
STP16DPPS05

Low voltage 16-bit constant current LED sink driver with output error detection and auto power-saving

Datasheet - production data

Features

- Low voltage power supply down to 3 V
- 16 constant current output channels
- Adjustable output current through external resistor
- Short and open output error detection
- Serial data IN/parallel data OUT
- Auto power-saving
- 3.3 V MCU-driving capability
- Output current: 3 to 40 mA
- 30 MHz clock frequency
- Available in high thermal efficiency TSSOP exposed pad
- ESD protection: 2 kV HBM, 200 V MM

Description

The STP16DPPS05 is a monolithic, low voltage, low current power 16-bit shift register designed for

LED panel displays. The device features a 16-bit serial-in, parallel-out shift register that feeds a 16-bit D-type storage register. In the output stage, sixteen regulated current sources are designed to provide 3 to 40 mA of constant current to drive the LEDs. The STP16DPPS05 features open and short LED detection on the outputs. The detection circuit checks for 3 different conditions that can occur on the output line: short to GND, short to V_O or open line. The data detection results are loaded in the shift registers and shifted out via the serial line output. The detection functionality is implemented without increasing the pin count, through a secondary function of the output enable and latch pin (DM1 and DM2 respectively). A dedicated logic sequence allows the device to enter or exit from detection mode. The STP16DPPS05 output current can be adjusted through an external resistor to control the light intensity of the LEDs. LED brightness is adjustable from 0% to 100% via the OE/DM2 pin.

The auto power-shutdown and auto power-ON feature allows the device to save power with no external intervention. The STP16DPPS05 guarantees a 20 V output driving capability, allowing users to connect more LEDs in series. The high 30 MHz clock frequency makes the device suitable for high data rate transmission. The 3.3 V supply is well suited for applications which interface a 3.3 V MCU. Compared to a standard TSSOP package, the TSSOP with exposed pad increases heat dissipation capability by a factor of 2.5

Table 1. Device summary

Order codes	Package	Packaging					
STP16DPPS05MTR	SO-24 (tape and reel)	1000 parts per reel					
STP16DPPS05TTR	TSSOP24 (tape and reel)	2500 parts per reel					
STP16DPPS05XTTR	TSSOP24 exposed pad (tape and reel)	2500 parts per reel					
STP16DPPS05PTR	QSOP-24	2500 parts per reel					

June 2014 DocID15817 Rev 3 1/35

Contents STP16DPPS05

Contents

1	Sum	mary description	3
	1.1	Pin connection and description	3
2	Elec	trical ratings	5
	2.1	Absolute maximum ratings	5
	2.2	Thermal data	5
	2.3	Recommended operating conditions	6
3	Elec	trical characteristics	7
4	Equi	ivalent circuit and outputs	9
5	Timi	ing diagrams	11
6	Турі	cal characteristics	14
7	Erro	or detection mode functionality	18
	7.1	Phase one: entering error detection mode	18
	7.2	Phase two: error detection	19
	7.3	Phase three: resuming normal mode	21
	7.4	Error detection conditions	21
	7.5	Auto power-saving	23
8	Pack	kage mechanical data	25
9	Pack	kaging mechanical data	32
10	Revi	ision history	34

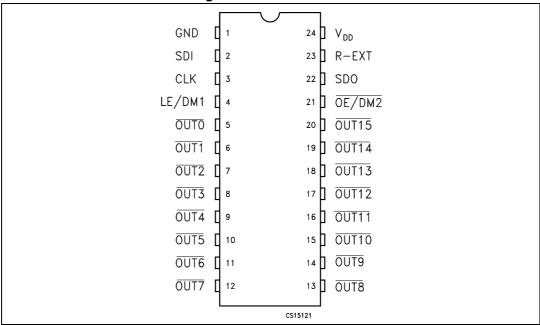

1 Summary description

Table 2. Typical current accuracy

Output voltage	Current accuracy		Output current	V	Temperature
Output voltage	Between bits	Between ICs	Output current	V _{DD}	remperature
≥ 1.3 V	± 1%	± 2%	5 to 40 mA	3.3 V to 5 V	25 °C

1.1 Pin connection and description

Figure 1. Pin connection

Note:

The exposed pad should be electrically connected to a metal land electrically isolated or connected to ground.

Table 3. Pin description

Pin n°	Symbol	Name and function
1	GND	Ground terminal
2	SDI	Serial data input terminal
3	CLK	Clock input terminal
4	LE/DM1	Latch input terminal - detect mode 1 (see operation principle)
5-20	OUT 0-15	Output terminal
21	OE/DM2	Input terminal of output enable (active low) - detect mode 1 (see operation principle)
22	SDO	Serial data out terminal
23	R-EXT	Input terminal for an external resistor for constant current programming
24	V_{DD}	Supply voltage terminal

STP16DPPS05 Electrical ratings

2 Electrical ratings

2.1 Absolute maximum ratings

Stressing the device above the ratings listed in the "absolute maximum ratings" table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other condition above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

		J-	
Symbol	Parameter	Value	Unit
V_{DD}	Supply voltage	0 to 7	V
Vo	Output voltage	-0.5 to 20	V
Io	Output current	50	mA
VI	Input voltage	-0.4 to V _{DD}	V
I _{GND}	GND terminal current	800	mA
f _{CLK}	Clock frequency	50	MHz

