TW8811 – TFT Flat Panel Controller

with built-in 3D Video Decoder, Triple ADCs, and PIP Support

Preliminary Data Sheet from Techwell, Inc.

Information may change without notice

Disclaimer

This document provides technical information for the user. Techwell Inc. reserves the right to modify the information in this document as necessary. The customer should make sure that they have the most recent data sheet version. Techwell Inc. holds no responsibility for any errors that may appear in this document. Customers should take appropriate action to ensure their use of the products does not infringe upon any patents. Techwell Inc. respects valid patent rights of third parties and does not infringe upon or assist others to infringe upon such rights.

PRELI	IMINARY
-------	---------

Introduction4
Applications4
Analog RGB Inputs4
24bit Digital RGB and 8/16/24-bit YCbCr Inputs4
TFT Panel Support4
On Screen Display5
Image Processing5
PIP Function5
SDRAM
Host Interface5
Clock Generation5
Power Management5
Miscellaneous
Order Information
Functional Description8
Overview
Analog Front-end
Video Source Selection
Clamping and Automatic Gain Control
Video Decoder
Sync processor
Color Decoding
Automatic standard detection
Video Format support
Analog RGB / YPDPr Processor
Analog Front-end
Sync Processor
Component Processor
Digital Input Support
17 I Panel Support
Ditnering
Image Control
Input Image Control
Image Scaling
Display Timing
Un Screen Display
Bitiliapped mode
External OSD port
Nicrocontroller interface
Fower Management
Memory Interface 21
Test Modes 21
Pin Diagram 22
Pin Description 23
Parametric Information
AC/DC Electrical Parameters
Filter Curves
Anti-alias filter
Decimation filter
Chroma Band Pass Filter Curves
Luma Notch Filter Curve for NTSC and PAL
Chrominance Low-Pass Filter Curve
Mechanical Data 208 QFP34
TW8811 Register Summary
General (Common for any page)
Decoder
Decoder
RGB/YPbPr (Analog)
LCDC – 3D Comb/NR Control
Internal Test
LCDC – OSD I
LCDC – Reserve
CCFL Control
LCDC – External OSD & Misc
LCDC – DMA
LCDC – Status & Interrupt
LCDC : ADC/LLPLL
LCDC – Gamma
LODO - Input ivieasurement

LCDC -	Scaling	45
LCDC -	Image Adjustment	46
LCDC -	Display Control	47
LCDC -	Memory Control	47
LCDC -	PIP/MPIP Control	48
	Power Management	49
		50
TW8811 Reg	ister Description	
0x000 –	Product ID Code Register (ID)	
0x001-	Chip Status Register (CSTATUS)	52
0x002-	Input Format (INFORM)	52
0x003-	QCLAMP	52
0x004 –	CKHY	53
0x005-	Reserved	53
0x006 -	Analog Control Register (ACNTL)	53
0x007 –	Vortical Dolay Register, High (CROP_HI)	53
0x000	Vertical Delay Register, Low (VDELAT_LO)	ວວ 53
	Horizontal Delay Register Low (HDELAY LO)	55 54
0x00A -	Horizontal Active Register Low (HACTIVE LO)	
0x00C -	-Control Register I (CNTRI 1)	
0x010-	BRIGHTNESS Control Register (BRIGHT)	
0x011-	CONTRAST Control Register (CONTRAST)	55
0x012-	SHARPNESS Control Register I (SHARPNESS)	55
0x013-	Chroma (U) Gain Register (SAT_U)	55
0x014-	Chroma (V) Gain Register (SAT_V)	55
0x015-	Hue Control Register (HUE)	55
0x016-	Reserved	55
0x017 –	Vertical Peaking Control I	55
0x018-	Coring Control Register (CORING)	
0x019-		
0x01A -	CC/EDS Data Register (CC_DATA)	
0x010-	- Standard Selection (SDT)	
0x010 -	- Standard Recognition (SDTR)	
0x01E -	Component Video Format (CVFMT)	
0x01F-	Control Register	
0x020-	Clamping Gain (CLMPG)	59
0x021-	Individual AGC Gain (IAGC)	59
0x022-	AGC Gain (AGCGAIN)	59
0x023-	White Peak Threshold (PEAKWT)	59
0x024-	Clamp level (CLMPL)	59
0x025-	Sync Amplitude (SYNC1)	59
0x020-	Clamp Desition Desister (DCLAMD)	39
0x027 -	Vertical Control Register	60
0x020 -	Vertical Control II	60
0x020	Color Killer Level Control	60
0x02B-	Comb Filter Control	60
0x02C-	- Luma Delay and HSYNC Control	60
0x02D -	- Miscellaneous Control Register I (MISC1)	61
0x02E-	Miscellaneous Control Register II (MISC2)	61
0x02F –	Miscellaneous Control III (MISC3)	61
0x030-	Macrovision Detection	62
0x031 –		62
0x032-	HFREF	62
0x033-		∠ס רח
0x034 -	Clamp Cott2	02 63
0x038 -	Analog Cntl	
0x03A -	0x03E Reserved	63
0x03F-	DAC Current Reference	63
3D Com	b Control (0x060 to 0x06F)	64
0x060-	MDTH	64
0x062-	3D_MODE	64
0x065-	STR	64
0x067	NRLEVEL	64
0x068-	NSMODE	64
0x069-	NSLEVEL1	64

TECHWELL, INC.

