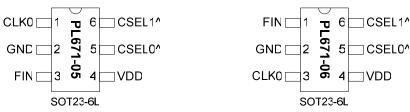
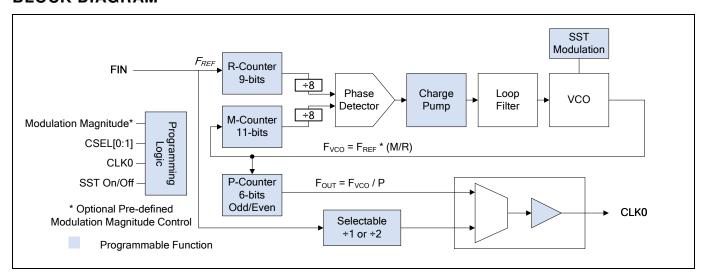


#### **FEATURES**


- Advanced programmable PLL with Spread Spectrum
- Accepts reference clock input: 10-200MHz
- Output frequency range: up to 166MHz @ 2.5V or up to 200MHz @ 3.3V operation.
- Programmable Spread Spectrum modulation magnitude:
  - Center Spread: ±0.125% to ±2.0% in ±0.125% steps
  - o Down Spread: -0.25% to -4.0% in 0.25% steps
- Four pre-programmed configurations.
- Spread Spectrum On/Off selection.
- Programmable output drive (4mA, 8mA, 16mA)
- Low Cycle to Cycle jitter.
- Single 2.5V or 3.3V ± 10% power supply.
- Accepts ≥0.1V reference signal input voltage.
- Available in 6-pin SOT23 GREEN/RoHS compliant packages.

#### **DESCRIPTION**

The PL671-05 and -06 are advanced programmable clock and Spread Spectrum clock generators (PSSCG), and members of PhaseLink's PicoPLL™ Programmable Clock family.


The PL671-05 and -06 offer up to 200MHz outputs, and allow for programming the modulation type (center or down Spread), as well as 16 modulation magnitudes (±0.125 to ±2.0% or -0.25 to -4.0%) to choose from. In addition, the CSEL[0:1] pins can be used to toggle the device thru 4 pre-programmed configurations. The Spread Spectrum modulation can be turned 'ON/OFF', allowing for completing a design with PL671-05/-06 and having the assurance of turning 'ON' the EMI modulation, if EMI becomes an issue. The frequency modulation of the PL671-05 and -06 greatly reduces the fundamental and harmonic frequencies' peak magnitude, therefore reducing the system level Electro Magnetic Interference (EMI), by as much as 20dB.

#### **PIN CONFIGURATION**



Note: ^ Denotes 60KΩ Pull-up resistor

#### **BLOCK DIAGRAM**





#### PACKAGE PIN ASSIGNMENT

| Name              | PL671-05<br>SOT23-6L | PL671-06<br>SOT23-6L | Туре | Description                                                                                                                                                                 |
|-------------------|----------------------|----------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CLK0              | 1                    | 3                    | 0    | Programmable Clock Output with spread spectrum (SST can be turned off).                                                                                                     |
| GND               | 2                    | 2                    | Р    | GND connection.                                                                                                                                                             |
| FIN               | 3                    | 1                    | I    | Reference input pin.                                                                                                                                                        |
| VDD               | 4                    | 4                    | Р    | VDD connection (2.25~3.63V)                                                                                                                                                 |
| CSEL0^,<br>CSEL1^ | 5,6                  | 5,6                  | I    | Optional, pre-programmed configuration input control pins, to allow switching between '4' pre-defined configurations. Both pins incorporate a $60K\Omega$ pull up resistor. |

#### **KEY PROGRAMMING PARAMETERS**

| Clock<br>Output Frequency                                     | SST Modulation Magnitude<br>(Spread Percentage)                                                                           | "On the Fly"<br>Configuration                             | Output Drive<br>Strength                                                 |
|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------|
| FOUT = FREF * M / (R * P) where M =11 bit R = 9 bit P = 6 bit | 16 programmable modulation magnitudes to choose from:                                                                     | Up to 4 'On-The-Fly' switchabe pre-defined configurations | Three optional drive strengths to choose from:                           |
| CLK0= FREF, FREF/2, FOUT  * 'P' is a 6-bit Odd/Even divider   | <ul> <li>Center Spread: ±0.125% to ±2.0% in ±0.125% steps</li> <li>Down Spread: -0.25% to -4.0% in 0.25% steps</li> </ul> | CSEL[0:1]     Configuration     Selection - input         | <ul><li>Low: 4mA</li><li>Std: 8mA (default)</li><li>High: 16mA</li></ul> |

