MAX35101

Time-to-Digital Converter with Analog Front-End

General Description

The MAX35101 is a time-to-digital converter with built-in amplifier and comparator targeted as a complete analog front-end (AFE) solution for the ultrasonic heat meter and flow meter markets.

With a time measurement accuracy of 20ps and automatic differential time-of-flight (TOF) measurement, this device makes for simplified computation of liquid flow. Early edge detection ensures measurements are made with consistent wave patterns to greatly improve accuracy and eliminate erroneous measurements.

Multihit capability with stop-enable windowing allows the device to be fine-tuned for the application. Internal analog switches, an autozero amplifier/comparator, realtime clock (RTC), and programmable receiver sensitivity provide the analog interface and control for a minimal electrical bill of material solution. The RTC provides an event timing mode that is configurable and runs cyclic algorithms to minimize microprocessor interactivity and increase battery life.

Built-in arithmetic logic unit provides TOF difference measurements. A programmable receiver hit accumulator can be utilized to minimize the host microprocessor access and thus minimize current consumption.

For temperature measurement, the MAX35101 supports up to four (4) 2-wire PT1000/500 platinum resistive temperature detectors (RTD).

A simple 4-wire SPI interface allows any microcontroller to effectively configure the device for its intended measurement.

On-board 8KB user flash allows the MAX35101 to be nonvolatile-configurable and provide nonvolatile energy use data to be logged. Configuration can be recalled anytime with a SPI command.

Applications

- Ultrasonic Heat Meters
- Ultrasonic Water Meters
- Ultrasonic Gas Meters

Features and Benefits

- Early Edge Detect Ultrasonic Time-of-Flight
 - Time-to-Digital Accuracy Down to 20ps
 - Measurement Range Up to 8ms
 - · Multihit Capability
 - Early Edge Detect to Provide Advanced Accuracy
 - Programmable TOF Hit Accumulator
 - Two Channels: Single-Stop Channel
 - Stop-Enable Windowing with Edge Trigger Select
 - Built-In Pulse Launcher with Programmable Frequency
 - · Autozero Receiver Comparator
 - · Programmable Acoustic Recovery Sensitivity
 - Automatic Two-Pulse Algorithm for Differential TOF Measurement
 - Temperature Measurement
 - Up to Four (4) 2-Wire Sensors
 - PT1000 and PT500 RTD Support
- Event Timing Mode
 - Allows Automatic Measurement Cycles
 - Minimizes Microcontroller Interactivity to Reduce
 Power Consumption
- Tamper Detection
 - Single Input Pin Detects Tamper and Generates
 Processor Interrupt
- Power Consumption
 - 2.3V to 3.6V Single-Supply Operation
- General
 - 8KB of Nonvolatile Flash Memory for Data Logging
 - Built-in Real Time Clock for Time of Day Monitoring
 - 4MHz Oscillator Can Be a Ceramic Device to Lower System Cost
 - Small, 5mm x 5mm, 32-Pin TQFP Package
 - 4-Wire SPI Interface
 - -40°C to +85°C Operation

Ordering Information appears at end of data sheet.

For related parts and recommended products to use with this part, refer to <u>www.maximintegrated.com/MAX35101.related</u>.

MAX35101

Time-to-Digital Converter with Analog Front-End

Absolute Maximum Ratings

(Voltages relative to ground.)	
Voltage Range on V _{CC} Pins	0.5V to +4.0V
Voltage Range on All Other Pins	
(not to exceed 4.0V)	0.5V to (V _{CC} + 0.5V)
Continuous Power Dissipation ($T_A =$	+70°C)
TQFP (derate 27.80mW/°C above	+70°C)2222.20mW

Operating Temperature Range	40°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range	-55°C to +125°C
Lead Temperature (soldering, 10s)	+300°C
Soldering Temperature (reflow)	+260°C
ESD Protection (All Pins, Human Body Model)±2kV

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Thermal Characteristics (Note 1)

TQFP

Junction-to-Case Thermal Resistance (θ_{JC})......4°C/W

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to <u>www.maximintegrated.com/thermal-tutorial</u>.

