BW7385

Non-isolation Buck current control IC with High PFC for LED Lighting

FEATURES

- THD and Efficiency adjustable by RT Pin
- Low THD <15% (ADJ)
- Accuracy Constant Current (±2.5%)
- High power factor (>0.9)
- Low BOM Cost
- Boundary Current Mode Control
- Gate Output Voltage Clamp
- LED Open Protection(OVP)
- LED Short Protection(SCP)
- Over Current Protection (OCP)
- Over Thermal Protection(OTP)
- SOT26 Package Available

DESCRIPTION

The BW7385 is a THD and Efficiency adjustable, high accuracy and high power factor constant current PWM controller. This is capable of controlling THD and Efficiency optimization by an external resistor. These functions enable the LED driver to easily meet rule of LED current requirements

The IC achieves high power factor and high efficiency by BCM mode. The line and load regulation of LED current is about $\pm 2.5\%$ because of particular control method.

BW7385 also provides gate driving voltage clamping, VCC over voltage protection and system output open/short circuit protection to increase IC performance.

APPLICATIONS

- LED lighting
- Down light
- Tube lamp
- PAR lamp
- Bulb

ORDER INFORMATION

SOT-26

BW 7385- KF R BW Shipping: R: Tape & Reel Circuit Type KF: SOT-26

PIN DESCRIPTIONS

Pin Name	Pin Description
СОМ	Output pin of error amplifier.
GND	Ground return for all internal circuit.
CS	Input current sense pin.
OUT	Gate driver output.
VCC	Power supply pin for all internal circuit.
RT	Efficiency / THD option pin.

TYPICAL APPLICATION CIRCUITS

Non-isolation Buck current control IC with High PFC for LED Lighting

ABSOLUTE MAXIMUM RATINGS (Note 1)

Parameter	Symbol	Range	Unit	
Power supply pin	V _{CC}	40	V	
RT voltage to GND	V _{RT}	-0.3 to 5.5	V	
OUT voltage to GND	V _{OUT}	-0.3 to 40	V	
CS voltage to GND	V _{CS}	-0.3 to 5.5	V	
COM voltage to GND	V _{COM}	-0.3 to 5.5	V	
Junction Temperature Range	TJ	-40 to +150	J	
Storage Temperature Range	T _{STG}	-65 to +150	C	
Lead Temperature (Soldering 10 sec)	T _{LEAD}	260	C	
Power Dissipation @T _A =25 $^{\circ}$ C	P _D	0.3	W	
Thermal Resistance Junction to Ambient (Note 2)	θ _{JA}	220	CW	
Thermal Resistance Junction to Case	θ _{JC}	θ _{JC} 106.6		
ESD Rating (Human body mode) (Note 3)	V _{ESD}	2	kV	
ESD Rating (Machine mode) (Note 3)	V _{ESD}	200	V	

RECOMMENDED OPERATING CONDITIONS (Note4)

Parameter	Symbol	Operation Conditions	Unit
Power supply pin	V _{cc}	33	V
RT voltage to GND	V _{RT}	-0.3 to 5	V
OUT voltage to GND	V _{OUT}	-0.3 to 19	V
CS voltage to GND	V _{CS}	-0.3 to 5	V
COM voltage to GND	V _{COM}	-0.3 to 5	V
Operating Junction Temperature Range	TJ	-40 to +125	ĉ
Operating Ambient Temperature Range	T _{OPA}	-40 to +85	C

Note 1: Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibility to affect device reliability.

Note 2: Thermal Resistance is specified with the component mounted on a low effective thermal conductivity test board in free air at $T_A=25$ °C.

Note 3: Devices are ESD sensitive. Handing precaution recommended.

Note 4: The device is not guaranteed to function outside its operating conditions.

BW7385

Non-isolation Buck current control IC with High PFC for LED Lighting

BLOCK DIAGRAM

Non-isolation Buck current control IC with High PFC for LED Lighting

ELECTRICAL CHARACTERISTICS

 V_{CC} =18V, T_A=25°C, unless otherwise specified.