REV C 02/07/2008

0x06A-NSLEVEL2	.64
0x06B – NSHYS	.65
0x0C0 to 0x0CF – Internal Test	.66
0x100 to 0x12F - OSD1	.68
0x138 – CCFL/LED Control I	.73
0x139 – CCFL/LED Sense Threshold	.73
0x13A – CCFL/LED Control II	.73
0x13B – CCFL/LED PWM	.73
0x13C – CCFL/LED Dim Frequency	.73
0x13D – CCFL/LED Dim Control	.73
0x13E – PWMTOP	.73
0x151 to 0x15F – External OSD & Misc	.74
Host Parallel Interface / DMA Configuration Registers	.76
0x1A0 – Mode Setting Register	.76
0x1A1– Total Transfer Count High Byte Register	.76
0x1A2- Total Transfer Count Low Byte Register	.76
0x1A3 – Memory Access Address High Byte Register	.76
0x1A4 - Memory Access Address Medium Byte Register	.76
0x1A5- Memory Access Address Low Byte Register	.76
0x1A6– Data Access (Read/Write) Register	.77
0x1A7 – Command Register	.77
0x1A8– Status Read Register	77
0x1B0 to 0x1BF – Status and Interrupt Registers	78
ADC/LEPLE Configuration Registers	82
0x1C0 – LLPL Input Control Register	82
0x1C1 – LL PL Input Detection Register	82
0x101 – LLI LL Input Detection (Cegister	83
0x1C2 - LLI LL Control Register	.00
0x1C3 - LLFLL Divider Light Register	.00
0x1C4 - LLFLL Divider Low Register	.03 02
0x1C5 - LLFLL Clock Flidse Register	.00
0x1C0 – LLPLL LOOP CONIIOI REGISTER	.03
0x1C7 – LLPLL VCO Control Register	.84
0x1C8 – LLPLL VCO Control Register	.84
UXIC9 - LLPLL Pre Coast Register	.84
UX1CA – LLPLL POSt Coast Register	.84
UX1CB – SOG Inresnoid Register	.84
UX1CC - Scaler Sync Selection Register	.84
UXICD - PLL Initialization Register	.85
UX1CE – RGB ADC Misc. Register	.85
UX1CF – RGB ADC Misc2. Register	.85
0x1D0 – Clamp Gain Control Register	.85
0x1D1 – Y Channel Gain Adjust Register	.86
0x1D2 – C Channel Gain Adjust Register	.86
0x1D3 – V Channel Gain Adjust Register	.86
0x1D4 – Clamp Mode Control Register	.86
0x1D5 – Clamp Start Position Register	.86
0x1D6 – Clamp Stop Position Register	.86
0x1D7 – Clamp Master Location Register	.86
0x1D8 – ADC TEST Register	.87
0x1D9 – Y Clamp Reference Register	.87
0x1DA – C Clamp Reference Register	.87
0x1DC – HSYNC Width Register	.87
0x1DD – R Channel ADC Offset Register	.87
0x1DE - G Channel ADC Offset Register	.87
0x1DF - B Channel ADC Offset Register	.87
0x1F0 to 0x1FE - LCDC - Gamma	.88
Flat Panel Display Registers	.89
0x20E to 0x20F - Input Type Registers	.89
0x210 to 0x21F – Input and Input Related Registers	.89
r · · · · · · · · · · · · · · · · · · ·	

0x220 to 0x22F – Input Format Measurement Registers	93
0x230 to 0x23F – Scaling/Zoom Control	95
0x240 to 0x26F – Image Adjustment	96
UX270 to UX28F - DISPLAY CONTROL	100
UX2AU to UX2AF – IVIEMORY COntrol	104
UX2AE to UX2C9 - PIP Control	105
UX2CA to UX2EC - MPIP Control Registers	107
0x2ED – Dual-View Control Registers	
UX2F4 to UX2F8 – Power Management Registers	
Timing Controller Conliguration Registers	
0x300 – Output Mode Control Register	
0x301 – Display Control Register	
0x302 – Display Direction Control Register	
0x303 – Control Signal Polarity Selection Register	
0x304 – Control Signal Generation Method Register	
UX305 – Inversion signal operating period register	
0x306 – Panel type Select Register	
0x30A – Special LCD Module Control Register	
0x30B - REVV(TCPOLP)/ REVC(TCPOLIN) CONTROL REgister	5114
0x30C – Vertical Active Start High Register	
0x30D – Vertical Active Staft Low Register	
UX30E – Vertical Active End High Register	
UX30F – Venical Active End Low Register	
Column Driver Chip Control Signals Relative Registers	
0x310 – Polarity Control High Register	
0x311 – Polarity Control Low Register	
0x312 – Load/Latch Pulse Start High Register	
0x313 – Load/Latch Pulse Start Low Register	
0x314 – Load/Latch Pulse Width High Register	
0x315 – LOad/Latch Pulse Width Low Register	
0x31A – Column Driver Start Pulse High Register	
0x31B – Column Driver Start Pulse Low Register	GII
0x31C – Column Driver Start Pulse Width Law Degister	IID
0x3 ID - Column Driver Stan Puise Width Low Register	110
Now Driver Chilp Control Signals Relative Registers	116
0x320 - Clock Start Pulse Law Pagister	116
0x321 - Clock Statt Pulse LOW Register	116
0x322 - Clock Statt Pulse Width Low Pagister	110
0x323 - Clock Statt Pulse Width Low Register	116
0x324 - Row Statt Pulse Light Register	116
0x325 - Row Statt Pulse Low Register	116
0x320 - Row Statt Pulse Width Low Register	116
0x327 - Row Output Enable High Register	116
0x320 - Row Output Enable Low Register	116
0x32D - Now Output Enable Low Neylster	116
0x32E – Row Ouput Enable Width Low Register	117
0x321 - Register	117
0x335_Register	117
0x336_Register	117
0x337_Register	117
0x338 – Register	117
0x339 – Register	117
0x3A0 to $0x3A0 - PLL$ Control Registers	117
Copyright Notice	. 120
Trademark Acknowledgment	. 120
Disclaimer	. 120
Life Support Policy	. 120
Revision History	121
,	

PRELIMINARY

Introduction

Applications

- LCD TVs for home and mobile use
- Computer LCD Panel Monitors with Television
- Portable DVD and DVRs players
- Progressive Scan TV, DTV and HDTV monitors
- Portable media player

Features

The TW8811 incorporates many of the features required to create multi-purpose in-car LCD display system in a single package. It integrates a high quality 3D comb NTSC/PAL/SECAM video decoder, triple high speed RGB ADCs, dual scalers for PIP and multi-PIP support, bitmapped OSD, TCON, triple DACs and images enhancement functions which include Black and White Stretch. favorite color enhancement and edge enhancement. To further facilitate the move to wide screen displays, it also supports panoramic scaling. On the input side, it supports a rich combination of CVBS, S-video, YPbPr, analog RGB as well as digital YPbPr/RGB inputs. On the output side, it supports both digital and analog panel type with its TTL and analog RGB output.

TW8811 also has a PIP (Picture in Picture) function that can display two sources display simultaneously on single display window. It also has built-in bit-mapped OSD with acceleration as well as 16-bit external OSD support.

Analog Video Decoder

NTSC (M, 4.34) and PAL (B, D, G, H, I, M, N, N combination), PAL (60), SECAM with automatic format detection

Three 10-bit ADCs and analog clamping circuit.

- Fully programmable static gain or automatic gain control for the Y or CVBS channel
- Programmable white peak control for the Y or CVBS channel
- Software selectable analog inputs allows any of the following combinations:
 - Up to 4 composite video
 - Up to 2 S-Video
 - Up to 1 YPbPr
- High quality motion adaptive 3D comb filter for both NTSC and PAL with concurrent 3D noise reduction
- PAL delay line for color phase error correction
- Image enhancement with 2D dynamic peaking and CTI.
- Digital sub-carrier PLL for accurate color decoding
- Digital horizontal PLL and Advanced synchronization processing for VCR playback and weak signal performance.
- Programmable hue, brightness, saturation, contrast, sharpness.
- High quality horizontal and vertical filtered down scaling with arbitrary scale down ratio
- Detection of level of copy protection according to Macrovision standard
- Supports YPbPr input up to 1080i with sub-sampled resolution
- Support automatic standard detection for YPbPr input

