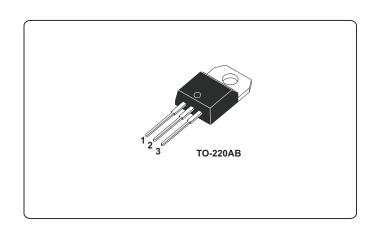


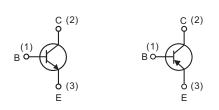
Nell High Power Products

Complementary Silicon power transistors (10A / 60V / 75W)

FEATURES


- Designed for general-purpose switching and amplifier applications.
- DC current gain specified to 10A
- High current gain-Band width product:
 f_T = 2 MHz (Min.) @ I_C = 0.5 Adc
- Excellent safe operating area

DESCRIPTION


The MJE3055A is a silicon epitaxial-base planar NPN transistor in TO-220AB package.

It is intended for use in general-purpose amplifier and switding applications.

The complementary PNP type is MJE2955A.

INTERNAL SCHEMATIC DIAGRAM

MJE3055A(NPN)

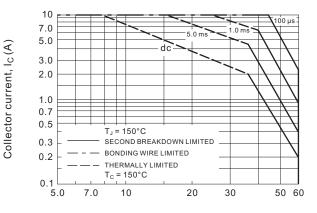
MJE2955A(PNP)

ABSOLUTE MAXIMUM RATINGS (T _C = 25°C unless otherwise specified)								
SYMBOL	PARAMETER		VALUE	UNIT				
V _{CBO}	Collector to base voltage (I _E = 0)	to base voltage (I _E = 0) 70						
V _{CEO}	Collector to emitter voltage (I _B = 0)		60 V					
V _{EBO}	Emitter to base voltage		5.0					
Ic	Collector current		10	А				
I _B	Base current		6					
Pc	Total power dissipation	T _C = 25°C	75	W				
	Derate above 25°C		0.6	W/°C				
T _j	Junction temperature		150	°C				
T _{stg}	Storage temperature		-55 to 150					

^{*}For PNP types voltage and current values are negative.

THERMAL CHARACTERISTICS (T _C = 25°C unless otherwise specified)						
SYMBOL	PARAMETER	VALUE	UNIT			
R _{th(j-c)}	Maximum thermal resistance, junction to case	1.70	°C/W			

www.nellsemi.com Page 1 of 3



Nell High Power Products

SYMBOL	PARAMETER	CONDITIONS	MIN	MAX	UNIT	
OFF CH	ARACTERISTICS		•	•		
I _{CEX}	Collector cutoff current	V _{CE} = 70V, V _{BE} = 1.5V		1.0	-	
		V _{CE} = 70V, V _{BE} = 1.5V, T _C = 150°C		5.0		
I _{CEO}	Collector cutoff current	V _{CE} = 30V, I _B = 0		0.7		
I _{CBO}	Collector cutoff current	V _{CB} = 70V, I _E = 0		1.0	mA	
		V _{CB} = 70V, I _E = 0, T _C = 150°C		10		
I _{EBO}	Emitter cutoff current	V _{EBO} = 5V, I _C = 0		5.0		
V _{CEO(SUS)} *	Collector to emitter sustaining voltage	I _C = 200mA, I _B = 0	60		V	
V _{(BR)CBO}	Collector to base breakdown voltage	I _E = 0, I _C = 100mA	70			
V _{(BR)EBO}	Emitter to base breakdown voltage	I _C = 0, I _E = 100mA	5			
ON CHA	RACTERISTICS					
h _{FE}	Forward current transfer ratio (DC current gain)	I _C = 4A, V _{CE} = 4V	20	100		
		I _C = 10A, V _{CE} = 4V	5			
V _{CE(sat)} *	Collector to emitter saturation voltage	I _C = 4A, I _B = 400mA		1.1		
		I _C = 10A, I _B = 3.3A		8.0	V	
V _{BE(on)} *	Base to emitter on voltage	I _C = 4A, V _{CE} = 4V		1.8	1.8	
O DYNAMI	C CHARACTERISTICS					
f _T	Transition frequency (Current gain- Bandwidth product)	I _C = 0.5A, V _{CE} = 10V, f = 500KHz	2.0		MHz	
I _{s/b} *	Second breakdown collector current with base forward baised	V _{CE} = 40V, t = 1.0s	2.87		А	

^{*}Pulsed: Pulse duration = 300 µs, duty cycle ≤ 20%.

Fig.1 Active region safe operating area

Collector-emitter voltage, $V_{CE}(V)$

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $l_{\text{C}}\text{-V}_{\text{CE}}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of figure 1 is based on $T_{J(pk)}$ =150°C. T_C is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(pk)} \leq 150$ °C. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

www.nellsemi.com Page 2 of 3

^{*}For PNP types voltage and current values are negative.

Nell High Power Products

Fig.2. DC current gain

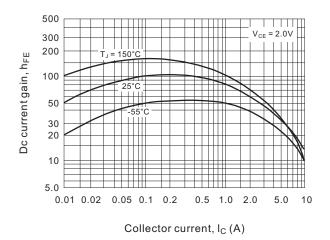


Fig.3 Power derating

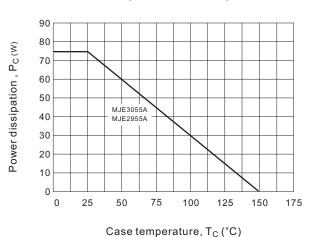
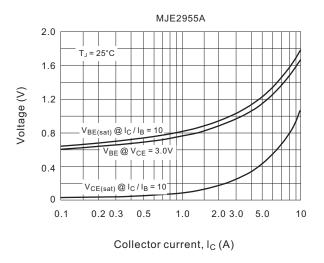
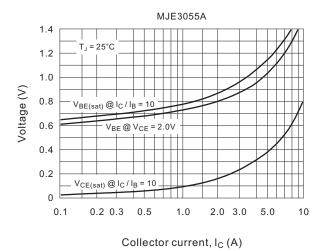
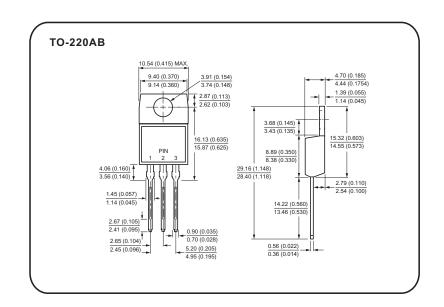





Fig.4 "On" Voltages