#### **FUNCTIONAL DESCRIPTION**

PL671-05/-06 are highly featured, very flexible, advanced programmable PLL designs for high performance, low-power Spread Spectrum modulation applications. The PL671-05/-06 accept a reference clock input of 10MHz to 200MHz and are capable of producing SST modulated outputs up to 200MHz. These flexible designs allow the PL671-05/-06 to deliver any PLL generated frequency, FREF (Ref Clk) frequency or FREF /2 to CLK0. The use of CSEL0 & CSEL1 allows the device to choose from up to 4 different modulation magnitude settings providing a range of spread settings to choose from. Some of the design features of the PL671-05 are mentioned below.

#### **PLL Programming**

The PLL in the PL671-05/-06 is fully programmable. The PLL is equipped with an 8-bit input frequency divider (R-Counter), and an 11-bit VCO frequency feedback loop divider (M-Counter). The output of the PLL is transferred to a 6-bit post VCO Odd/Even divider (P-Counter). The output frequency is determined by the following formula [FOUT = (FREF \* M)/(R\*P).

#### Modulation Magnitude and Type

The PL671-05/-06 provide the following programmable capabilities for Modulation Type and Modulation Magnitude (Spread Percentage):

| Modulation<br>Type | Modulation<br>Magnitude | Programming<br>Steps |  |
|--------------------|-------------------------|----------------------|--|
| Center Spread      | ±0.125% thru ±2.00%     | ±0.125%              |  |
| Down Spread        | -0.25% thru -4.00%      | -0.25%               |  |



#### **Modulation Rate**

The PL671-05/-06 modulation rate is defined as FREF (Ref Clk Frequency) divided by 8 times the R-counter. i.e. Modulation Rate =  $(F_{REF} / 8R)$ . The rate can be changed by choosing alternate R-Counter settings.

#### Clock Output (CLK0)

The output of CLK0 can be configured as the PLL output (F<sub>VCO</sub>/P), FREF (Ref Clk Frequency) output, or FREF/2 output. The output drive level can be programmed to Low Drive (4mA), Standard Drive (8mA) or High Drive (16mA). The output frequency can be programmed up to 200MHz at 3.3V (166MHz at 2.5V).

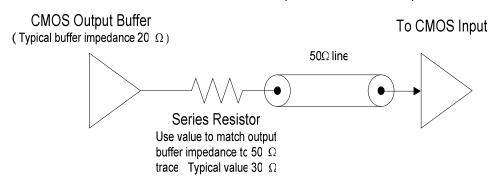
#### CSEL[0:1] Configuration Selectors

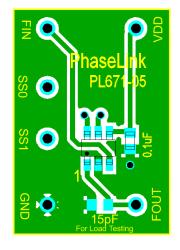
The PL671-05/-06 has the capability to be programmed with 4 distinct configurations and to toggle "On the Fly" between these configurations using the selector pads CSEL0 and CSEL1. An example would be a part that can run at  $\pm 0.25\%$ ,  $\pm 0.50\%$ ,  $\pm 1.0\%$  or  $\pm 1.5\%$  based on the CSEL0 and CSEL1 configuration. CSEL0 and CSEL1 both incorporate a  $60k\Omega$  pull up resistor giving a default condition of logic "1".

#### LAYOUT RECOMMENDATIONS

The following guidelines are to assist you with a performance optimized PCB design:

#### Signal Integrity and Termination **Considerations**


- Keep traces short!
- Trace = Inductor. With a capacitive load this equals ringing!
- Long trace = Transmission Line. Without proper termination this will cause reflections (looks like ringing ).
- Design long traces as "striplines" or "microstrips" with defined impedance.
- Match trace at one side to avoid reflections bouncing back and forth.