Analog RGB Inputs

- Triple high speed 10-bit ADCs with clamping and programmable gain amplifier.
- Up to three independent RGB / YPbPr channels with corresponding SOG
- Built-in line locked PLL with sync separator
- Allows high resolution components inputs like DTV 480p, 720p, 1080i

24bit Digital RGB and 8/16/24-bit YCbCr

Inputs

- Allows connection with alternative Video and PC Graphics inputs.
- Support both 656 and 601 video formats
- Allows connection to external HDMI receiver

TFT Panel Support

- Supports panel with resolution up to WXGA
- Supports 3, 4, 6 or 8 bits per pixel up to 16.8 million colors with built-in dithering engine
- Support single channel TTL panel
- Support analog panel with analog RGB output

- Built-in programmable timing controller

On Screen Display

- Supports dual window bitmapped OSD.
- Built-in OSD controller with BitBlit Engine
- Supports variety functions included like blinking, transparency and blending.
- Supports External 16-bit OSD with external alpha blending control.
- Support OSD compression

Image Processing

- Built-in 2D de-interlacing engine with proprietary low angle compensation circuit for smooth video rendering.
- Built-in high quality scaler with nonlinear scaling support
- Programmable hue, brightness, saturation, contrast
- Sharpness control with vertical peaking up to +12db
- Programmable color transient improvement control
- Supports programmable cropping of input video and graphics.
- Independent RGB gain and offset controls
- Panorama / Water-glass scaling
- DTV hue adjustment
- Programmable 10-bit Gamma correction for each color
- Operated in Frame Sync mode only
- Black/White Stretch
- Programmable favorite color enhancement

PIP Function

- PIP with variable sub window size
- POP

- Multiple PIP support
- Built-in high quality down scaling engine for PIP

SDRAM

- Support 16bits Bus width SDRAM

Host Interface

- Supports 2-wire serial bus interface
- Supports 8Bits Parallel Host Interface
- Support DMA transfer

Clock Generation

- Frequency synthesizer with spread spectrum generate memory and display clocks
- Spread spectrum profile based on triangular modulation with center spread
- Modulation frequency and spread width can be selectable

Power Management

- Supports Panel power sequencing.
- Supports DPMS for monitor power management.
- 1.8 / 3.3 V operation

Miscellaneous

- Built-in single CCFL back light controller
- Built-in single LED back light controller
- Power-down mode
- Single 27MHz crystal
- 208-pin PQFP package

Order Information

Package Description

Part #	Name	Description	Pin Count	Body Size
TW8811	QFP 208	Quad Flat Package	208	28 x 28 mm^2

TW8811 Flat Panel TV/Monitor controller functional block diagram

Analog & Digital

TW8811 Flat Panel TV or TV + PC Monitor system

Functional Description

Overview

Techwell's TW8811 Flat Panel TV/Monitor controller is a highly integrated TFT panel controller. It integrates a high quality NTSC/PAL/SECAM 3D video decoder, triple high speed ADC, dual scalers for PIP support, timing controller, and flexible bit-mapped OSD engine. This unique level of mixed signal integration turns a TFT panel into a flexible display system. Its built-in triple ADCs and PLL allow both YPbPr and RGB input support. Separate flexible digital inputs interface also allow it to connect other front-end chips. It incorporates easy-to-operate and powerful features in a single package for multi-purpose PC display and LCD entertainment systems.

The TW8811 contains all the logic required to convert standard TV, DTV, and PC monitor signals to the digital control and data signals required to drive various TFT panel types. It supports TTL as well as analog TFT panel resolutions up to WXGA.

The chip accepts CVBS (composite) analog input or S-video analog input or YPbPr component input or analog RGB input for use as a video monitor. Up to 13 analog inputs can be connected simultaneously under external microprocessor control.

The integrated analog front-end contains total six ADCs with clamping circuits and Automatic Gain Control (AGC) circuit on certain channel to minimize external component count. It employs proprietary 3D Comb filter Y/C processing technologies to produce exceptionally high quality pictures.

TW8811 has three high speed ADCs that can support various analog signal inputs up to WXGA.

The chip's internal logic synchronizes the panel frame rate to the incoming input frame rate. A high quality image-scaling engine is used to convert the lower resolution formats or high resolution DTV formats to the output panel resolution. An internal de-interlacing engine also allows interlaced video to be supported.

On Screen Display is supported through either external OSD chip or on-chip OSD for maximum flexibility. A Closed Caption decoder is built in. The TW8811 also accepts a 24 bit digital RGB input from external HDMITM receiver or ADCs. In addition, it accepts 8/16/24 bits digital YCbCr input.

For the variety for usage, TW8811 has a built-in TCON for direct connecting with low cost TCON-less panel.

The TW8811 also supports TFT panel power sequencing, DPMS (VESATM Display Power Management Signaling) signaling and power management. It also has built-in single channel CCFL or LED back light controller to further simplify the system design. The control interface supports both a 2-wire serial bus interface and 8bit parallel interface. The TW8811 core operates at 1.8 V, the IO at 3.3 V and packaged in a 208-pin LQFP package.

Analog Front-end

The analog front-end converts analog video signals to the required digital format. There are six analog front-end channels. Three channels are dedicated to analog video support. Every channel contains analog anti-aliasing filter, clamping circuit and 10-bit ADCs. It allows the support of CVBS, S-video and YPbPr component input signals for main or sub display. The other three channels are dedicated to YPbPr component video or RGB input support. Every channel contains the analog clamping circuit, variable gain amplifier and ADCs. It allows three separate inputs to be connected simultaneously. A built-in line locked PLL is used to generate the sampling clock for various inputs.

Video Source Selection

TW8811 has total 13 analog inputs for maximum flexibility. Of the 13 inputs, 6 are used for 2 channels of YPbPr/RGB input with corresponding SOG pin. The other 7 inputs are used by video decoder to allow up to 4 CVBS or 2 S-Video or 1 component input. All inputs are software selectable.

Clamping and Automatic Gain Control

All six channels have built-in clamping circuit that restores the signal DC level. The Y channel restores the back porch of the digitized video to a programmable level. The C, Pb and Pr channels restore the back porch of the digitized video to a level of 128. The R, G, and B channels restore the blank to a level of 16. This operation is automatic through internal feedback loop.

In the case of RGB channel, two clamping modes are provided. When the input is YPbPr signal, the clamping to pre-determined DC level is done through internal feedback loop. When the input is PC RGB signal, the input is self clamped to the zero level.

The Automatic Gain Control (AGC) of the Y channel adjusts input gain so that the sync tip is at a desired level. The white peak protection logic is included to prevent saturation in the case of abnormal proportion between sync and white peak level.

Video Decoder

Sync processor

TW8811 has two sync processors, one for RGB channel and one for video channel. The sync processor of video input detects horizontal synchronization and vertical synchronization signals in the composite video or in the Y signal of an S-Video or component signal. The processor contains a digital phase-

locked-loop and decision logic to achieve reliable sync detection in stable signal as well as in unstable signals such as those from VCR fast forward or backward.