Parameter	Symbol	Condition	Min	Тур	Max	Unit			
SUPPLY VOLTAGE									
Start-up Current	V _{CC(ST)}	V _{CC} = V _{UVLO(on)} -1V		45		uA			
Operating Current	I _{OPA}	With 1nF load on OUT pin		2.1	2.6	mA			
UVLO(off)	V _{UVLO(off)}		7	8	9	V			
UVLO(on)	V _{UVLO(on)}		16	17.5	19	V			
OVP Level on VCC Pin	V _{OVP}		29	31	33	V			
VOLTAGE FEEDBACK									
Feedback Reference Voltage	V _{FB}		0.196	0.2	0.204	V			
Trans conductance	G _M			58		uS			
Output Sink Current	I _{O-SINK}			5.8		uA			
Output Source Current	IO-SOURCE			5.8		uA			
CURRENT SENSING									
CS limit Voltage	V _{OCP}	\wedge Y		1.4		V			
Open Loop Voltage, CS Pin Open	V _{OLP}			5		V			
Leading-Edge Blanking Time	LEB			400		nS			
Delay to Output				100		nS			
SWITCHING FREQUENCY									
Start Frequency	T _{STR}		3	4.5	6	KHz			
GATE DRIVER OUTPUT									
Rising Time	T _{RISE}	Load Capacitance =1nF		90		nS			
Falling Time	T _{FAIL}	Load Capacitance =1nF		40		nS			
VGATE-Clamp	V _{GATE}			12.5	15	V			
Thermal Section									
Thermal Shutdown				150		°C			
Thermal Shutdown release				120		°C			

Note 5: Guaranteed by design.

Note 6: Auto Recovery Type.

Brückewell

Non-isolation Buck current control IC with High PFC for LED Lighting

APPLICATION INFORMATION

Start-up Current

The typical start-up current is around 45uA. Very low start-up current allows the PWM controller to increase the value of start-up resistor and then reduce the power dissipation on it.

UVLO(Under Voltage Lockout)

A hysteresis UVLO comparator is implemented in BW7385 the turn-on and turn-off thresholds level are fixed at 17.5V and 8V respectively. This hysteresis shown in Fig.3 ensures that the start-up capacitor will be adequate to supply the chip during start-up. For quickly star-tup the LED driver, the start-up resistor should be matched with the start-up capacitor. Due to the low UVLO on level, so the turn-on delay time will also never greater than the general PWM IC.

LEB(Leading-Edge Blanking)

Each time the power MOSFET is switched on, a turn-on spike will inevitably occur at the sense resistor. To avoid fault 400ns trigger, а leading-edge blanking time is built in. Conventional RC filtering can therefore be omitted. During this blanking period, the current-limit comparator is disabled and cannot switch off the gate driver.

OCP(Over Current Protection)

The BW7385 is built cycle by cycle over current protection function on CS pin. As the CS pin voltage is larger than V_{OCP} (1.4V), the gate output will be turned off immediately to avoid the driver board be burned out.

OVP (Over Voltage Protection) on VCC

To prevent the LED driver from being damaged, the BW7385 is implemented an OVP function on VCC. When the VCC voltage is higher than the V_{OVP} (31V), the output gate driver circuit will be shut down immediately to stop the switching of power MOSFET. The VCC pin OVP function is an auto recovery type protection. If the OVP condition happens, the pulses will be stopped until the VCC pin voltage is down to the UVLO off level. The BW7385 is working in an auto-recovery mode as shown in Fig. 4.

Fig. 4

Gate Clamp

Driver is clamped to 12.5V by an internal clamping circuit to avoid the Gate of MOSFET be damage.

BW7385

Non-isolation Buck current control IC with High PFC for LED Lighting

PACKAGE OUTLINE DIMENSIONS

SOT-26 PACKAGE OUTLINE DIMENSIONS

Note:

Information provided by Bruckewell is believed to be accurate and reliable. However, we cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in an Bruckewell product; nor for any infringement of patents or other rights of third parties that may result from its use. We reserve the right to change the circuitry and specifications without notice.

Life Support Policy: Bruckewell does not authorize any Bruckewell product for use in life support devices and/or systems. Life support devices or systems are devices or systems which, (I) are intended for surgical implant into the body or (II) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. Typical numbers are at 25°C and represent the most likely norm.

Ver 1.01 Mar. 2014