-40 to +170

°C

Table 4. Absolute maximum ratings

Junction temperature range (1)

2.2 Thermal data

Table 5. Thermal data

Symbol	Parameter		Value	Unit
T _A	Operating free-air temperature rang	е	-40 to +125	°C
T _{J-OPR}	Operating thermal junction tempera	-40 to +150	°C	
T _{STG}	Storage temperature range	-55 to +150	°C	
		SO-24	42.7	°C/W
	Thermal resistance junction- ambient ⁽¹⁾	TSSOP24	55	°C/W
R _{thJA}		TSSOP24 ⁽²⁾ Exposed Pad	37.5	°C/W
		QSOP-24	55	°C/W

^{1.} According with JEDEC standard 51-7B

^{1.} Such absolute value is based on the thermal shutdown protection.

^{2.} The exposed pad should be soldered directly to the PCB to obtain the thermal benefits.

Electrical ratings STP16DPPS05

2.3 Recommended operating conditions

Table 6. Recommended operating conditions

Symbol	ymbol Parameter Test conditions		Min.	Тур.	Max.	Unit
V_{DD}	Supply voltage		3.0	-	5.5	V
Vo	Output voltage			-	20	V
Io	Output current	OUTn	3	-	40	mA
I _{OH}	Output current	SERIAL-OUT		-	+1	mA
I _{OL}	Output current	SERIAL-OUT		-	-1	mA
V _{IH}	Input voltage		0.7 V _{DD}	-	V_{DD}	V
V _{IL}	Input voltage		-0.3	-	0.3 V _{DD}	V
t _{wLAT}	LE/DM1 pulse width		20	-		ns
t _{wCLK}	CLK pulse width		10	-		ns
t _{wEN}	OE/DM2 pulse width	V _{DD} = 3.0 V to 5.0 V	100	-		ns
t _{SETUP(D)}	Setup time for DATA	V _{DD} = 3.0 V to 3.0 V	8	-		ns
t _{HOLD(D)}	Hold time for DATA		5	-		ns
t _{SETUP(L)}	Setup time for LATCH		8	-		ns
f _{CLK}	Clock frequency	Cascade operation (1)		-	30	MHz

If the device is connected in cascade, it may not be possible achieve the maximum data transfer. Please consider the timings carefully.

3 Electrical characteristics

 V_{DD} = 3.3 V to 5 V, T_{A} = 25 °C, unless otherwise specified.

Table 7. Electrical characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
V_{IH}	Input voltage high level		0.7 V _{DD}		V_{DD}	V	
V_{IL}	Input voltage low level		GND		0.3 V _{DD}	V	
I _{OH}	Output leakage current	V _{OH} = 20 V			1	μΑ	
V _{OL}	Output voltage (serial-OUT)	I _{OL} = 1 mA			0.4	٧	
V _{OH}	Output voltage (serial-OUT)	I _{OH} = -1 mA	V _{DD} -0.4V			V	
I _{OL1}		$V_O = 0.3 \text{ V, } R_{ext} = 4 \text{ k}\Omega$	4.75	5	5.25		
I _{OL2}	Output current	$V_O = 0.3 \text{ V}, R_{ext} = 1 \text{ k}\Omega$	19	20	21	mA	
I _{OL3}		$V_{O} = 1.3 \text{ V, } R_{ext} = 497 \Omega$	38	40	42		
Δl _{OL1}		V_O = 0.3 V, I_O = 5 mA R_{EXT} = 4 k Ω		± 1	± 5		
Δl _{OL2}	Output current error between bit (All output ON)	$V_{O} = 0.3 \text{ V, } I_{O} = 20 \text{ mA}$ $R_{EXT} = 980 \Omega$		± 0.5	± 3	%	
Δl _{OL3}	(V_{O} = 1.3 V, I_{O} = 40 mA R_{EXT} = 490 Ω		± 0.5	± 3		
R _{SIN(up)}	Pull-up resistor		150	300	600	kΩ	
R _{SIN(down)}	Pull-down resistor		100	200	400	kΩ	
I _{DD(OFF1)}	Supply current (OFF)	$R_{EXT} = 1 \text{ k}\Omega,$ $I_{OUT} = 20 \text{ mA},$ OUT 0 to 15 = OFF		5.4	7.5		
I _{DD(OFF2)}	Supply culterit (OFF)	$R_{EXT} = 497 \Omega$, $I_{OUT} = 40 \text{ mA OUT 0 to}$ 15 = OFF		8.0	9.5	mA	
I _{DD(ON1)}	Supply current (ON)	$R_{EXT} = 1 \text{ k}\Omega,$ $I_{OUT} = 20 \text{ mA},$ OUT 0 to 15 = ON		5.5	7.5	IIIA	
I _{DD(ON2)}	очрру синен (ОМ)	$R_{EXT} = 497 \Omega$, $I_{OUT} = 40 \text{ mA OUT 0 to}$ 15 = ON		8.1	9.5		
Thermal	Thermal protection			170		°C	

Electrical characteristics STP16DPPS05

 V_{DD} = 3.3 V to 5 V, T_{A} = 25 °C, unless otherwise specified.