Horizontal sync processing

The horizontal synchronization processing contains a sync separator, a phase-locked-loop (PLL), and the related decision logic.

The horizontal PLL locks onto the extracted horizontal sync in all conditions to provide jitter free image output. From there, the PLL also provides orthogonal sampling raster for the down stream processor. It has wide lock-in range for tracking any non-standard video signal.

Vertical sync processing

The vertical sync separator detects the vertical synchronization pattern in the input video signals. A detection window controls the determination of sync. This provides more reliable synchronization. It simulates the functionality of a PLL without the complexity of a PLL. The field status is determined at vertical synchronization time based on the vertical and horizontal sync relationship.

Color Decoding

Y/C separation

The color-decoding block contains the luma / chroma separation for the composite video signal and multistandard color demodulation. For NTSC and PAL standard signals, the luma / chroma separation can be done either by comb filter or notch/band-pass filter combination. For SECAM standard signals, only notch/band-pass filter is available. The default selection for NTSC/PAL is comb filter. The characteristics of the band-pass filter can be found in the filter curve section.

In the case of comb filter, the TW8811 separates luma (Y) and chroma (C) of a NTSC/PAL composite video signal using a proprietary 3D/2D adaptive comb filter. This technique leads to good Y/C separation with small cross luma and cross color at both horizontal and vertical edges. Due to the line buffer used in the comb filter, there is always two lines processing delay in the output images no matter what standard or filter option is chosen.

Color demodulation

The color demodulation for NTSC and PAL standard is done by quadrature mixing the chroma signal to the base band and extracting the chroma components with low-pass filter. The low-pass filter characteristic can be selected for optimized transient color performance. For the PAL system, the PAL ID or the burst phase switching is identified to aid the PAL color demodulation.

The SECAM color demodulation process consists of bell filtering, FM demodulator and de-emphasis filtering. The chroma carrier frequency is identified in the process and used to control the SECAM color demodulation.

The sub-carrier signal for use in the color demodulator is generated by direct digital synthesis PLL that locks onto the input sub-carrier reference (color burst). This arrangement allows any sub-standard of NTSC and PAL to be demodulated easily.

Automatic Chroma Gain Control

The Automatic Chroma Gain Control (ACC) compensates for reduced amplitudes caused by transmission loss in video signal. In the NTSC/PAL standard, the color reference signal is the burst on the back porch. This color-burst amplitude is calculated and compared to standard amplitude. The chroma (Cx) signals are then compensated in amplitude accordingly. The range of ACC control is –6db to +24db.

Low Color Detection and Removal

For low color amplitude signals, black and white video, or very noisy signals, the color will be "killed". The color killer uses the burst amplitude measurement to switch-off the color when the measured burst amplitude falls below a programmed threshold. The threshold has programmed hysteresis to prevent

oscillation of the color killer operation. This function can be disabled by programming a low threshold value.

Automatic standard detection

The TW8811 has build-in automatic standard discrimination circuitry. The circuit uses burst-phase, burst-frequency and frame rate to identify NTSC, PAL or SECAM color signals. The standards that can be identified are NTSC (M), NTSC (4.43), PAL (B, D, G, H, I), PAL (M), PAL (N), PAL (60) and SECAM (M). Each standard can be included or excluded in the standard recognition process by software control. The identified standard is indicated by the Standard Selection (SDT) register. Automatic standard detection can be overridden by software controlled standard selection.

Video Format support

TW8811 supports all common video formats as shown in Table 1. The video decoder needs to be programmed appropriately for each of the composite video input formats.

Format	Lines	Fields	Fsc	Country
NTSC-M	525	60	3.58 MHz	U.S., many others
NTSC-Japan (1)	525	60	3.58 MHz	Japan
PAL-B, G, N	625	50	4.43 MHz	Many
PAL-D	625	50	4.43 MHz	China
PAL-H	625	50	4.43 MHz	Belgium
PAL-I	625	50	4.43 MHz	Great Britain, others
PAL-M	525	60	3.58 MHz	Brazil
PAL-CN	625	50	3.58 MHz	Argentina
SECAM	625	50	4.406MHz 4.250MHz	France, Eastern Europe, Middle East, Russia
PAL-60	525	60	4.43 MHz	China
NTSC (4.43)	525	60	4.43 MHz	Transcoding

 Table 1. Video Input Formats Supported by the TW8811

Notes: (1). NTSC-Japan has 0 IRE setup.

Component Processing

Luminance Processing

The TW8811 decoder adjusts brightness by adding a programmable value (in register BRIGHTNESS) to the Y signal. It adjusts the picture contrast by changing the gain (in register CONTRAST) of the Y signal.

The TW8811 decoder also provides a sharpness control function through a control register. The center frequency of the peaking filter is selectable. A coring function is provided along with the sharpness control to reduce enhancement to the noise.

The Hue and Saturation

When decoding NTSC signals, TW8811 decoder can adjust the hue of the chroma signal. The hue is defined as a phase shift of the subcarrier with respect to the burst. This phase shift can be programmed through a control register.

The color saturation can be adjusted by changing the gain of Cb and Cr signals for all NTSC, PAL and SECAM formats. The Cb and Cr gain can be adjusted independently for flexibility.

Analog RGB / YPbPr Processor

Analog Front-end

This input path has three ADCs to support analog RGB input or YPbPr input. The built-in clamping circuit works based on the mode selected. Every channel includes variable gain amplifier for gain adjustment. Both gain and offset can be adjusted for flexibility. Two software selectable inputs are available for each channel to allow two inputs to be connected simultaneously. Both separated H/V sync and sync-on-green are supported.

Sync Processor

The sync processor for the RGB channel either takes the separated H/V sync input or separates the composite sync input from one of the SOG inputs into H/V sync for driving the on-chip sampling PLL. It contains necessary logics to detect and bypass irregular syncs. The on-chip PLL has sub-phase control to enable accurate sampling timing.

Component Processor

There are built-in color space converter and tint control logic for the YPbPr input. During YPbPr component input operation, luminance Contrast and Brightness as well as Pb / Pr Saturation can be controlled by registers. In the case of RGB mode, the gain and offset of RGB can also be digitally controlled.

Digital Input Support

In addition to analog inputs, the TW8811 has a 24-bit digital input for YPbPr or RGB data. The input includes VSYNC, HSYNC, pixel clock and the optional data qualifier. For interlaced video, the timing relationship between VSYNC and HSYNC determine the field flag. The optional data qualifier is needed when input video data is not continuously valid within a line. For the YPbPr mode, TW8811 can support 8-bit 656 as well as 8/16-bit 601 modes. The 656 interface supports both interlaced and progressive standard.

TFT Panel Support

The TW8811 supports varieties of active matrix TFT panels including TTL, as well analog panel. It supports panel with resolution up WXGA resolution.

