

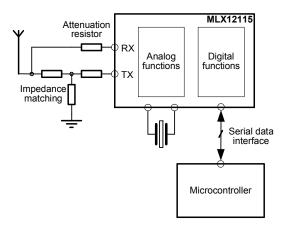
13.56MHz RFID Transceiver

Features and Benefits

Conforms with ISO/IEC 14443A⁽¹⁾
Conforms with ISO/IEC 15693
Compatible with Tag-it^{TM(2)} transponders
Low external component count

Application Examples

Portable data terminals
Access control readers
Contact-less payment terminals
Smart label printers


Ordering Information

Part No. Temperature Suffix MLX12115 E (-40 $^{\circ}$ to 85 $^{\circ}$ C)

Package Code FR (Lead free SSOP20, 2 09 mils) Option code

--

1. Functional Diagram

The main features include user selectable modulation depth in write mode, whereas single sub-carrier ASK and FSK modulations are recognized in the read mode.

Its low power consumption enable design of portable and fixed reader designs requiring tight footprint constraints. The IC minimizes onboard power requirements and reduces parts count in a final reader product.

With the addition of a micro-processor, crystal, and a few passive components a full functioning reader can be easily developed.

It can provide up to 200 milliwatts of RF power to a 50 ohms load with a 5 volts power supply using the recommended matching network. This is suitable for most short to mid range applications.

A simplified antenna and matching network can be used, at the expense of a reduced reading range, for example in hand-held reader applications.

The chip is configured with a serial interface. A synchronization signal is available when the majority voting is used.

2. Description

The MLX12115 is an ISO compliant 13.56MHz RFID transceiver integrated circuit.

It can be used as a drop-in replacement of Texas Instruments' S6700. The device supports multiple RF air interfaces, such as Tag-it $^{\text{TM}}$ (2), ISO15693 and ISO14443A $^{(1)}$ and opens with the direct mode where data can be passed directly to a transponder.

⁽¹⁾ Purchase of MLX12115s doesn't imply any grant of any ISO14443A license. Customers are advised to sign patent licensing agreements with all third parties, especially those companies listed in the introduction of the corresponding standard.

⁽²⁾ Purchase of MLX12115s doesn't imply any grant of any Tag-it[™] license. Customers are advised to sign patent licensing agreements with Texas Instruments. Tag-it[™] is a trademark of Texas Instruments Incorporated

13.56MHz RFID Transceiver

Table of Contents

1.	FUNCTIONAL DIAGRAM	1-1
2.	DESCRIPTION	2- 1
3.	GLOSSARY OF TERMS	3-3
4.	ABSOLUTE MAXIMUM RATINGS	4-3
5.	ELECTRICAL SPECIFICATIONS	5-3
6.	BLOCK DIAGRAM	6-6
7.	PIN DEFINITIONS AND DESCRIPTIONS	7-6
8.	ESD PRECAUTIONS	8-6
9.	RELIABILITY INFORMATION	9-7
10.	PACKAGE INFORMATION	10-8
11	DISCLAIMER	11-0

MLX12115 13.56MHz RFID Transceiver

3. Glossary of Terms

RFID	Radio Frequency IDentification
ISO	International Organization for Standardization / International Electro-technical Commission.
AM	Amplitude Modulation
FM	Frequency Modulation
ASK	Amplitude Shift Keying
FSK	Frequency Shift Keying

4. Absolute Maximum Ratings

Parameter	Symbol	Condition	Min	Max	Unit
Supply voltage (V _{DD} with respect to V _{SS})	V _{DD}	DC	-0.3	6	V
Input voltage on any pin (except TX)	V _{in}		-0.3	V _{DD} +0.3	V
Maximum power dissipation (without heat sink)	P _{max}			500	mW
Maximum junction temperature	Tj			+150	°C
Storage temperature	T _{stor}		-55	+150	°C

Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

5. Electrical Specifications

 T_A = -40 °C to +85 °C, V_{DD} = 5Volts, unless otherwise noted. On board resonator is used.

General DC Parameters											
Parameter	Symbol	Test Conditions	Min	Тур	Max	Units					
Operating supply voltage range	V _{DD}	V _{DD} with respect to V _{SS}	3	5	5.5	V					
Standby current consumption	I _{stb}	V _{DD} = 5.5 V		1	50	μΑ					
Idle mode current consumption	Idle	V _{DD} = 5.5V - Analog section off		12	15	mA					
Operating Current	I _{op}	V _{DD} = 5.5 V		14	19	mA					
Transmit current	I _{tr}	50 Ohms load		80	120	mA					

13.56MHz RFID Transceiver

Transmitter specifications										
Parameter	Test Conditions	Min	Тур	Max	Units					
Peak voltage applied on drain of output transistor				32	V					
Output transistor power dissipation				500	mW					
Output transistor ON resistance	I _d = 50 mA		2	5	Ω					
Output power for five volts operation	See note 1		200		mW					
Amplitude modulation depth adjustment range, in 10% mode, with external resistor connected between RMOD pin and ground.	See note 1	0		90	%					
Amplitude modulation depth in 10% mode with nominal external resistor (10Ω)	See note 1	10	12	16	%					
Minimum depth for 100% ASK	See note 1	40			dB					
Rise and Fall time for 100% ASK	See note 1		2.5	4	μs					
Rise and fall time for 10% modulation depth (nominal external resistor used)	See note 1		1	1.5	μs					