Table 8. Switching characteristics

Symbol	Parameter	Test conditions			Min	Тур	Max	Unit
,	Propagation delay time,			$V_{DD} = 3.3 \text{ V}$		53.5	86.5	
t _{PLH1}	CLK-OUTn, LE/DM1 = H, $OE/DM2 = L$			$V_{DD} = 5 V$		32	46.5	ns
	Propagation delay time,			V _{DD} = 3.3 V		48	75.5	
t _{PLH2}	LE/DM1-OUTn, OE/DM2 = L			V _{DD} = 5 V		30	43	ns
t	Propagation delay time,			V _{DD} = 3.3 V		71.5	118	ns
t _{PLH3}	OE/DM2-OUTn, LE = H			V _{DD} = 5 V		43	62	115
tou	Propagation delay time,			$V_{DD} = 3.3 \text{ V}$	15	21	31	ne
t _{PLH}	CLK-SDO			$V_{DD} = 5 V$	11	15	21	ns
	Propagation delay time,			$V_{DD} = 3.3 \text{ V}$		27.5	39	
t _{PHL1}	$\frac{\text{CLK-OUTn, LE/DM1} = \text{H,}}{\text{OE/DM2} = \text{L}}$	$V_{IH} = V_{DD}$ $V_{II} = GND$ $C_{I} = 10 pF$		V _{DD} = 5 V		22	30.5	ns
	Propagation delay time,		V _{DD} = 3.3 V		11.5	17.5		
t _{PHL2}	LE/DM1-OUTn, OE/DM2 = L	$R_{EXT} = 1 K\Omega$	$R_L = 60 \Omega$	V _{DD} = 5 V		8	11.5	ns
	Propagation delay time,			V _{DD} = 3.3 V		24	33.5	
t _{PHL3}	OE/DM2-OUTn, LE/DM1 = H			V _{DD} = 5 V		21	28.5	ns
+	Propagation delay time,			V _{DD} = 3.3 V	17.5	24	36	ns
t _{PHL}	CLK-SDO			V _{DD} = 5 V	12.5	17	25	115
	Output rise time			$V_{DD} = 3.3 \text{ V}$		29	54	
t _{ON}	10~90% of voltage waveform			V _{DD} = 5 V		10	17	ns
	Output fall time			V _{DD} = 3.3 V		4.5	6	
t _{OFF}	90~10% of voltage waveform			V _{DD} = 5 V		3.5	5	ns
t _r	CLK rise time (1)						5000	ns
t _f	CLK fall time (1)						5000	ns

^{1.} In order to achieve high cascade data transfer, please consider tr/tf timings carefully.

4 Equivalent circuit and outputs

Figure 2. OE/DM2 terminal

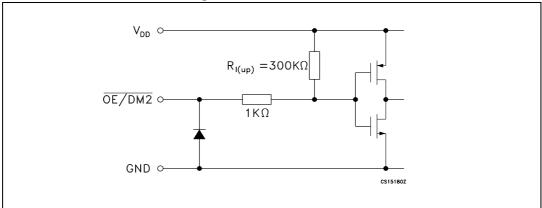


Figure 3. LE/DM1 terminal

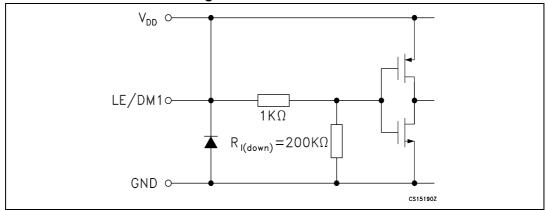


Figure 4. CLK, SDI terminal

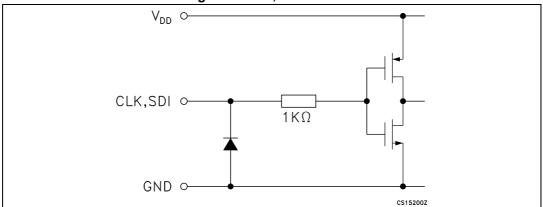


Figure 5. SDO terminal

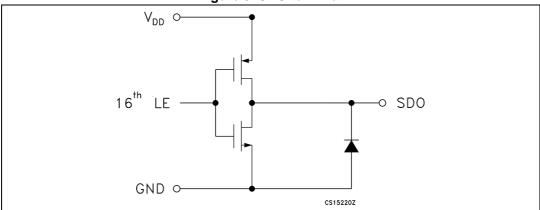
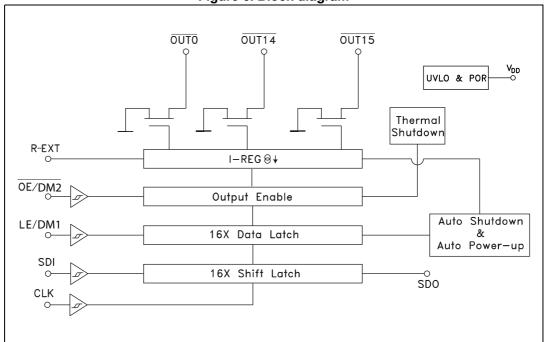