Dithering

If the color depth of the input data is larger than the LCD panel color depth, the TW8811 can be set to dither the image. Up to four bits of apparent color depth can be added with the internal dithering ability of the TW8811. This allows LCD panels with 4, 6 or 8 bits per color per pixel to display up to 16.8 million colors and LCD panels with 3 bits per color per pixel to can display up to 2.1 million colors.

The TW8811 has both spatial and frame modulation dithering. When dithering with the least significant 4bits of input data the TW8811 uses spatial modulation with 4x4 blocks of pixels. When dithering with the least significant 1 to 3 bits of input data, the TW8811 uses either spatial modulation with 2x2 pixel blocks, or frame modulation.

Image Control

Input Image Control

The input cropping control provides a way for programming the active display window region for the selected input video or graphic. In the normal operation, the first active line starts with the VSYNC signal. This and vertical active length register setting are used to determine the active vertical window. The active pixel starts HSYNC. This and the horizontal active width register are used to determine the active horizontal window. The vertical window is programmed in line increments. The horizontal window is programmed in one pixel increments for single pixel input mode or two pixels increments for double pixels input mode. If data qualifier is used, then only qualified pixels will be counted in the window size.

Image Scaling

The TW8811 internal image-scaling engine operates in several modes. The first is the bypass mode. No image scaling is done in this mode. The number of active output lines per frame and the number of active output pixels per line are identical to the input active lines and pixels, respectively. This mode is best used for displaying computer graphic at panel's native resolution.

By default, the input active window is zoomed up to the full screen for display. This is used for noninterlaced data like PC graphics or progressive scan video. The vertical and horizontal magnification ratio can be adjusted independently. TW8811 has frame-sync mode which does not use frame buffer. In this mode, the zoom ratio and output clock rate should be coordinated appropriately to avoid internal buffer overrun.

The TW8811 has a de-interlacing mode to process interlaced video inputs. In this mode, every input field is zoomed to the full output frame resolution. The de-interlaced fields can also be properly compensated to have fields aligned correctly to avoid any artifacts. The offset can be programmed to provide maximum flexibility.

The horizontal scaler can be programmed to perform non-linear scaling : panorama scaling for displaying 4:3 input on a 16:9 display and water-glass scaling for displaying 16:9 input on a 4:3 display.

Image Enhancement Processing

Adaptive Black/White Stretch

This feature is to expand dynamic range of the input image, which creates more vivid image impression.

Favorite Color enhancement

TW8811 provides three independent color enhancements. The center axis of each color can be adjusted over a 360 degrees range provided none of those two are overlapped. The range and the amount of enhancement can also be independently adjusted.

Picture-In-Picture

Double Window / Picture-in-Picture (PIP)

TW8811 can display two live pictures on a single display. In the case of what we called PIP, small size of sub-window can be displayed over full size of main-window.

The frame (outline of window) can be added with choice of color and width.

Example of double window modes

Multiple Window

In case of Multiple Window, multiple images come from one of the source can be displayed on a single display. Only one of the window can be live (motion picture) and the others will be previously stored still image. User also can freeze live window by register set.

User can overlay main-window over multiple-windows.

Example of multiple window modes

Still	Live	Still
Still	Still	Still
Still	Still	Still

PIP alpha blending

PIP image can be used as an OSD type overlay graphics. User can specify specific color as a 'key color' which disabling overlaying and showing behind main image. Where PIP and main image are overlaid, user can define blending ratio (Alpha1). And also can define blending ratio of main image with Black color (Alpha2) as a dimming function.

[Usage]

- Enable PIP alpha blending (0x2EF[7] = 1). Enable 565 mode (0x2EF[6] = 1) as well, if it is preferred.

- Set 'Key color' center level by using Rkey (0x2F0), Gkey (0x2F1) and Bkey (0x2F2). Also set 'Key range' (0x2F3) for the 'Key color' deviation from its center setting.

- Turn on 'Key position display' mode if you want to make sure the area detected as 'Keyed'.
- Adjust Alpha1 (0x2EF[4:0]) and Alpha2 (0x2E6[4:0]).

[Limitations]

- When 565 mode, color depth is limited and may show steps on original gradation.

- When 565 mode, try to choose color of input image which truncated portion (LSB 2 bit will be truncated in Y, LSB 3 bit in Cb and Cr) has about middle value (If 3 bit is truncated, these portion better have value of around 3 or 4) to avoid input level translated into 2 different output level due to noise. (If input is digital signal, this situation may be avoidable.)

Display Timing

The TW8811 is operated in Frame Sync mode only with no external memory required. In this mode, the output frame rate is synchronized with the input frame rate. Since there is no frame buffer, the display clock frequency and zoom ratio have to be properly selected to match the panel resolution. The internal scaling engine absorbs the difference between the input line rate and output line rate as well as the difference between the input pixel rate.

Flat Panel Output Signals

The frequency of the Flat Panel Clock Output pin can be controlled by an internal frequency synthesizer. It also has spread spectrum function to reduce EMI. The frequency equation of the Flat Panel Clock Output signal is described in the register section.

On Screen Display

TW8811 OSD controller supports bitmap with 4/8 Bit-per-pixel mode. The powerful Bit-Blit Engine makes your system more fancy. Any pixel can be assigned any one of 16 user-defined true colors. Using 24 bits x 16 Look-Up-Table, user can achieve 16 true color from 24 bits true color. The TW8811 OSD architecture doesn't use any internal memory.

Bitmapped mode

The bitmap is loaded into external SDRAM with same way as Character-mapped mode. User can define the displayed pixel colors on a pixel by pixel basis. The pixels can be represented using either 4 bits per pixel(16 simultaneous colors). The maximum bitmapped image size depends on panel resolution and SDRAM size. Our recommendation is 512(H) x 512(V).

External OSD port

A dedicated port is provided for an external OSD controller. The TW8811 provides the HACTIVE, VSYNC and dot clock signals, and external OSD controller provides a 18 bits color data values together with valid data indicator (6 bits for each R, G and B color). It's compatible with popular OSD controllers from Renesas (Mitsubishi) and other companies.

In case of 18 bit OSD data reception, color palette is not used and 18 bit data represents 262144 color space directly.

Microcontroller Interface

The TW8811 registers are accessed via 2-wire serial bus interface as well as parallel host interface. It operates as a slave device.

Two Wire Serial Bus Interface

Figure 2. One complete register Write sequence via the serial bus interface

Figure 3. One complete register Read sequence via the serial bus interface

The two wire serial bus interface is used to allow an external micro-controller to write control data to, and read control or other information from the TW8811 registers. MC_SCLK is the serial clock and MC_SDA is the data line. Both lines are pulled high by resistors connected to VDD. ICs communicate on the bus by pulling MC_SCLK and MC_SDA low through open drain outputs. In normal operation the master generates all clock pulses, but control of the MC_SDA line alternates back and forth between the master and the slave. For both read and write, each byte is transferred MSB first, and the data bit is valid whenever MC_SCLK is high.

