

June 2005

- Pletronics' LV76D Series is a quartz crystal controlled precision square wave generator with an LVDS output.
- FR4 base with a mechanical metal cover.
- Solder pad compatible with many 9x14mm plastic J lead packages.
- · Has internal bypass capacitor on the Vcc lead
- · Tape and Reel or Tube packaging is available.
- 80 to 250 MHz
- 9.04mm x 8.91mm (S package)
- Enable/Disable Function on pad 1 (see LV78D for E/D on pad 2)
- Disable function includes low standby power mode
- 3rd Overtone Crystals used
- Low Jitter
- 5x7 mm LCC ceramic oscillator inside

Pletronics Inc. certifies this device is in accordance with the RoHS (2002/95/EC) and WEEE (2002/96/EC) directives.

Pletronics Inc. guarantees the device does not contain the following: Cadmium, Hexavalent Chromium, Lead, Mercury, PBB's, PBDE's

Weight of the Device: 0.4 grams

Moisture Sensitivity Level: 1 As defined in J-STD-020C

Second Level Interconnect code: e4

Absolute Maximum Ratings:

Parameter	Unit
V _{cc} Supply Voltage	-0.5V to +5.0V
Vi Input Voltage	-0.5V to V _{CC} + 0.5V
Vo Output Voltage	-0.5V to V _{CC} + 0.5V

Thermal Characteristics

The maximum die or junction temperature is 155°C

The thermal resistance junction to board is 60 to 100°C/Watt depending on the solder pads, ground plane and construction of the PCB.

June 2005

Part Number:

LV76	45	D	Ε	W	- 125.0M	-XX		Marking
							Internal code or blank	
							Frequency in MHz	fff.fff M
							Supply Voltage V _{cc} W = 2.5V <u>+</u> 10%	W or B
							Enhanced Specification E = Temperature range -40 to 85°C	Е
							Series Model	
							Frequency Stability 45 = ± 50 ppm 44 = ± 25 ppm 20 = ± 20 ppm	5 4 2
							Series Model	LV76D

Part Marking:

LV76Dx Where: x = Frequency stability

fff.fff M fff.fff = frequency in MHz

PLE sss sss = Enhanced specification and voltage

yywwa = Date code

Pletronics may ship the following combinations without notice (this is an enhanced specified device)

44 (25 ppm) stability parts when 45 (50 ppm) was ordered

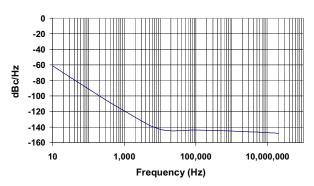
20 (20 ppm) stability parts when 45 (50 ppm) or 44 (25 ppm) was ordered.

E temperature range parts when extended was not ordered.

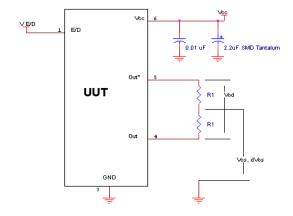
Pletronics may ship parts that are not marked for extended temperature range but were tested for extended temperature range, a Certificate of Conformance will accompany these parts.

June 2005

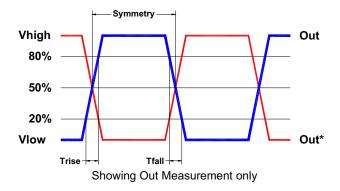
Electrical Specification for 2.50V ±10% over the specified temperature range