Figure 6. Block diagram

10/35 DocID15817 Rev 3

STP16DPPS05 **Timing diagrams**

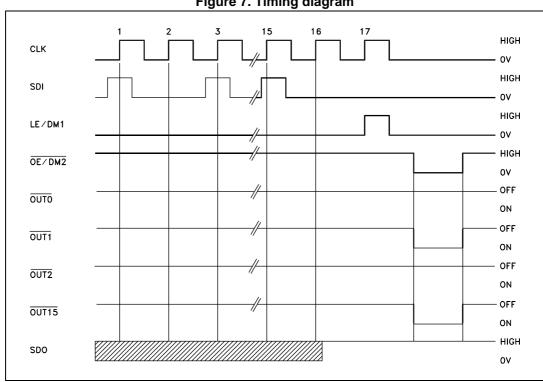

Timing diagrams 5

Table 9. Truth table

CLOCK	LE/DM1	OE/DM2	SERIAL-IN	OUT0 OUT7 OUT15	SDO
」	Н	L	Dn	Dn Dn - 7 Dn -15	Dn - 15
」	L	L	Dn + 1	No change	Dn - 14
	Н	L	Dn + 2	Dn + 2 Dn - 5 Dn -13	Dn - 13
7	Х	L	Dn + 3	Dn + 2 Dn - 5 Dn -13	Dn - 13
Z	Х	Н	Dn + 3	OFF	Dn - 13

OUTn = ON when Dn = H OUTn = OFF when Dn = LNote:

Figure 7. Timing diagram

- Note:
- Latch and output enable terminals are level-sensitive and are not synchronized with rising or falling edge of LE/DM1 signal.
- 2 When LE/DM1 terminal is low level, the latch circuit holds previous set of data.
- 3 When LE/DM1 terminal is high level, the latch circuit refreshes new set of data from SDI chain.
- When OE/DM2 terminal is at low level, the output terminals Out 0 to Out 15 respond to data in the latch circuits, either '1' for ON or '0' for OFF.
- When OE/DM2 terminal is at high level, all output terminals are switched OFF.

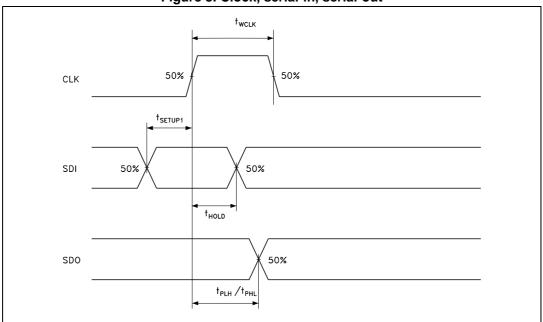

Timing diagrams STP16DPPS05

Table 10.	Enable IO:	shutdown	truth table

CLOCK	LE/DM1	SDI ₀ SDI ₇ SDI ₁₅	SH	Auto Power-up	OUTn
	Н	All = L	Active	Not active	OFF
	L	No change	No change	No change	No change
	Н	One or more = H	Not active	Active	X ⁽²⁾

- 1. At power-up, the device starts in shutdown mode.
- 2. Undefined.

Figure 8. Clock, serial-in, serial-out

STP16DPPS05 Timing diagrams

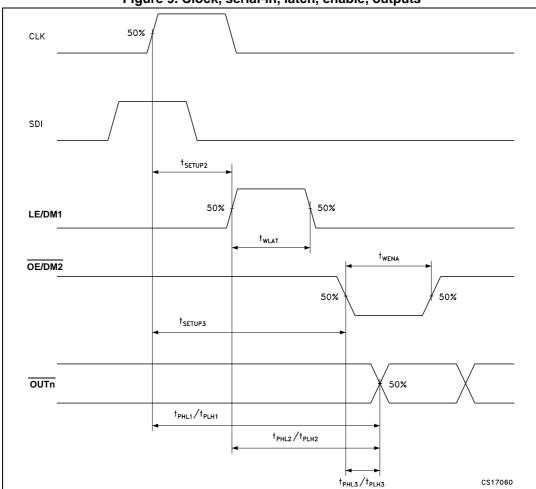
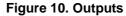
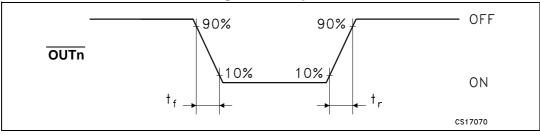




Figure 9. Clock, serial-in, latch, enable, outputs

6 Typical characteristics

25000 20000 15000 0 10 20 30 40 50 60 70 Current (mA)

Figure 11. Output current vs. R-EXT resistor

Table 11. Output current vs. R-EXT resistor

R-EXT (Ω)	Output current (mA)	
23700	1	
11730	2	
6930	3	
4090	5	
2025	10	
1000	20	
667	30	
497	40	
331	60	

Conditions:

Temperature = 25 °C, V_{DD} = 3.3 V; 5.0 V, I_{SET} = 3 mA; 5 mA; 10 mA; 20 mA; 50 mA; 60 mA.