The TW8811 is operated as a bus slave device. It can be programmed to respond to one of two 7-bit slave device addresses by tying the ADDRSEL (Serial Interface Address) pin ether to VDD or GND (See Table 2.). If the ADDRSEL pin is tied to VDD, then the least significant bit of the 7-bit address is a "1". If the ADDRSEL pin is tied to GND then the least significant bit of the 7-bit address is a "0". The most significant 6-bits are fixed. The 7-bit address field is concatenated with the read/write control bit to form the first byte transferred during a new transfer. If the read/write control bit is high the next byte will be read from the slave device. If it is low the next byte will be a write to the slave. When a bus master (the host microprocessor) drives MC_SDA from high to low, while MC_SCLK is high, this is defined to be a start condition (See Figure 1.). All slaves on the bus listen to determine when a start condition has been asserted.

After a start condition, all slave devices listen for the their device addresses. The host then sends a byte consisting of the 7-bit slave device ID and the R/W bit. This is shown in Figure 2. (For the TW8811, the next byte is normally the index to the TW8811 registers and is a write to the TW8811 therefore the first R/W bit is normally low.)

After transmitting the device address and the R/W bit, the master must release the MC_SDA line while holding MC_SCLK low, and wait for an acknowledgement from the slave. If the address matches the device address of a slave, the slave will respond by driving the MC_SDA line low to acknowledge the condition. The master will then continue with the next 8-bit transfer. If no device on the bus responds, the master transmits a stop condition and ends the cycle. Notice that a successful transfer always includes nine clock pulses.

To write to the internal register of the TW8811, the master sends another 8-bits of data, the TW8811 loads this to the register pointed by the internal index register. The TW8811 will acknowledge the 8-bit data transfer and automatically increment the index in preparation for the next data. The master can do multiple writes to the TW8811 if they are in ascending sequential order. After each 8-bit transfer the TW8811 will acknowledge the receipt of the 8-bits with an acknowledge pulse. To end all transfers to the TW8811 the host will issue a stop condition.

Serial Bus Interface 7-bit Slave Address					Read/Write bit		
4	0	0	0	4	0		1=Read
	0	0	0	1	0	ADDRSEL	0=Write

Table 2. TW8811 serial bus interface 7-bit slave address and read write bit

A TW8811 read cycle has two phases. The first phase is a write to the internal index register. The second phase is the read from the data register. (See figure 3). The host initiates the first phase by sending the start condition. It then sends the slave device ID together with a 0 in the R/W bit position. The index is then sent followed by either a stop condition or a second start condition. The second phase starts with the second start condition. The master then resends the same slave device ID with a 1 in the R/W bit position to indicate a read. The slave will transfer the contents of the desired register. The master remains in control of the clock. After transferring eight bits, the slave releases and the master takes control of the MC_SDA line and acknowledges the receipt of data to the slave. To terminate the last transfer the master will issue a negative acknowledge (MC_SDA is left high during a clock pulse) and issue a stop condition.

REV C 02/07/2008

Power Management

The TW8811 supports panel power sequencing. Typical TFT panels require different parts of the panel power to be applied in the right sequence to avoid premature damage to the panel. Pins are provided to control the panel backlight generator, digital circuitry and panel driver, separately. The TW8811 controls the power up and power down sequence for the LCD panels. The time lapses between different stages of the sequence are independently programmable to meet various power sequencing requirements.

The TW8811 also supports VESA[™] DPMS for monitor power management. It can detect the DPMS status from input sync signals and automatically change into On/Off mode. To support the power management, the TW8811 has three operating modes: Power On mode, Power Off mode, and Panel Off mode. All the DPMS power saving mode will be covered by the Power Off mode.

Gamma Correction

TW8811 has built-in independent RGB 10-bit Gamma RAM for the purpose of table lookup Gamma correction.

Memory Interface

TW8811 supports external SDRAM for various functions including bit-mapped OSD, 3D comb, 3D noise reduction and PIP that require memory buffer. The memory controller of the TW8811 supports 16bit data width up to 133 MHz clock rate.

When power is up, it is reset by the internal reset signal and wait for the initial memory- timing period. To configuration of the SDRAM internal register memory controller performs initial cycle. After all initial cycles performed, memory controller does the normal operation. The memory controller performs arbitration, access timing generation and refresh and configuration.

Test Modes

The TEST1 input pin provides test mode selection. If this pin is low at the rising edge of the RESET# pin and remains low, the TW8811 is in its normal operating mode. Table 3 shows the other test modes made available with this pin.

Table 3 Tes	Table 3 Test modes					
Test mode	TEST1 Before RESET# rising edge	TEST1 After RESET# rising edge	Description			
Normal	0	0	Normal operation			
Output tri-state	0	1	In this mode, all pin output drivers are tri-stated. Pin leakage current parameters can be measured.			
Outputs high	1	0	In this mode, all pin output drivers are forced to the high output state. V_{OH} and I_{OH} can be measured.			
Outputs low	1	1	In this mode, all pin output drivers are forced to the low output state. V_{OL} and I_{OL} can be measured.			

PRELIMINARY

Pin Diagram

Pin Description

This section provides a detailed description of each pin for the TW8811. The pins are arranged in functional groups according to their associated interface.

The active state of the signal is determined by the trailing symbol at the end of the signal name. A "#" symbol indicates that the signal is active or asserted at a low voltage level. When "#" is not present after the signal name, the signal is active at the high voltage level.

The pin description also includes the buffer direction and type used for that pin.

PIN#	I/O	Pin Name	Description
1	Р	VDDA	A/D Power +1.8V
2	Ι	RIN1	Analog Red input 1
3	Ρ	VSSAR	Analog Ground for R-channel
4	Ι	RIN0	Analog Red input 0
5	Ι	REFT	RGB A/D Voltage Reference Top
6	Ι	REFB	RGB A/D Voltage Reference Bottom
7	Ι	GIN1	Analog Green input 1
8	Ρ	VSSAG	Analog Ground for G-channel
9	Ι	GIN0	Analog Green input 0
10	Ι	BIN1	Analog Blue input 1
11	Ρ	VSSAB	Analog Ground for B-channel
12	Ι	BIN0	Analog Blue input 0
13	Ρ	VSSA	Analog Ground
14	Ρ	VDDA	Analog Power +1.8V
15	Ι	VIN	Analog component V input
16	0	YOUT	Y output (Y out or Y+C out)
17	Ι	YIN3	Analog composite or luma input 3
18	Ι	YIN2	Analog composite or luma input 2
19	Ι	YIN1	Analog composite or luma input 1
20	Ι	YIN0	Analog composite or luma input 0
21	Ρ	VSSAY	Video A/D Ground
22	Ι	CIN0	Analog component C input 0
23	Ι	CIN1	Analog component C input 1
24	Ρ	VSSA	Analog Ground
25	Ρ	DAVDD	DAC Analog Power +3.3V
26	Ρ	DAVDD	DAC Analog Power +3.3V
27	0	ROUT	DAC Analog Red data output
28	0	GOUT	DAC Analog Green data output
29	0	BOUT	DAC Analog Blue data output
30	Ι	SEN0	Analog Sensing 0 input / CCFL or LED current sensing
31	Ι	SEN1	Analog Sensing 1 input / CCFL or LED voltage sensing
32	Ρ	DAVSS	DAC Analog Ground

