3 GHz SMALL MICROWAVE RELAY

FEATURES

1. Excellent high frequency
 characteristics ($\sim 2.5 \mathrm{GHz}$, Impedance 50W)

- Insertion loss: 0.2 dB or less
- Isolation: 60 dB or more
- Insertion loss

- V.S.W.R./ Return loss: 1.2dB or less/ 20.8 dB or more

2. High sensitivity

- Nominal operating power: 200 mW

3. Small size

- Size: $20.5(\mathrm{~L}) \times 12.4(\mathrm{~W}) \times 9.4(\mathrm{H}) \mathrm{mm}$ $.807(\mathrm{~L}) \times .488(\mathrm{~W}) \times .370(\mathrm{H})$ inch
*Also available for unit support (contact us for more details).

RoHS Directive compatibility information http://www.nais-e.com/

RX (ARX)

TYPICAL APPLICATIONS ORDERING INFORMATION

- Cellular phone base station (W-CDMA,

FPLMTS, IMT-2000, PCS, DCS)

- Cellular phone-related measurement devices (SP3T/SP4T switches, etc)
- Wireless LAN
- Wireless Local Loop

Note: Standard packing; Carton: 50 pcs. Case 500 pcs.

TYPES ANE COIL DATA (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)

- Single side stable type

Part No.	Nominal voltage, V DC	Pick-up voltage, V DC (max.)(initial)	$\begin{gathered} \hline \text { Drop-out voltage, } \\ \text { V DC } \\ \text { (min.)(initial) } \\ \hline \end{gathered}$	Coil resistance, $\Omega(\pm 10 \%)$	Nominal operating current, $\mathrm{mA}(\pm 10 \%)$	Nominal operating power, mW	Max. allowable voltage, V DC (at $60^{\circ} \mathrm{C} 140^{\circ} \mathrm{F}$)
ARX1003	3	2.25	0.3	45	66.7	200	3.3
ARX104H	4.5	3.375	0.45	101	44.4	200	4.95
ARX1006	6	4.5	0.6	180	33.3	200	6.6
ARX1009	9	6.75	0.9	405	22.2	200	9.9
ARX1012	12	9	1.2	720	16.7	200	13.2
ARX1024	24	18	2.4	2,880	8.3	200	26.4

- 1 coil latching type

Part No.	Nominal voltage, V DC	Set voltage, V DC (max.)(initial)	Reset voltage, V DC (max.)(initial)	Coil resistance, $\Omega(\pm 10 \%)$	Nominal operating current, $\mathrm{mA}(\pm 10 \%)$	Nominal operating power, mWW	Max. allowable voltage, V DC $\left(\mathrm{at} 60^{\circ} \mathrm{C} 140^{\circ} \mathrm{F}\right)$
ARX1103	3	2.25	2.25	45	66.7	200	
ARX114H	4.5	3.375	3.375	101	44.4	2.3	
ARX1106	6	4.5	4.5	180	33.3	4.95	
ARX1109	9	6.75	6.75	405	22.2	200	
ARX1112	12	9	9	720	16.7	200	
ARX1124	24	18	18	2,880	8.3	200	2.9

- 2 coil latching type

Part No.	Nominal voltage, V DC	$\begin{aligned} & \text { Set voltage, } \\ & \text { V DC } \\ & \text { (max.)(initial) } \end{aligned}$	$\begin{gathered} \text { Reset voltage, } \\ \text { V DC } \\ \text { (max.)(initial) } \end{gathered}$	Coil resistance, $\Omega(\pm 10 \%)$	Nominal operating current, $\mathrm{mA}(\pm 10 \%)$	Nominal operating power, mW	Max. allowable voltage, V DC (at $60^{\circ} \mathrm{C} 140^{\circ} \mathrm{F}$)
ARX1203	3	2.25	2.25	22.5	133.3	400	3.3
ARX124H	4.5	3.375	3.375	50.6	88.9	400	4.95
ARX1206	6	4.5	4.5	90	66.7	400	6.6
ARX1209	9	6.75	6.75	202.5	44.4	400	9.9
ARX1212	12	9	9	360	33.3	400	13.2
ARX1224	24	18	18	1,440	16.7	400	26.4

 PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$

REFERENCE DATA

1. High frequency characteristics

Sample: ARX1012
Measuring method: Measured with HP network analyzer (HP8753C).
The details for the high frequency characteristics and the measurement procedures and conditions are listed in the RX relay test report.

- V.S.W.R. (Return loss)

- Insertion loss

- Isolation

NOTES

1. Coil operating power

Pure DC current should be applied to the coil. The wave form should be
rectangular. If it includes ripple, the ripple factor should be less than 5%.
However, check it with the actual circuit since the characteristics may be slightly different. The nominal operating voltage should be applied to the coil for more than 30 ms to set/reset the latching type relay.

2. Coil connection

When connecting coils, refer to the wiring diagram to prevent mis-operation or malfunction.

3. External magnetic field

Since RX relays are highly sensitive polarized relays, their characteristics will be affected by a strong external magnetic field. Avoid using the relay under that condition.

4. Cleaning

For automatic cleaning, the boiling method is recommended. Avoid ultrasonic cleaning which subjects the relays to high frequency vibrations, which may cause the contacts to stick. It is recommended that a fluorinated hydrocarbon or other alcoholic solvents be used.

5. Soldering

The manual soldering shall be performed under following condition.
Max. $260^{\circ} \mathrm{C} 500^{\circ} \mathrm{F} 10$ s
Max. $350^{\circ} \mathrm{C} 662^{\circ} \mathrm{F} 3 \mathrm{~s}$
In addition, when soldering the case to the PC board, the plating may swell depending on the soldering conditions.

6. Conditions for operation, transport and storage conditions

1) Ambient temperature, humidity, and atmospheric pressure during usage, transport, and storage of the relay:
(1) Temperature:
-40 to $+70^{\circ} \mathrm{C}-40$ to $+158^{\circ} \mathrm{F}$
(2) Humidity: 5 to 85% RH
(Avoid freezing and condensation.) The humidity range varies with the temperature. Use within the range indicated in the graph below.
(3) Atmospheric pressure: 86 to 106 kPa Temperature and humidity range for usage, transport, and storage:

2) Condensation

Condensation forms when there is a sudden change in temperature under high temperature and high humidity conditions. Condensation will cause deterioration of the relay insulation.

3) Freezing

Condensation or other moisture may freeze on the relay when the temperature is lower than $0^{\circ} \mathrm{C} 32^{\circ} \mathrm{F}$. This causes problems such as sticking of movable parts or operational time lags.
4) Low temperature, low humidity environments
The plastic becomes brittle if the relay is exposed to a low temperature, low humidity environment for long periods of time.

7. Latching relay

In order to assure proper operating regardless of changes in the ambient usage temperature and usage conditions, nominal operating voltage should be applied to the coil for more than 30 ms to set/reset the latching type relay.