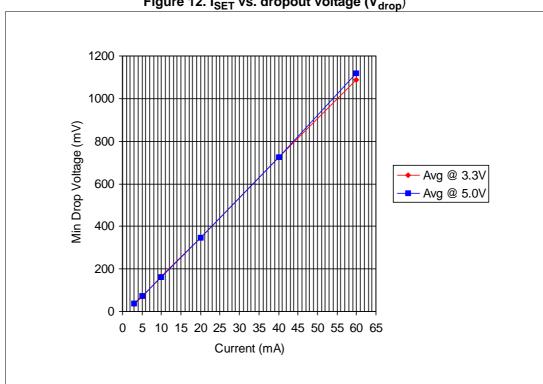


Figure 12. I_{SET} vs. dropout voltage (V_{drop})

Table 12. I_{SET} vs. dropout voltage (V_{drop})

lout (mA)	Avg (mV) @ 3.3 V	Avg (mV)@ 5.0 V
3	36	37
5	71	72
10	163	163
20	346	347
40	724	726
60	1080	1110

 $T_A = 25 \, ^{\circ}C, \, Vdd = 3.3 \, V; \, 5 \, V$

Figure 13. Output current vs. $\pm \Delta I_{OL}$ (%)

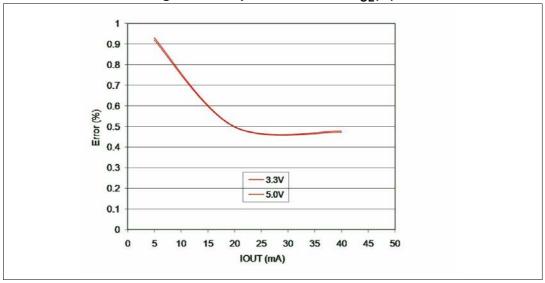
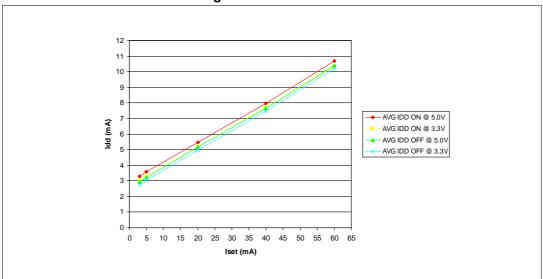



Figure 14. Idd ON/OFF

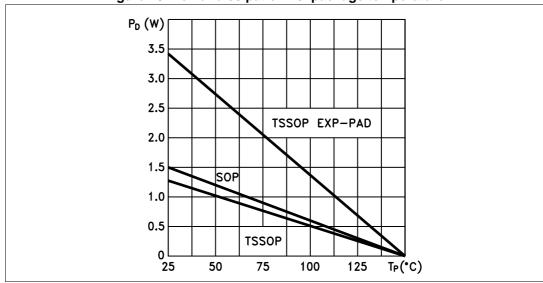
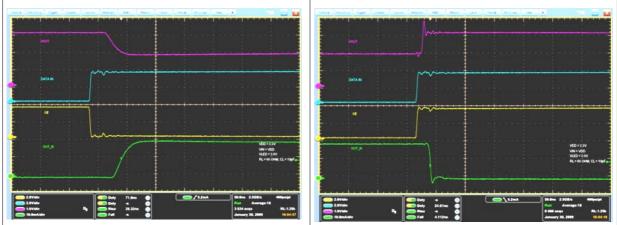



Figure 15. Power dissipation vs. package temperature

Note: The exposed pad should be soldered to the PCB to obtain the thermal benefits.

Figure 16. Turn ON output current characteristics ⁽¹⁾

Figure 17. Turn OFF output current characteristics ⁽²⁾

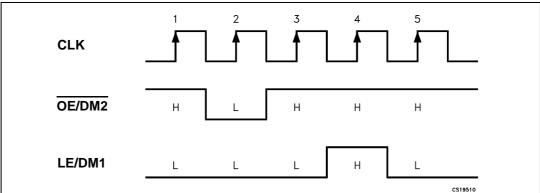
Electrical conditions:

 $Vdd = 3.3 \text{ V}, \text{ Vin} = Vdd, \text{ Vled} = 3.0 \text{ V}, \text{ RL} = 60 \Omega, \text{ CL} = 10 \text{ pF}$

Ch1 (Yellow) = OE/DM2, Ch2 (Blue) = SDI, Ch3 (Purple) = VOUT, Ch4 (Green) = OUT

- 1. The reference level for the T_{ON} characteristics is 50% of $\overline{OE/DM2}$ signal and 90% of output current
- 2. The reference level for the T_{OFF} characteristics is 50% of $\overline{OE/DM2}$ signal and 10% of output current

7 Error detection mode functionality


7.1 Phase one: entering error detection mode

From the "normal <u>mode" condition</u> the device can switch to "error mode" by a logic sequence on the <u>OE/DM2</u> and LE/DM1 pins, as shown in the following table and diagram:

Table 13. Entering error detection mode - truth table

CLK	1°	2°	3°	4°	5°
OE/DM2	Н	L	Н	Н	Н
LE/DM1	L	L	L	Н	L

Figure 18. Entering error detection mode - timing diagram

After these five CLK cycles, the device goes into "error detection mode" and at the rising edge of the 6th CLK cycle, the SDI data are ready for sampling.