PIN#	I/O	Pin Name	Description
33	Ρ	DAVSS	DAC Analog Ground
34	Ι	XTAL27I	Crystal terminal (if crystal is used)
35	0	XTAL27O	Crystal terminal (if crystal is used) or oscillator input
36	Ι	VSYNC	Vertical Sync Input
37	I/O	GPIO[0]	General Purpose Input/Output or IRQ output
38	I/O	GPIO[1]	General Purpose Input/Output
39	Ρ	VDDO	Digital I/O Power +3.3V
40	0	FPBIAS / CCFLP	Power on/off control for panel backlight bias / CCFL Driver Polarity (Positive)
41	0	FPPWC	Power on/off control for flat panel display
42	0	FPPWM / CCFLN	PWM control for panel backlight / CCFL Driver Polarity (Negative)
43	0	PWM2	PWM control2
44	Ρ	VSS	Digital Core Ground
45	Ρ	VDD	Digital Core Power +1.8V
46	Ι	VSSO	Digital I/O Ground
47	0	TCLRL	Left Right selection (Left : high, Right : low)
48	0	TRCLK	TCON - Row Driver Shift Clock
49	0	TRUDL	TCON - Up Down selection (Up : high, Down : low)
50	0	TCINV / TCREV	TCON - Column Driver Inversion / Column Driver Reverse
51	0	TCPOLP	TCON - Column Driver Polarity (Positive)
			- Sharp : REVC
			** Only use some companies
52	0	TCPOLN	Sharp : REVV
			TMD : TCPOLN
53	0	TCLP	TCON - Column Driver Load Pulse
54	0	FPCLK / TCCLK	TCON - Flat Panel Clock Output / Column Driver Clock
55	Ρ	VDDO	Digital I/O Power +3.3V
56	0	FPVS / TRSPT	Flat Panel VSYNC / TCON - Row Driver Starting Pulse (Top Start)
57	0	FPHS / TCSPL	Flat Panel HSYNC / TCON - Column Driver Start Pulse (Left to right scan)
58	0	FPDE / TROE	Flat Panel Data Enable / TCON - Row Driver Output Enable
59	0	TCSPR	TCON - Column Driver Start Pulse (Right to left scan)
60	0	TRSPB	TCON - Row Driver Starting Pulse (Bottom Start)
61	Ρ	VSS	Digital Core Ground
62	Ρ	VDD	Digital Core Power +1.8V
63	Ρ	VSSO	Digital I/O Ground
64	0	FPR[0]	Red Flat Panel Output bits
65	0	FPR[1]	Red Flat Panel Output bits
66	0	FPR[2]	Red Flat Panel Output bits
67	0	FPR[3]	Red Flat Panel Output bits
68	0	FPR[4]	Red Flat Panel Output bits
69	0	FPR[5]	Red Flat Panel Output bits
70	0	FPR[6]	Red Flat Panel Output bits
71	0	FPR[7]	Red Flat Panel Output bits
72	Ρ	VDDO	Digital I/O Power +3.3V

PIN#	I/O	Pin Name	Description
73	0	FPG[0]	Green Flat Panel Outputs bit
74	0	FPG[1]	Green Flat Panel Outputs bit
75	0	FPG[2]	Green Flat Panel Outputs bit
76	0	FPG[3]	Green Flat Panel Outputs bit
77	0	FPG[4]	Green Flat Panel Outputs bit
78	0	FPG[5]	Green Flat Panel Outputs bit
79	0	FPG[6]	Green Flat Panel Outputs bit
80	0	FPG[7]	Green Flat Panel Outputs bit
81	Ρ	VSSO	Digital I/O Ground
82	0	FPB[0]	Blue Flat Panel Outputs bit
83	0	FPB[1]	Blue Flat Panel Outputs bit
84	0	FPB[2]	Blue Flat Panel Outputs bit
85	0	FPB[3]	Blue Flat Panel Outputs bit
86	0	FPB[4]	Blue Flat Panel Outputs bit
87	0	FPB[5]	Blue Flat Panel Outputs bit
88	0	FPB[6]	Blue Flat Panel Outputs bit
89	0	FPB[7]	Blue Flat Panel Outputs bit
90	Ρ	VSS	Digital Core Ground
91	Ρ	VDD	Digital Core Power +1.8V
92	Ρ	VDDO	Digital I/O Power +3.3V
93	0	MADR4	SDRAM Interface memory address bit
94	0	MADR5	SDRAM Interface memory address bit
95	0	MADR6	SDRAM Interface memory address bit
96	0	MADR7	SDRAM Interface memory address bit
97	0	MADR8	SDRAM Interface memory address bit
98	0	MADR9	SDRAM Interface memory address bit
99	0	MADR11	SDRAM Interface memory address bit
100	0	MCLK0	Clock output for external SDRAM.
101	0	MDQM1	SDRAM Interface memory data mask
102	Ρ	VSSO	Digital I/O Ground
103	0	MADR3	SDRAM Interface memory address bit
104	0	MADR2	SDRAM Interface memory address bit
105	0	MADR1	SDRAM Interface memory address bit
106	0	MADR0	SDRAM Interface memory address bit
107	0	MADR10	SDRAM Interface memory address bit
108	0	MBA1	SDRAM Interface memory bank address
109	0	MBA0	SDRAM Interface memory bank address
110	0	MCSN	SDRAM Interface memory chip select, low active
111	Ρ	VDDO	Digital I/O Power +3.3V
112	0	MRASN	SDRAM Interface memory row address strobe, low active
113	0	MCASN	SDRAM Interface memory column address strobe, low active
114	0	MWEN	SDRAM Interface memory write enable
115	0	MDQM0	SDRAM Interface memory data mask

TECHWELL, INC.