Item	Min	Max	Unit	Condition	
Frequency Range	80	250	MHz		
Frequency Accuracy "45"	-50	+50	ppm	For all supply voltages, load changes, aging for	
"44"	-25	+25		1 year, shock, vibration and temperatures	
"20"	-20	+20			
Output Waveform		LVDS			
Output High Level	1	1.60	Volts	See load circuit R1 = 50 ohms	
Output Low Level	0.90		Volts	See load circuit R1 = 50 ohms	
Differential Output (V _{OD})	247	454	mVolts	See load circuit R1 = 50 ohms	
Output Offset Voltage (V _{OS})	1.125	1.375	Volts	See load circuit R1 = 50 ohms	
Differential Output Error (dVos)		50	mVolts	See load circuit R1 = 50 ohms	
Output Symmetry	45	55	%	Referenced to 50% of amplitude or crossing point	
Output T _{RISE} and T _{FALL}	300	700	pS	Vth is 20% and 80% of waveform	
Jitter	1	0.15	pS RMS	Measured from 12KHz to 20MHz from Fnominal	
	1	2.8		Measured from 10Hz to 1MHz from Fnominal	
Vcc Supply Current	1	63	mA	Includes current of properly terminated device	
Enable/Disable Internal Pull-up	50	-	Kohm	To Vcc (equivalent resistance)	
V disable	-	0.8	Volts	Referenced to Ground	
V enable	2.0	-	Volts	Referenced to Ground	
Output leakage V _{OUT} = V _{CC}	-10	+10	uA	Pad 1 low, device disabled	
V _{OUT} = 0V	-10	+10	uA		
Enable	-	10	nS	Time for output to reach a logic state	
Disable time	-	10	nS	Time for output to reach a high Z state	
Start up time	-	5	mS	Measured from the time Vcc = 3.0V	
Operating Temperature Range	0	+70	°C	Standard Temperature Range	
	-40	+85	°C	Extended Temperature Range "E" Option	
Storage Temperature Range	-55	+125	°C		
Standby Current I _{cc}	-	3	uA	Pad 1 low, device disabled	

Specifications with Pad 1 E/D open circuit



June 2005


Typical Phase-Noise Response

Load Circuit

Test Waveform

June 2005

Reliability: Environmental Compliance

Parameter	Condition
Mechanical Shock	MIL-STD-883 Method 2002, Condition A
Vibration	MIL-STD-883 Method 2007, Condition A
Solderability	MIL-STD-883 Method 2003
Thermal Shock	MIL-STD-883 Method 1011, Condition A

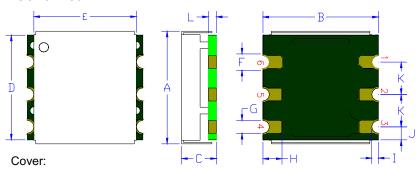
ESD Rating

Model	Minimum Voltage	Conditions		
Human Body Model	1500	MIL-STD-883 Method 3115		
Charged Device Model	1000	JESD 22-C101		

Package Labeling

Label is 1" x 2.6" (25.4mm x 66.7mm) Font is Courier New Bar code is 39-Full ASCII

Label is 1" x 2.6" (25.4mm x 66.7mm) Font is Arial


Pb Free
2nd LvL Interconnect
Category=e4
Max Safe Temp=260C for 10s

LV76D Series 2.5 V

June 2005

Mechanical:

Centered on the base 304 Stainless Steel 0.010 inch (0.25mm) Electroless Nickel Plated 1 µinch (25 µm) typical

Label:

White Kapton with Black Letters –or--

Blue Epoxy heat cure ink covering top with laser marked lettering

FR4 PCB Base:
Solder masked
Solder masked
All via holes tented on bottom
Copper Clad 670 µinch (17 µm)
Nickel plated 118 µinch (3 µm)
Gold plated 0.8 µinch (0.02 µm)
Typical thicknesses

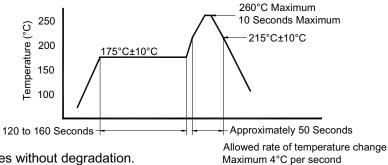
Pin 3 Ground plane is typical Not to scale

	Inches	mm
Α	0.351 <u>+</u> 0.003	8.91 <u>+</u> 0.07
В	0.356 ±0.005	9.04 <u>+</u> 0.13
O	0.103 <u>+</u> 0.005	2.62 <u>+</u> 0.13
D ¹	0.324	8.23
E¹	0.316	8.03
F¹	0.050	1.27
Ğ	0.040	1.02
H ¹	0.059	1.50
I ¹	0.020	0.51
J ¹	0.040	1.02
K ¹	0.100	2.54
L ¹	0.026 typical	0.66

Pad	Function	Note
1	Output Enable/Disable	When this pad is not connected the oscillator shall operate. When this pad is <0.30 volts, the output will be inhibited (high impedance state.) Recommend connecting this pad to $V_{\rm CC}$ if the oscillator is to be always on.
2	No connect	There is no internal connection to this pad
3	Ground (GND)	
4	Output	The outputs must be terminated, 100 ohms between the outputs is the ideal
5	Output*	termination.
6	Supply Voltage (V _{cc})	Recommend connecting appropriate power supply bypass capacitors as close as possible.