18/35 DocID15817 Rev 3

7.2 Phase two: error detection

The 16 data bits must be set to "1" in order for all the outputs to be ON during error detection. The data are latched by LE/DM1, after which the outputs are ready for the detection process. When the microcontroller switches the $\overline{OE/DM2}$ to LOW, the device drives the LEDs to analyze if an OPEN or SHORT condition has occurred.

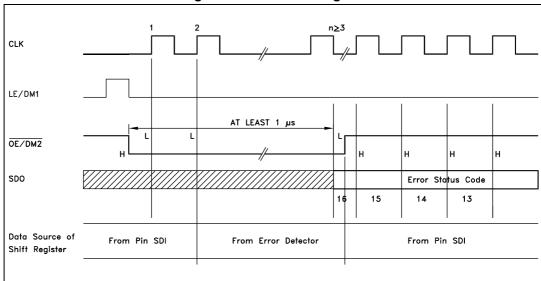


Figure 19. Detection diagram

The status of the LEDs is detected in at least 1 microsecond, and after this period the microcontroller sets OE/DM2 to HIGH state and the output data detection result is sent to the microcontroller via SDO.

Error detection mode and normal mode both use the same data format. As soon as all the detection data bits are available on the serial line, the device may return to normal mode of operation. To re-detect the status, the device must first return to normal mode and reenter error detection mode.

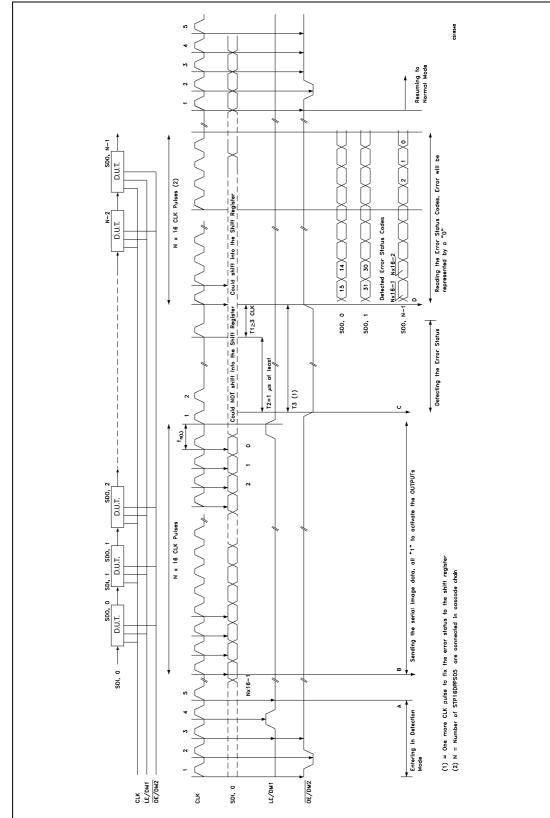


Figure 20. Timing example for open and/or short-circuit detection

\7/

7.3 Phase three: resuming normal mode

The sequence for reentering normal mode is shown in the following table:

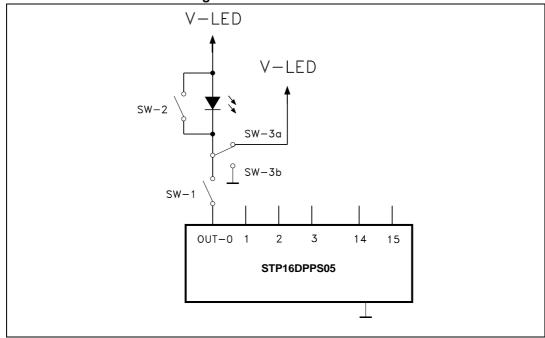
Figure 21. Resuming normal mode - timing diagram

CLK	1°	2°	3°	4°	5°
OE/DM2	Н	L	Н	Н	Н
LE/DM1	L	L	L	L	L

Note:

For proper device operation, the "entering error detection" sequence must be followed by a "resume mode" sequence, it is not possible to insert consecutive equal sequences.

7.4 Error detection conditions


Table 14. Detection conditions (V_{DD} = 3.3 to 5 V, temperature range -40 to 125 °C)

Configuration	Detect mode	ſ	Detection result	s
SW-1 or SW-3b	Open line or output short to GND detected	 > 00-0 < () 5 Y 0	No error detected	==> I _{ODEC} ≥ 0.5 x I _O
SW-2 or SW-3a	Short on LED or short to V-LED detected	==> V _O ≥ 2.6 V	No error detected	$==> V_O \le 2.3 \text{ V}$

Note:

Where: I_O = the output current programmed by the *R-EXT*, I_{ODEC} = the detected output current in detection mode

Figure 22. Detection circuit

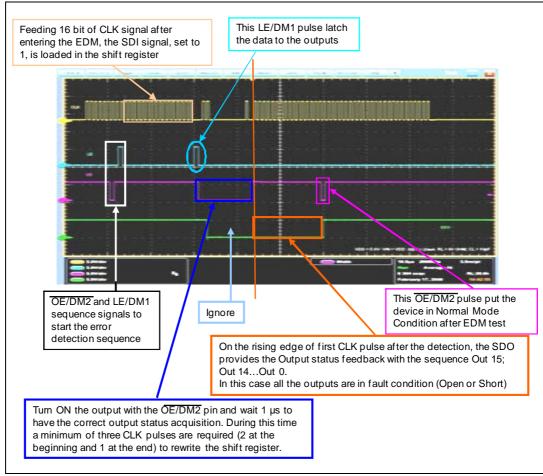


Figure 23. Error detection sequence

22/35 DocID15817 Rev 3

7.5 **Auto power-saving**

The auto power-saving feature minimizes the quiescent current if no active data is detected on the latches and auto powers-up the device as the first active data is latched.