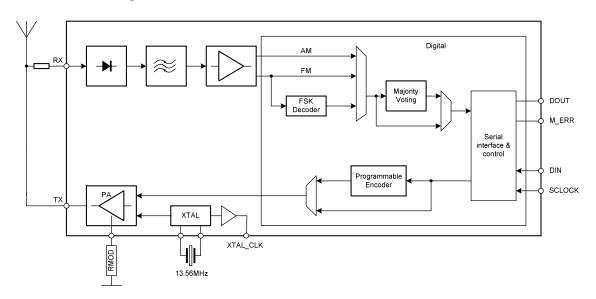
Receiver specifications										
Parameter	Test Conditions	Min	Тур	Max	Units					
Small signal input impedance (RX)			100		kΩ					
Input RF voltage range (RX_IN – V _{SS})	With $1k\Omega$ series external resistor	1	1.8-4.9	Vdd	V					
Receiver sensitivity	See note 1	-40	-65		dBm					
FSK IF filter cut off points		130	200-1400	1800	kHz					
Gain, in FSK mode (FM output)			120		dB					
Gain, in ASK mode (AM output)			80		dB					

Serial link and digital I/O											
Parameter	Symbol	Test Conditions	Min	Тур	Max	Units					
Output current drive	lol	V _{ol} ≤ 0.4 Volt	1			mA					
Output voltage low	Vol	I _{ol max} =4mA	0	0.2	0.4	V					
Output voltage high	V _{oh}	I _{oh max} =4mA	4.6	4.8	5	V					
Input voltage high	Vih		0.7 * V _{DD}		V _{DD} + 0.3	V					
Input voltage low	Vil		-0.3		0.3 * V _{DD}	V					
SCK frequency	f _{CK}	u			1.5	MHz					

13.56MHz RFID Transceiver

Crystal Oscillator											
Parameter	Symbol	Test Conditions	Min	Тур	Max	Units					
Frequency range	F _{xtal}	ISO compliant applications		13.56		MHz					
Start-up time	T _{start}			2	5	ms					
Xtal series resistance	R _{xtal}			50	100	Ω					

External clock signal specifications (see note 2)											
Parameter	Test Conditions	Min	Тур	Max	Units						
Min sine wave amplitude, AC coupled		1		V _{DD}	V _{PP}						
Input on pin XTAL2											
Min sine wave amplitude, DC coupled	Input has to be centered around	1		V_{DD}	V_{PP}						
Input on pin XTAL2	Vdd/2										


XBUF output specifications										
Parameter	Test Conditions	Min	Тур	Max	Units					
XBUF Low Level (Col)	1K load resistor	0	0.2	0.4	V					
XBUF High Level (Coh)	1K load resistor	4.6	4.8	5.0	V					
Rise and fall times (10%-90%)	1K load resistor//12pF		3		ns					

Notes

- 1. Parameter measured using adapted output matching network.
- 2. The external clock symmetry is of paramount importance. It has a direct influence on the transmitter output power. When using a sine wave as external clock input, it must not show visible distortion. In case a square wave is used, its duty cycle has to be equal to 50%.

6. Block Diagram

7. Pin Definitions and Descriptions

The device is packaged in a 20 pin lead free SSOP package.

	Pin	Name	Description
	Number		
	1	VDD_TX	Transmitter power supply
1 VDD TX RX IN 20	2	TX_OUT	Output transistor drain connection
1 VDD_TX RX_IN 20	3	R_MOD	External resistor to set 10% modulation depth mode
2 TX_OUT VSS_RX 19	4	VSS_TX	Transmitter section ground
	5	XTAL1	Pin 1 of Xtal resonator
3 R_MOD NC 18	6	XTAL2	Pin 2 of Xtal resonator and external system clock input
4 VSS TX VDD RX 17	7	VSS_DIG	Digital section ground
1 100_1X	8	XTAL_CLK	Buffered output of Xtal oscillator
_ 5 XTAL1 NC 16 _	9	NU	Not Used (Grounded for normal operation)
001001/45	10	NU	Not Used (Grounded for normal operation)
6 XTAL2 SCLOCK 15	11	DOUT	Data output for serial link
7 VSS_DIG M_ERR 14	12	VDD_DIG	Digital section power supply
	13	DIN	Data input for serial link
- 8 XTAL_CLK DIN 13 -	14	M_ERR	Manchester Protocol error flag
9 NU VDD DIG 12	15	SCLOCK	Serial link clock
	16	NC	Not Connected (Leave open for normal operation)
10 NU DOUT 11	17	VDD_RX	Receiver section power supply
	18	NC	Not Connected (Leave open for normal operation)
	19	VSS_RX	Receiver section ground
	20	RX_IN	Receiver input

8. ESD Precautions

Electronic semiconductor products are sensitive to Electro Static Discharge (ESD). Always observe Electro Static Discharge control procedures whenever handling semiconductor products.