#### **Decoupling and Power Supply** Considerations

- Place decoupling capacitors as close as possible to the VDD pin(s) to limit noise from the power supply
- Multiple VDD pins should be decoupled separately for best performance.
- Addition of a ferrite bead in series with VDD can help prevent noise from other board sources
- Value of decoupling capacitor is frequency dependant. Typical values to use are 0.1µF for designs using crystals < 50MHz and 0.01µF for designs using crystals > 50MHz.

#### **Typical CMOS termination**

Place Series Resistor as close as possible to CMOS output







## $\frac{K_{n}}{PlicoEMI^{TM}}$ Programmable Spread Spectrum Clock

#### **ELECTRICAL SPECIFICATIONS ABSOLUTE MAXIMUM RATINGS**

| PARAMETERS                            | SYMBOL          | MIN. | MAX.                 | UNITS |
|---------------------------------------|-----------------|------|----------------------|-------|
| Supply Voltage Range                  | V <sub>DD</sub> | -0.5 | 4.6                  | V     |
| Input Voltage Range                   | Vı              | -0.5 | V <sub>DD</sub> +0.5 | V     |
| Output Voltage Range                  | Vo              | -0.5 | V <sub>DD</sub> +0.5 | V     |
| Soldering Temperature (Green package) |                 |      | 260                  | °C    |
| Data Retention @ 85°C                 |                 | 10   |                      | Year  |
| Storage Temperature                   | Ts              | -65  | 150                  | °C    |
| Ambient Operating Temperature*        |                 | -40  | 85                   | °C    |

Exposure of the device under conditions beyond the limits specified by Maximum Ratings for extended periods may cause permanent damage to the device and affect product reliability. These conditions represent a stress rating only, and functional operations of the device at these or any other conditions above the operational limits noted in this specification is not implied. \*Operating temperature is guaranteed by design. Parts are tested to commercial grade only.

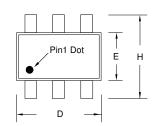
#### **AC SPECIFICATIONS**

| PARAMETERS                   | CONDITIONS                                                     | MIN. | TYP. | MAX.     | UNITS  |
|------------------------------|----------------------------------------------------------------|------|------|----------|--------|
| Input /FINI) Fraguency       | @ V <sub>DD</sub> =3.3V                                        | 10   |      | 200 MHz  | MHz    |
| Input (FIN) Frequency        | @ V <sub>DD</sub> =2.5V                                        | 10   |      | 166      | IVITIZ |
| Input (FIN) Signal Amplitude | Internally AC coupled (High Frequency)                         | 0.9  |      | $V_{DD}$ | Vpp    |
| Input (FIN) Signal Amplitude | Internally AC coupled (Low Frequency) 3.3V <50MHz, 2.5V <40MHz | 0.1  |      | $V_{DD}$ | Vpp    |
| Output Frequency             | @ V <sub>DD</sub> =3.3V                                        |      |      | 200      | MHz    |
| Output Frequency             | @ V <sub>DD</sub> =2.5V                                        |      |      | 166      | MHz    |
| Settling Time                | At power-up (after V <sub>DD</sub> increases over 2.25V)       |      |      | 2        | ms     |
| Output Enable Time           | PDB Function; Ta=25° C, 15pF Load                              |      |      | 2        | ms     |
| Output Rise Time             | 15pF Load, 10/90% V <sub>DD</sub> , Standard Drive             |      | 2.5  | 3.5      | ns     |
| Output Rise Time             | 15pF Load, 10/90% VDD, High Drive                              |      | 1.2  | 1.7      | ns     |
| Output Fall Time             | 15pF Load, 90/10% V <sub>DD</sub> , Standard Drive             |      | 1.7  | 2.0      | ns     |
| Output Fall Time             | 15pF Load, 90/10% V <sub>DD</sub> , High Drive                 |      | 1.2  | 1.7      | ns     |
| Duty Cycle                   | At V <sub>DD</sub> / 2                                         | 45   | 50   | 55       | %      |
| Cycle to Cycle Jitter        | T <sub>cyc-cyc</sub> (Over output frequency range @ 3.3V)      |      |      | 100      | ps     |

<sup>\*</sup> Note: Jitter performance depends on the programming parameters.