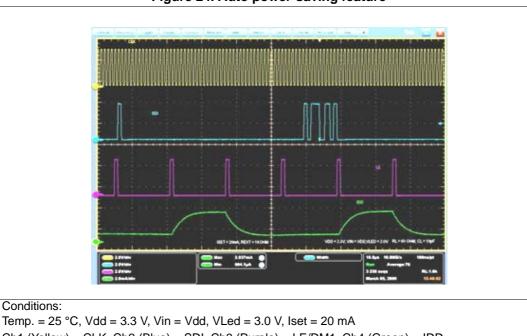


Figure 24. Auto power-saving feature

Ch1 (Yellow) = CLK, Ch2 (Blue) = SDI, Ch3 (Purple) = LE/DM1, Ch4 (Green) = IDD

Idd consumption:

Idd (normal operation) = 2.93 mA

Idd (shutdown condition) = 170 μ A

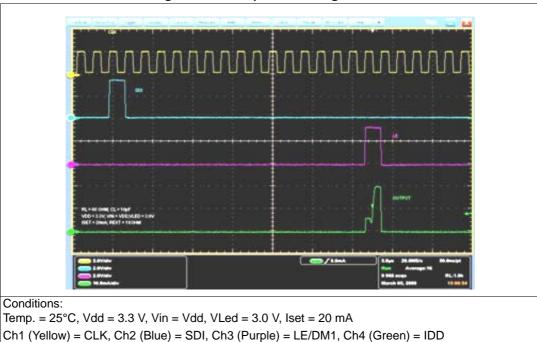


Figure 25. Auto power-saving feature

Note:

When the device goes from auto power-saving to normal operating condition, the first output that switches ON shows the T_{ON} condition as seen in the plot above.

8 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

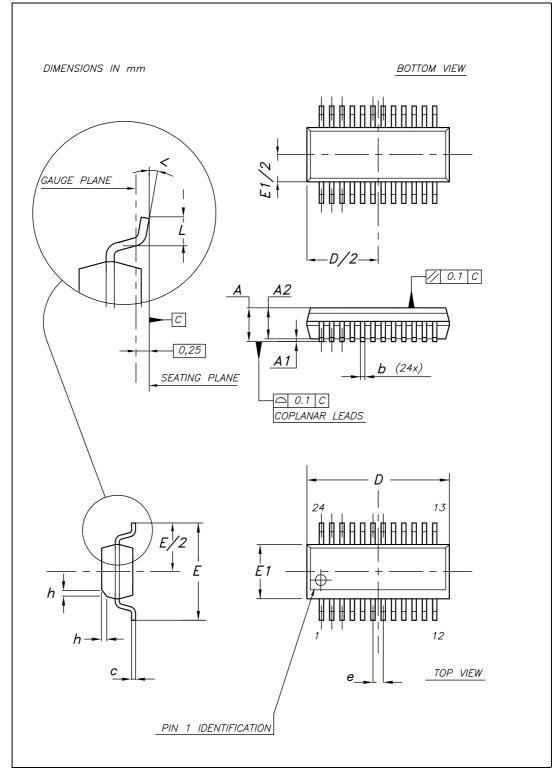


Figure 26. QSOP-24 package dimensions

Table 15. QSOP-24 mechanical data

Dim	mm.			
Dim.	Min	Тур	Max	
Α	1.54	1.62	1.73	
A1	0.1	0.15	0.25	
A2		1.47		
b	0.31	0.2		
С	0.254	0.17		
D	8.56	8.66	8.76	
E	5.8	6	6.2	
E1	3.8	3.91	4.01	
е		0.635		
L	0.4	0.635	0.89	
h	0.25	0.33	0.41	
<	8°	0°		

A A2 A1 b C K H H PIN 1 IDENTIFICATION 1 TO47476B

Figure 27. TSSOP24 package dimensions

Table 16. TSSOP24 mechanical data

Dim.	mm			
Dilli.	Min.	Тур.	Max.	
А			1.1	
A1	0.05		0.15	
A2		0.9		
b	0.19		0.30	
С	0.09		0.20	
D	7.7		7.9	
E	4.3		4.5	
е		0.65 BSC		
Н	6.25		6.5	
К	0°		8°	
L	0.50		0.70	

