

600V N-Channel Power MOSFET

TO-92

Pin Definition:

- 1. Gate
- Drain
 Source

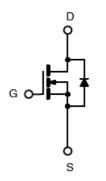
PRODUCT SUMMARY

V _{DS} (V)	$R_{DS(on)}(\Omega)$	I _D (A)	
600	10 @ V _{GS} =10V	0.25	

General Description

The TSM1NB60S N-Channel Power MOSFET is produced by new advance planar process. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode.

Features


- Low R_{DS(ON)} 8Ω (Typ.)
- Low gate charge typical @ 6.1nC (Typ.)
- Low Crss typical @ 4.2pF (Typ.)

Ordering Information

Part No.	Package	Packing
TSM1NB60SCT B0	TO-92	1Kpcs / Bulk
TSM1NB60SCT B0G	TO-92	1Kpcs / Bulk
TSM1NB60SCT A3	TO-92	2Kpcs / Ammo
TSM1NB60SCT A3G	TO-92	2Kpcs / Ammo

Note: "G" denotes for Halogen Free

Block Diagram

N-Channel MOSFET

Absolute Maximum Rating (T_A=25°C unless otherwise noted)

Parameter		Symbol	Limit	Unit
Drain-Source Voltage		V _{DS}	600	V
Gate-Source Voltage		V _{GS}	±30	V
Continuous Busin Comment	Tc=25°C		0.5	Α
Continuous Drain Current	Tc=100°C	l _D	0.25	А
Pulsed Drain Current *		I _{DM}	2	Α
Single Pulse Avalanche Energy (Note 2)		E _{AS}	5	mJ
Peak Diode Recovery dv/dt (Note 3)		dv/dt	4.5	V/ns
Total Power Dissipation @ T _C = 25°C		P _{TOT}	2.5	W
Operating Junction Temperature		T _J	150	°C
Storage Temperature Range		T _{STG}	-55 to +150	°C

Note: Limited by maximum junction temperature

Thermal Performance

Parameter	Symbol	Limit	Unit
Thermal Resistance - Junction to Lead	$R\Theta_{JL}$	50	°C/W
Thermal Resistance - Junction to Ambient	RΘ _{JA}	110	°C/W

600V N-Channel Power MOSFET

Electrical Specifications (Ta = 25°C unless otherwise noted)

Parameter	Conditions	Symbol	Min	Тур	Max	Unit
Static						
Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_D = 250uA$	BV _{DSS}	600			V
Drain-Source On-State Resistance	$V_{GS} = 10V, I_D = 0.25A$	R _{DS(ON)}		8	10	Ω
Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250uA$	$V_{GS(TH)}$	2.5	3.5	4.5	V
Zero Gate Voltage Drain Current	$V_{DS} = 600V, V_{GS} = 0V$	I _{DSS}			10	uA
Gate Body Leakage	$V_{GS} = \pm 30V$, $V_{DS} = 0V$	I _{GSS}			±100	nA
Forward Transfer Conductance	$V_{DS} = 10V, I_{D} = 0.5A$	g fs		0.8		S
Dynamic						
Total Gate Charge	$V_{DS} = 480V, I_{D} = 0.5A,$	Q_g		6.1		
Gate-Source Charge	V _{GS} = 10V	Q_gs		1.4		nC
Gate-Drain Charge	(Note 4,5)	Q_{gd}		3.3		
Input Capacitance	\/ OF\/ \/ O\/	C _{iss}		138		
Output Capacitance	$V_{DS} = 25V, V_{GS} = 0V,$ $f = 1.0MHz$	C _{oss}		17.1		pF
Reverse Transfer Capacitance	T = T.UIVITIZ	C_{rss}		4.2		
Switching						
Turn-On Delay Time)/ 40\/ L 0.5A	t _{d(on)}		7.7		
Turn-On Rise Time	$V_{GS} = 10V, I_D = 0.5A,$	t _r		6.8		- 0
Turn-Off Delay Time	$V_{DD} = 300V, R_G = 25\Omega$	t _{d(off)}		15.3		nS
Turn-Off Fall Time	(Note 4,5)	t _f		14.9		
Source-Drain Diode Ratings and Characteristic						
Source Current	Integral reverse diode in	I _S			0.5	Α
Source Current (Pulse)	the MOSFET	I _{SM}			2	Α
Diode Forward Voltage	$I_S = 0.5A, V_{GS} = 0V$	V_{SD}		0.9	1.4	V
Note 1. Departitive Detings Dules Width	Limited by Mavimum Juneti	on Tomporet				

2/6

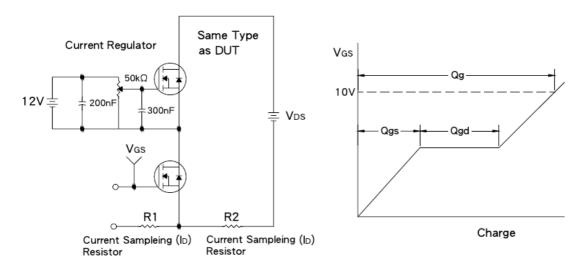
Note 1: Repetitive Rating: Pulse Width Limited by Maximum Junction Temperature