MLX12115 13.56MHz RFID Transceiver

9. Reliability Information

Standard information regarding manufacturability of Melexis products with different soldering processes

Our products are classified and qualified regarding soldering technology, solderability and moisture sensitivity level according to following test methods:

Reflow Soldering SMD's (Surface Mount Devices)

- IPC/JEDEC J-STD-020
 Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices (classification reflow profiles according to table 5-2)
- EIA/JEDEC JESD22-A113
 Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing (reflow profiles according to table 2)

Wave Soldering SMD's (Surface Mount Devices) and THD's (Through Hole Devices)

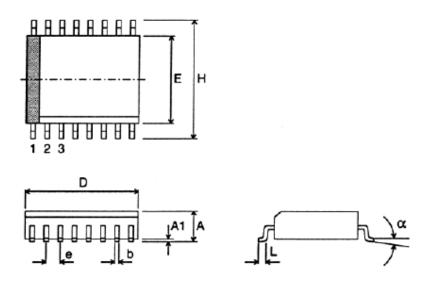
- EN60749-20
 - Resistance of plastic- encapsulated SMD's to combined effect of moisture and soldering heat
- EIA/JEDEC JESD22-B106 and EN60749-15
 Resistance to soldering temperature for through-hole mounted devices

Iron Soldering THD's (Through Hole Devices)

EN60749-15
 Resistance to soldering temperature for through-hole mounted devices

Solderability SMD's (Surface Mount Devices) and THD's (Through Hole Devices)

 EIA/JEDEC JESD22-B102 and EN60749-21 Solderability


For all soldering technologies deviating from above mentioned standard conditions (regarding peak temperature, temperature gradient, temperature profile etc) additional classification and qualification tests have to be agreed upon with Melexis.

The application of Wave Soldering for SMD's is allowed only after consulting Melexis regarding assurance of adhesive strength between device and board.

Melexis is contributing to global environmental conservation by promoting **lead free** solutions. For more information on qualifications of **RoHS** compliant products (RoHS = European directive on the Restriction Of the use of certain Hazardous Substances) please visit the quality page on our website: http://www.melexis.com/quality.aspx

10. Package Information

Shrink Small Outline Package (SSOP)

SSOP 20, 24, 28

Package type		D	E	Н	Α	A 1	е	b	L	α	Package Code
	min	6.60	5.00	7.40		0.05		0.22	0.63	0°	
SSOP 20							0.65				FR20
	max	7.50	5.60	8.20	2.13	0.25		0.38	1.03	8°	
	min	7.90	5.00	7.40		0.05		0.22	0.63	0°	
SSOP 24							0.65				FR24
	max	8.50	5.60	8.20	2.13	0.25		0.38	1.03	8°	
	min	9.90	5.00	7.40		0.05		0.22	0.63	0°	
SSOP 28							0.65				FR28
	max	10.50	5.60	8.20	2.13	0.25		0.38	1.03	8°	

Dimension: mm, coplanarity < 0,1 mm, original dimension: inch

MLX12115 13.56MHz RFID Transceiver

11. Disclaimer

- 1) The information included in this documentation is subject to Melexis intellectual and other property rights. Reproduction of information is permissible only if the information will not be altered and is accompanied by all associated conditions, limitations and notices.
- 2) Any use of the documentation without the prior written consent of Melexis other than the one set forth in clause 1 is an unfair and deceptive business practice. Melexis is not responsible or liable for such altered documentation.
- 3) The information furnished by Melexis in this documentation is provided 'as is'. Except as expressly warranted in any other applicable license agreement, Melexis disclaims all warranties either express, implied, statutory or otherwise including but not limited to the merchantability, fitness for a particular purpose, title and non-infringement with regard to the content of this documentation.
- 4) Notwithstanding the fact that Melexis endeavors to take care of the concept and content of this documentation, it may include technical or factual inaccuracies or typographical errors. Melexis disclaims any responsibility in connection herewith.
- 5) Melexis reserves the right to change the documentation, the specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with Melexis for current information.
- 6) Melexis shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interrupt of business or indirect, special incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the information in this documentation.
- 7) The product described in this documentation is intended for use in normal commercial applications. Applications requiring operation beyond ranges specified in this documentation, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by Melexis for each application.
- 8) Any supply of products by Melexis will be governed by the Melexis Terms of Sale, published on www.melexis.com.

© Melexis NV. All rights reserved.

For the latest version of this document, go to our website at: <u>www.melexis.com</u>

Or for additional information contact Melexis Direct:

Europe, Africa:	Americas:	Asia:
Phone: +32 1367 0495	Phone: +1 603 223 2362	Phone: +32 1367 0495
E-mail: sales_europe@melexis.com	E-mail: sales_usa@melexis.com	E-mail: sales_asia@melexis.com

ISO/TS 16949 and ISO14001 Certified