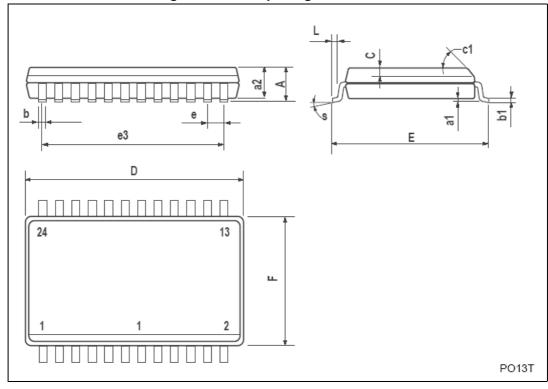


Figure 28. SO-24 package dimensions

Table 17. SO-24 mechanical data

Dim.	mm.		
Dim.	Min	Тур	Мах
А			2.65
a1	0.1		0.2
a2			2.45
b	0.35		0.49
b1	0.23		0.32
С		0.5	
c1	45°(typ.)		
D	15.20		15.60
Е	10.00		10.65
е	1.27		
e3		13.97	
F	7.40 7.40		7.60
L	0.50		1.27
S	°(max.) 8		

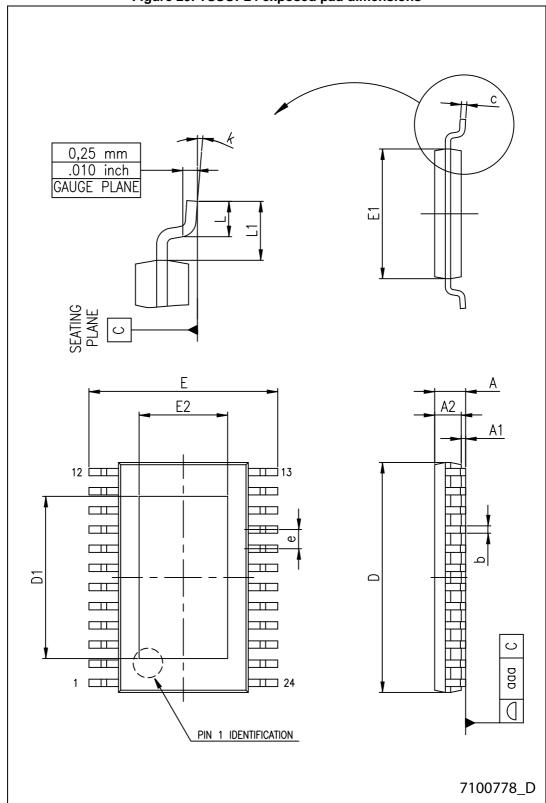


Figure 29. TSSOP24 exposed pad dimensions

Table 18. TSSOP24 exposed pad mechanical data

Dim.		mm		
Diin.	Min.	Тур.	Max.	
А			1.20	
A1			0.15	
A2	0.80	1.00	1.05	
b	0.19		0.30	
С	0.09		0.20	
D	7.70	7.80	7.90	
D1	4.80	5.00	5.2	
Е	6.20	6.40	6.60	
E1	4.30	4.40	4.50	
E2	3.00	3.20	3.40	
е		0.65		
L	0.45	0.60	0.75	
L1		1.00		
k	0		8	
aaa			0.10	

9 Packaging mechanical data

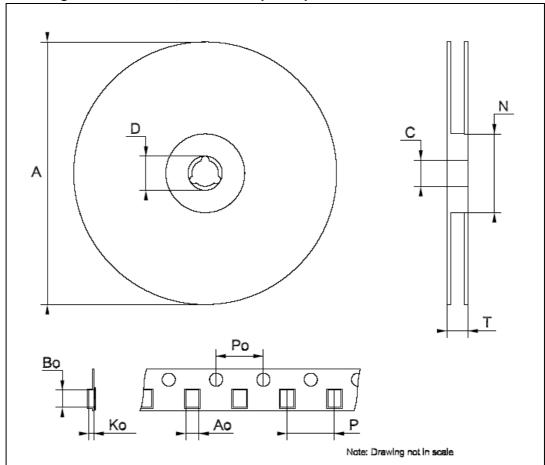


Figure 30. TSSOP24, TSSOP24 exposed pad and SO-24 reel dimensions

577

Table 19. TSSOP24 and TSSOP24 exposed pad tape and reel mechanical data

Dim.	mm			
Dilli.	Min.	Тур.	Max.	
А		-	330	
С	12.8	-	13.2	
D	20.2	-		
N	60	-		
Т		-	22.4	
Ao	6.8	-	7	
Во	8.2	-	8.4	
Ko	1.7	-	1.9	
Po	3.9	-	4.1	
Р	11.9	-	12.1	

Table 20. SO-24 tape and reel mechanical data

Dim.	mm.		
Dilli.	Min	Тур	Max
Α		-	330
С	12.8	-	13.2
D	20.2	-	
N	60	-	
Т		-	30.4
Ao	10.8	-	11.0
Во	15.7	-	15.9
Ko	2.9	-	3.1
Po	3.9	-	4.1
Р	11.9	-	12.1

Revision history STP16DPPS05

10 Revision history

Table 21. Document revision history

Date	Revision	Changes
05-Jun-2009	1	Initial release.
23-Oct-2009	2	Updated document status from preliminary status to final and <i>Note: on page 3</i>
17-Jun-2014	3	Updated Section 8: Package mechanical data. Added Section 9: Packaging mechanical data. Minor text changes.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

DocID15817 Rev 3

35/35