# $\frac{k_n}{r}$ (Preliminary) PL671-05/-06 PicoEMI<sup>TM</sup> Programmable Spread Spectrum Clock


#### DC SPECIFICATIONS

| PARAMETERS                     | SYMBOL           | CONDITIONS                                     | MIN.                  | TYP. | MAX. | UNITS |
|--------------------------------|------------------|------------------------------------------------|-----------------------|------|------|-------|
| Supply Current, Dynamic, with  | loo              | At 25MHz, 3.3V,<br>load=15pF, (PDB=1)          |                       |      | 15   | mA    |
| Loaded Outputs                 |                  | PDB=0                                          |                       |      | 10   | μΑ    |
| Operating Voltage              | $V_{DD}$         |                                                | 2.25                  |      | 3.63 | V     |
| Output Low Voltage             | V <sub>OL</sub>  | I <sub>OL</sub> = +4mA (Std. Drive)            |                       |      | 0.4  | V     |
| Output High Voltage            | Vон              | Iон = -4mA (Std. Drive)                        | V <sub>DD</sub> - 0.4 |      |      | V     |
| Output Current, Low Drive      | I <sub>OSD</sub> | V <sub>OL</sub> = 0.4V, V <sub>OH</sub> = 2.4V | 4                     |      |      | mA    |
| Output Current, Standard Drive | I <sub>OSD</sub> | $V_{OL} = 0.4V, V_{OH} = 2.4V$                 | 8                     |      |      | mA    |
| Output Current, High Drive     | Іонд             | V <sub>OL</sub> = 0.4V, V <sub>OH</sub> = 2.4V | 16                    |      |      | mA    |

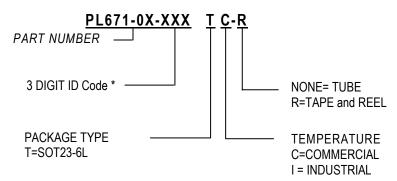
#### PACKAGE DRAWINGS (GREEN PACKAGE COMPLIANT)

#### **SOT23-6 L**

| Symbol   | Dimension in MM |      |  |  |
|----------|-----------------|------|--|--|
| Syllibol | Min.            | Max. |  |  |
| Α        | 1.05            | 1.35 |  |  |
| A1       | 0.05            | 0.15 |  |  |
| A2       | 1.00            | 1.20 |  |  |
| b        | 0.30            | 0.50 |  |  |
| С        | 0.08            | 0.20 |  |  |
| D        | 2.80            | 3.00 |  |  |
| E        | 1.50            | 1.70 |  |  |
| Н        | 2.60            | 3.00 |  |  |
| Ĺ        | 0.35            | 0.55 |  |  |
| е        | 0.95 BSC        |      |  |  |



$$A1 \xrightarrow{\downarrow} C \xrightarrow{\downarrow} C$$




#### ORDERING INFORMATION (GREEN PACKAGE COMPLIANT)

For part ordering, please contact our Sales Department: 47745 Fremont Blvd., Fremont, CA 94538, USA Tel: (510) 492-0990 Fax: (510) 492-0991

#### **PART NUMBER**

The order number for this device is a combination of the following: Part number, Package type and Operating temperature range



\* PhaseLink will assign a unique 3-digit ID code for each approved programmed part number.

| Part Number /Order Number | Marking <sup>†</sup> | Package Option              |
|---------------------------|----------------------|-----------------------------|
| PL671-05-XXXTC-R          | F4XXX                | 6-Pin SOT23 (Tape and Reel) |
| PL671-06-XXXTC-R          | F5XXX                | 6-Pin SOT23 (Tape and Reel) |

<sup>&</sup>lt;sup>†</sup> Note: 'XXX' designates marking identifier that, at times, could be independent of the part number. Please consult your PhaseLink Sales Representative for marking information.

PhaseLink Corporation, reserves the right to make changes in its products or specifications, or both at any time without notice. The information furnished by Phaselink is believed to be accurate and reliable. However, PhaseLink makes no guarantee or warranty concerning the accuracy of said information and shall not be responsible for any loss or damage of whatever nature resulting from the use of, or reliance upon this product.

LIFE SUPPORT POLICY: PhaseLink's products are not authorized for use as critical components in life support devices or systems without the express written approval of the President of PhaseLink Corporation.

Solder reflow profile available at www.phaselink.com/QA/solderingGreen.pdf