Layout and application information

Recommend connecting Pad 1 and Pad 2 together to permit the design to accept Enable/Disable on both input pads (see LV78D for E/D on pad 2)


For Optimum Jitter Performance, Pletronics recommends:

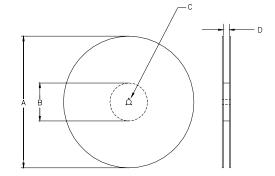
- a ground plane under the device
- no large transient signals (both current and voltage) should be routed under the device
- do not layout near a large magnetic field such as a high frequency switching power supply
- do not place near piezoelectric buzzers or mechanical fans.

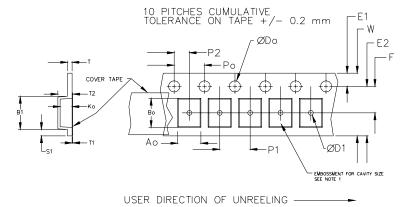
June 2005

Reflow Cycle (typical for lead free processing)

The part may be reflowed 2 times without degradation.

Tape and Reel: available for quantities of 250 to 1000 per reel


Constant Dimensions Table 1								
Tape Size	D0	D1 Min	E1	P0	P2	S1 Min	T Max	T1 Max
8mm		1.0			2.0			
12mm	1.5	1.5	1.75	4.0	<u>+</u> 0.05			0.4
16mm	+0.1 -0.0	1.5	<u>+</u> 0.1	<u>+</u> 0.1	2.0	0.6	0.6	0.1
24mm	•	1.5			<u>+</u> 0.1			


	Variable Dimensions Table 2								
Tape B1 E2 Min F P1 T2 W Ao, Bo Size Max Max & Ko									
24 mm	9.88	22.25	11.5 <u>+</u> 0.1	16.0 <u>+</u> 0.1	3.22	24.3	Note 1		

Note 1: Embossed cavity to conform to EIA-481-B

Dimensions in mm

Not to scale

		REE			
Α	inches	7.0	10.0	13.0	
	mm	177.8	254.0	330.2	
В	inches	2.50	4.00	3.75	
	mm 63.5		101.6	95.3	Tape Width
С	mm	13	vvidili		
D	mm	16.4 +2.0 -0.0	16.4 +2.0 -0.0	16.4 +2.0 -0.0	16.0
	mm			24.4 +2.0 -0.0	24.0
	mm			32.4 +2.0 -0.0	32.0

Reel dimensions may vary from the above

June 2005

IMPORTANT NOTICE

Pletronics Incorporated (PLE) reserves the right to make corrections, improvements, modifications and other changes to this product at anytime. PLE reserves the right to discontinue any product or service without notice. Customers are responsible for obtaining the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to PLE's terms and conditions of sale supplied at the time of order acknowledgment.

PLE warrants performance of this product to the specifications applicable at the time of sale in accordance with PLE's standard warranty. Testing and other quality control techniques are used to the extent PLE deems necessary to support this warranty. Except where mandated by specific contractual documents, testing of all parameters of each product is not necessarily performed.

PLE assumes no liability for application assistance or customer product design. Customers are responsible for their products and applications using PLE components. To minimize the risks associated with the customer products and applications, customers should provide adequate design and operating safeguards.

PLE does not warrant or represent that any license, either express or implied, is granted under any PLE patent right, copyright, artwork or other intellectual property right relating to any combination, machine or process which PLE product or services are used. Information published by PLE regarding third-party products or services does not constitute a license from PLE to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from PLE under the patents or other intellectual property of PLE.

Reproduction of information in PLE data sheets or web site is permissible only if the reproduction is without alteration and is accompanied by associated warranties, conditions, limitations and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. PLE is not responsible or liable for such altered documents.

Resale of PLE products or services with statements different from or beyond the parameters stated by PLE for that product or service voids all express and implied warranties for the associated PLE product or service and is an unfair or deceptive business practice. PLE is not responsible for any such statements.

Contacting Pletronics Inc.

Pletronics Inc. 19013 36th Ave. W, Suite H Lynnwood, Washington 98036-5761 USA

Tel: 425-776-1880 Fax: 425-776-2760

E-mail: ple-sales@pletronics.com

URL: <u>www.pletronics.com</u>

Copyright © 2005, Pletronics Inc.