Recommended Operating Conditions

 $(T_A = -40^{\circ}C \text{ to } +85^{\circ}C, \text{ unless otherwise noted.})$ (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Supply Voltage	V _{CC}		2.3	3.0	3.6	V
Input Logic 1 (RST, CSW, SCK, DIN, CE)	V _{IH}		Vcc x 0.7	Vc	C + 0.3	V
Input Logic 0 (RST, CSW, SCK, DIN, CE)	VIL		-0.3	Vc	C x 0.3	V
Input Logic 1 (32KX1)	V _{IH32KX1}		V _{CC} x 0.8	5 V _C	c + 0.3	V
Input Logic 0 (32KX1)	VIL32KX1		-0.3	Vcc	x 0.15	V

Electrical Characteristics

(V_{CC} = 2.3V to 3.6V, T_A = -40°C to +85°C, unless otherwise noted. Typical values are at V_{CC} = 3.0V and T_A = +25°C.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP MAX	UNITS
Input Leakage (CSW, \overline{RST} , SCK, DIN, \overline{CE})	١L		-0.1	+0.1	μA
Output Leakage (INT, WDO, T1,T2,T3,T4)			-0.1	+0.1	μA
Output Voltage Low (32KOUT)	Vol32k	2mA		0.2 x V _{CC}	V
Output Voltage High (32KOUT)	Vон32к	-1mA	0.8 x Vcc		V
Output Voltage High (DOUT, CMP_OUT/UP_DN)	VOH	-4mA	0.8 x V _{CC}		V
Output Voltage High (TC)	Vонтс	V _{CC} = 3.3V, I _{OUT} = -4mA	2.9	3.1	V

MAX35101

Time-to-Digital Converter with Analog Front-End

Electrical Characteristics (continued)

(V_{CC} = 2.3V to 3.6V, T_A = -40°C to +85°C, unless otherwise noted. Typical values are at V_{CC} = 3.0V and T_A = +25°C.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS		ТҮР	MAX	UNITS	
Output Voltage High (Launch_UP, Launch_DN)	VOHLAUCH	V _{CC} = 3.3V, I _{OUT} = -50mA	2.8	3.0		V	
Output Voltage Low (WDO, INT, DOUT, CMP_OUT/UP_DN)	VOL	4mA		0	.2 x V _{CC}	V	
Pulldown Resistance (TC)	R _{TC}		650	1000	1500	Ω	
Input Voltage Low (TC)	VILTC			0.36 x V _C	С	V	
Output Voltage Low (Launch_UP, Launch_DN)	VOLLAUCH	V _{CC} = 3.3V, I _{OUT} = 50mA		0.2	0.4	V	
Resistance (T1, T2, T3, T4)	Ron			1		Ω	
Input Capacitance (CE, SCK, DIN, RST, CSW)	CIN	Not tested		7		pF	
RST Low Time	trst				100	ns	
CURRENT	·						
Standby Current	IDDQ	No oscillators running, $T_A = +25^{\circ}C$		0.1	1	μA	
32kHz OSC Current	Із2кнд	32kHz oscillator only (Note 4)		0.5	0.9	μA	
4MHz OSC Current	I4MHZ	4MHz oscillator only (Note 4)		40	85	μA	
LDO Bias Current	ICCLDO	ICCCPU = 0 (Note 4)		15	35	μA	
Time Measurement Unit Current	Ісстми	(Note 4)		4.5	8	mA	
Calculator Current	ICCCPU			2.5	5	mA	
Device Ourrent Drain	ICC3	TOF_DIFF = 2 per second (3 hits), temperature = 1 per 30s		10		μA	
Device Current Drain	ICC6	TOF_DIFF = 2 per second (6 hits), temperature = 1 per 30s		13			
FLASH Erase Current	IFLASH			0.5	1	mA	
ANALOG RECEIVER							
Analog Input Voltage (STOP_UP, STOP_DN)	Vana		10	700	2 x V _{CC} x (3/8)	mV _{P-P}	
Input Offset Step Size	VSTEP			1		mV	
STOP_UP/STOP_DN Bias Voltage	VBIAS			Vcc x (3/8	3)	V	
Receiver Sensitivity	Vana	Stop hit detect level (Note 5)	10			mV _{P-P}	
Measurement Range	tMEAS	Time of flight	8		8000	μs	
Time Measurement Accuracy	tACC	Differential time measurement		20		ps	
Time Measurement Resolution	tRES			3.8		ps	

