved with shutdown feature, which operates when FORCEON is low and FORCEOFF is high. When the UTC **UT3243** senses no valid signal levels on all receiver inputs for 30µs, the on-board power supply and drivers are shut off, reducing supply current to 1µA. This occurs if the RS-232 cable is disconnected or the connected peripheral transmitters are turned off. The system turns on again when a valid level is applied to any RS-232 receiver input. As a result, the system saves power without changes to the existing BIOS or operating system. INVALID indicates the receiver inputs' condition, when using shutdown function, the INVALID output is high when the device is on and low when the device is shut down.

Table 2. Shutdown Logic Control Truth Table

RS-232 SIGNAL AT RECEIVER INPUT	FORCEOFF INPUT	FORCEON INPUT	INVALID OUTPUT	TRANSCEIVER STATUS
Yes	Н	Х	Н	Normal Operation
No	Н	Н	L	Normal Operation (Forced On)
No	Н	L	L	Shutdown
Yes	L	X	Н	Shutdown (Forced Off)
No	L	X	L	Shutdown (Forced Off)

■ DETAILED DESCRIPTION(Cont.)

Table 2 summarizes the UTC **UT3243** operating modes. FORCEON and FORCEOFF override the automatic circuitry and force the transceiver into its normal operating state or into its low-power standby state. When neither control is asserted, the IC selects between these states automatically based on receiver input levels.

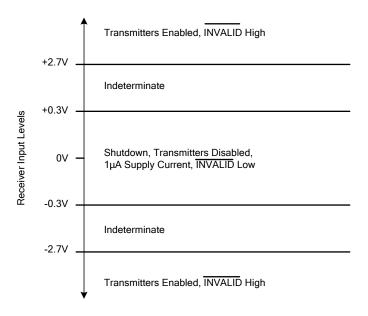


Fig.1 Shutdown Input Levels

When shutdown, the UTC **UT3243**'s charge pumps are turned off, V+ decays to V_{CC} , V- decays to ground, the transmitter outputs are disabled (high impedance). The time required to exit shutdown is typically 100 μ s.

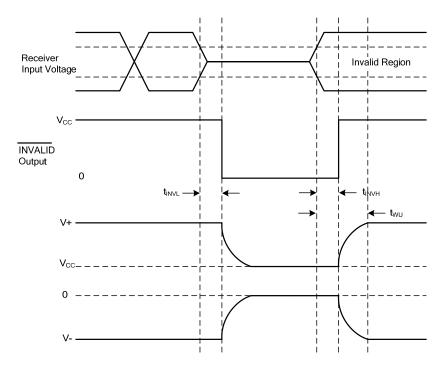
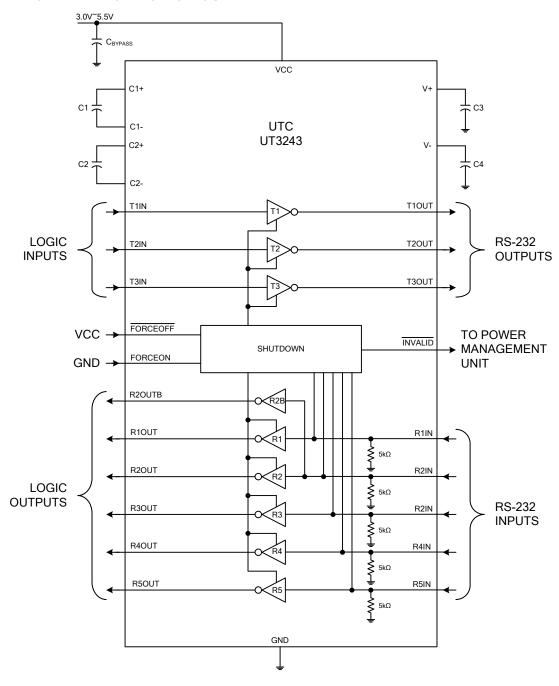


Fig.2 Shutdown Input Timing

TYPICAL APPLICATION CIRCUIT



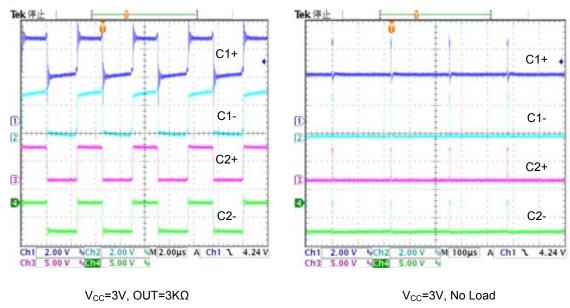

Fig.3 Application Circuit

Table 3. Required Capacitor Value

V _{CC} (V)	C1 (µF)	C2, C3, C4 (µF)	C _{BYPASS} (µF)
3.0~3.6	0.22	0.22	0.22
3.15~3.6	0.1	0.1	0.1
4.5~5.5	0.047	0.33	0.047
3.0~5.5	0.22	1	0.22

■ TYPICAL CHARACTERISTICS

Charge-Pump (C1~C4=0.1µF)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.