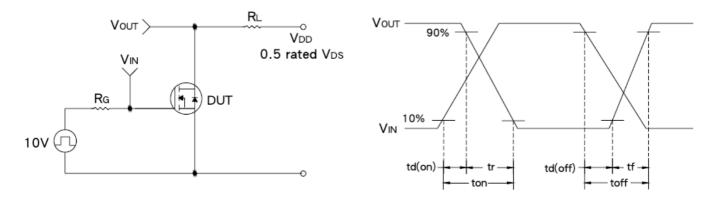
Note 2: $V_{DD} = 50V$, $I_{AS} = 0.5A$, L = 10mH, $R_G = 25\Omega$, Starting $T_J = 25^{\circ}C$

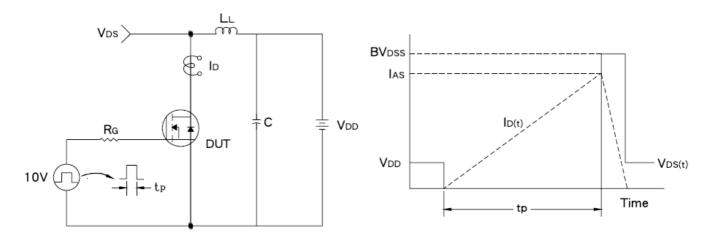
Note 3: $I_{SD} \le 0.5A$, di/dt $\le 200A/uS$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25^{\circ}C$

Note 4: Pulse test: pulse width ≤300uS, duty cycle ≤2%

Note 5: Essentially Independent of Operating Temperature

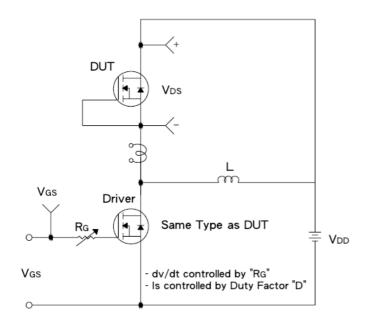

Version: A12

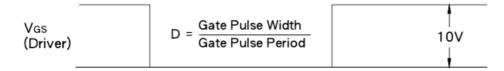

600V N-Channel Power MOSFET

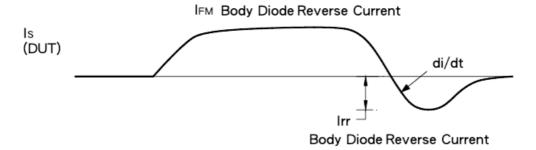

Gate Charge Test Circuit & Waveform

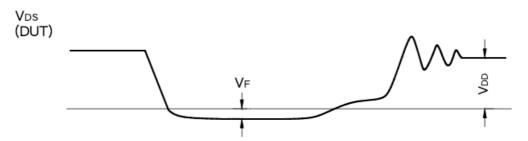
Resistive Switching Test Circuit & Waveform

EAS Test Circuit & Waveform

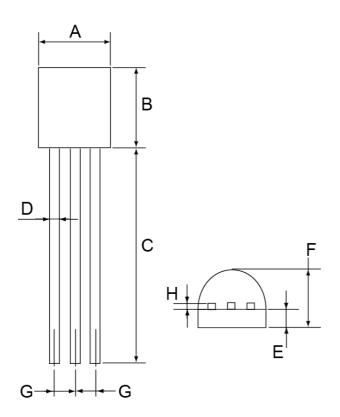




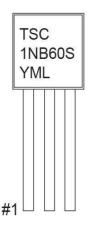

600V N-Channel Power MOSFET



Diode Reverse Recovery Time Test Circuit & Waveform



600V N-Channel Power MOSFET



TO-92 Mechanical Drawing

TO-92 DIMENSION					
DIM	MILLIMETERS		INCHES		
וווט	MIN	MAX	MIN	MAX	
Α	4.30	4.70	0.169	0.185	
В	4.30	4.70	0.169	0.185	
С	13.53 (typ)		0.532 (typ)		
D	0.39	0.49	0.015	0.019	
Е	1.18	1.28	0.046	0.050	
F	3.30	3.70	0.130	0.146	
G	1.27	1.31	0.050	0.051	
Н	0.33	0.43	0.013	0.017	

Marking Diagram

Y = Year Code

M = Month Code

(A=Jan, B=Feb, C=Mar, D=Apl, E=May, F=Jun, G=Jul, H=Aug, I=Sep, J=Oct, K=Nov, L=Dec)

Month Code for Halogen Free Product
 (O=Jan, P=Feb, Q=Mar, R=Apl, S=May, T=Jun, U=Jul, V=Aug, W=Sep,
 X=Oct, Y=Nov, Z=Dec)

5/6

L = Lot Code

Version: A12

TSM1NB60S600V N-Channel Power MOSFET

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.