MAX35101

Time-to-Digital Converter with Analog Front-End

Pin Configuration

Pin Description

PIN	NAME	FUNCTION
1, 22, 25, 28, 30	GND	Device Ground
2	BYPASS	Connect this pin to ground with a capacitor (100nF) to provide stability for the on-board low- dropout regulator that is used to supply the flash circuitry. The effective series resistance of this capacitor needs to be in the 1Ω to 2Ω range.
3, 6, 29	Vcc	Main Supply. Typically sourced from a single lithium cell.
4	32KOUT	CMOS Output. Repeats the 32kHz crystal oscillator frequency.
5	LAUNCH_DN	CMOS Pulse Output Transmission in Downstream Direction of Water Flow
7	LAUNCH_UP	CMOS Pulse Output Transmission in Upstream Direction of Water Flow
8	CMP_OUT/UP_DN	CMOS Output. Indicates the direction (upstream or downstream) of which the pulse launcher is currently launching pulses OR the comparator output.
9	ĪNT	Active-Low Open-Drain Interrupt Output. The pin is driven low when the device requires service from the host microprocessor.
10	CE	Active-Low CMOS Digital Input. Serial peripheral interface chip enable input.

MAX35101

Time-to-Digital Converter with Analog Front-End

Pin Description (continued)

PIN	NAME	FUNCTION	
11	SCK	CMOS Digital Input. Serial peripheral interface clock input.	
12	DIN	CMOS Digital Input. Serial peripheral interface data input.	
13	DOUT	CMOS Output. Serial peripheral interface data output.	
14	RST	Active-Low CMOS Digital Reset Input	
15	WDO	Active-Low Open-Drain Watchdog Output	
16	CSW	CMOS Digital Input. Case Switch. Active-high tamper detect input.	
17	T1	Open-Drain Probe 1 Temperature Measurement	
18	T2	Open-Drain Probe 2 Temperature Measurement	
19	Т3	Open-Drain Probe 3 Temperature Measurement	
20	T4	Open-Drain Probe 4 Temperature Measurement	
21	тс	Input/Output Temperature Measurement Capacitor Connection	
23	32KX0	Connections for 32.768kHz Quartz Crystal. An external CMOS 32.768kHz oscillator can also	
24	32KX1	signal and the 32KX0 pin is left unconnected.	
26	STOP_DN	Downstream STOP Analog Input. Used for the signal that is received from the downstream transmission of a time-of-flight measurement.	
27	STOP_UP	Upstream STOP Analog Input. Used for the signal that is received from the upstream transmission of a time-of-flight measurement.	
31	X2	Connections for 4MHz Quartz Crustal A coramic reconstor can also be used	
32	X1	Connections for 4minz Quartz Crystal. A ceramic resonator can also be used.	
	EP	Exposed Pad. Connect to GND.	

MAX35101

Time-to-Digital Converter with Analog Front-End

Block Diagram

MAX35101

Time-to-Digital Converter with Analog Front-End

Typical Application Circuit

MAX35101

Time-to-Digital Converter with Analog Front-End

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX35101EHJ+	-40°C to +85°C	32 TQFP-EP*
MAX35101EHJ+T	-40°C to +85°C	32 TQFP-EP*

+Denotes a lead(Pb)-free/RoHS-compliant package.

T = Tape and reel.

*EP = Exposed pad.

Chip Information

PROCESS: CMOS

Package Information

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE	PACKAGE	OUTLINE	LAND	
TYPE	CODE	NO.	PATTERN NO.	
32 TQFP-EP	H32E+6	<u>21-0079</u>	<u>90-0326</u>	