PIN#	I/O	Pin Name	Description
116	I/O	MDATA7	SDRAM Interface memory data bit
117	I/O	MDATA6	SDRAM Interface memory data bit
118	I/O	MDATA5	SDRAM Interface memory data bit
119	I/O	MDATA4	SDRAM Interface memory data bit
120	Ρ	VSS	Digital Core Ground
121	Ρ	VDD	Digital Core Power +1.8V
122	Ρ	VSSO	Digital I/O Ground
123	I/O	MDATA3	SDRAM Interface memory data bit
124	I/O	MDATA2	SDRAM Interface memory data bit
125	I/O	MDATA1	SDRAM Interface memory data bit
126	I/O	MDATA0	SDRAM Interface memory data bit
127	I/O	MDATA8	SDRAM Interface memory data bit
128	I/O	MDATA9	SDRAM Interface memory data bit
129	I/O	MDATA10	SDRAM Interface memory data bit
130	I/O	MDATA11	SDRAM Interface memory data bit
131	Р	VDDO	Digital I/O Power +3.3V
132	I/O	MDATA12	SDRAM Interface memory data bit
133	I/O	MDATA13	SDRAM Interface memory data bit
134	I/O	MDATA14	SDRAM Interface memory data bit
135	I/O	MDATA15	SDRAM Interface memory data bit
136	Р	VSSO	Digital I/O Ground
137	Ι	HAD0 / EODIG0	Host Interface address data / External OSD G Data Input
138	Ι	HAD1 / EODIG1	Host Interface address data / External OSD G Data Input
139	Ι	HAD2 / EODIG2	Host Interface address data / External OSD G Data Input
140	Ι	HAD3 / EODIG3	Host Interface address data / External OSD G Data Input
141	Ι	HAD4 / EODIG4	Host Interface address data / External OSD G Data Input
142	Р	VSS	Digital Core Ground
143	Р	VDD	Digital Core Power +1.8V
144	Р	VDDO	Digital I/O Power +3.3V
145	Ι	HAD5 / EODIG5	Host Interface address data / External OSD G Data Input
146	Ι	HAD6 / EODIB0	Host Interface address data / External OSD B Data Input
147	Ι	HAD7/ EODIB1	Host Interface address data / External OSD B Data Input
148	Ι	HRDL / EODIB2	Host Interface read indicate signal / External OSD B Data Input
149	Ι	HWRL / EODIB3	Host Interface write indicate signal / External OSD B Data Input
150	Ι	HALE / EODIB4	Host Interface address latch enable signal / External OSD B Data Input
151	Ι	EODIB5	External OSD B Data Input
152	I	DMAREQ / EODEN	DMA Request Signal / External OSD Data Enable
153	0	DMAACK / EOVS	DMA Acknowledge Signal / External OSD Vertical Sync Signal
154	0	HWAITL / EOHS	Host Interface Wait Signal / External OSD Horizontal Sync Signal
155	Ι	EODAP	External OSD Alpha Blending Control Signal
156	0	HCS / EOCLK	Host Interface chip select signal / External OSD clock
157	I	HOST	Host Interface mode selection

PIN#	I/O	Pin Name	Description
158	Ι	TEST	Chip test mode selection
159	Ι	MC_SIAD	2-wire Microprocessor interface address pin
160	I/O	MC_SDA	2-wire Microprocessor interface data pin
161	Ι	MC_SCLK	2-wire Microprocessor interface clock pin
162	Ι	RESETN	Reset Pin
163	Ρ	VSS	Digital Core Ground
164	Ρ	VDD	Digital Core Power +1.8V
165	Ρ	VSSO	Digital I/O Ground
166	I	DTVD[0] / EODIR0	Digital input, Cr/ B External OSD R Data Input
167	I	DTVD[1] / EODIR1	Digital input, Cr/ B. External OSD R Data Input
168	I	DTVD[2] / EODIR2	Digital input, Cr/ B External OSD R Data Input
169	I	DTVD[3] / EODIR3	Digital input, Cr/ B External OSD R Data Input
170	I	DTVD[4] / EODIR4	Digital input, Cr/ B External OSD R Data Input
171	I	DTVD[5] / EODIR5	Digital input, Cr/ B External OSD R Data Input
172	Ι	DTVD[6]	Digital input, Cr/ B
173	I	DTVD[7]	Digital input, Cr/ B
174	Ι	DTVD[8]	Digital input, Cb/ G
175	Ι	DTVD[9]	Digital input, Cb/ G
176	Ι	DTVD[10]	Digital input, Cb/ G
177	Ι	DTVD[11]	Digital input, Cb/ G
178	Ρ	VDDO	Digital I/O Power +3.3V
179	Ι	DTVD[12]	Digital input, Cb/ G
180	Ι	DTVD[13]	Digital input, Cb/ G
181	Ι	DTVD[14]	Digital input, Cb/ G
182	Ι	DTVD[15]	Digital input, Cb/ G
183	Ρ	VSS	Digital Core Ground
184	Ρ	VDD	Digital Core Power +1.8V
185	Ι	DTVD[16]	Digital input, Y/ R
186	Ι	DTVD[17]	Digital input, Y/ R
187	Ι	DTVD[18]	Digital input, Y/ R
188	Ι	DTVD[19]	Digital input, Y/ R
189	Ι	DTVD[20]	Digital input, Y/ R
190	Ι	DTVD[21]	Digital input, Y/ R
191	Ι	DTVD[22]	Digital input, Y/ R
192	Ι	DTVD[23]	Digital input, Y/ R
193	Ρ	VSSO	Digital I/O Ground
194	Ι	DTVCLK	Clock input for DTV interface
195	Ι	DTVHS	Horizontal sync for DTV interface

PIN#	I/O	Pin Name	Description
196	Ι	DTVVS	Vertical sync for DTV interface
197	0	DTVDE	Data valid for DTV interface or raw HSYNC for DTV interface (Set by register 0xF6 bit #1)
198	I/O	PCLK	Input : external clock for Panel Clock PLL test (test mode only) Output : Panel clock PLL output
199	Ι	HSYNC	Digital HSYNC Input
200	Ρ	SSVSS	SS-PLL Analog Ground
201	Ρ	SSVDD	SS-PLL Analog Power +1.8V
202	Ρ	DVSS	Analog Ground for Low Voltage analog Power (DVDD)
203	Ρ	DVDD	Low Voltage Analog Power +1.8V
204	Ρ	PVSSA	PLL(Internal Analog) Ground
205	Ρ	PVDDA	PLL (Internal Analog) Power +1.8V
206	Ι	SOGIN1	Sync On Green input 1
207	Ι	SOGIN0	Sync On Green input 0
208	Ι	FILT	Filter input

Parametric Information

AC/DC Electrical Parameters

Table 4. Absolute Maximum Ratings

Parameter	Symbol	Min	Тур	Max	Units
DAVDD (measured to DAVSS) 3.3V	VDDAEM	-	-	3.6	V
VDDA (measured to VSSA) 1.8V	VDDAM	-	-	1.92	V
VDD (measured to VSS)	VDDM	-	-	1.98	V
VDDO (measured to VSSO)	VDDEM	-	-	3.6	V
Voltage on any digital signal pin (See the note below)	-	VSSO – 0.5	-	VDDEM + 0.5	V
Analog Input Voltage (supplied by 1.8V)	-	VSSA – 0.5	-	1.92	V
Analog Input Voltage (supplied by 3.3V)	-	DAVSS - 0.5		3.6	V
Storage Temperature	Τs	-65	-	+150	С°
Junction Temperature	ΤJ	-	-	+125	°C
Vapor Phase Soldering(15 Seconds)	T VSOL	-	-	+220	°C

NOTE: Stresses above those listed may cause permanent damage to the device. This is a stress rating only, and functional operation at these or any other conditions above those listed in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

This device employs high-impedance CMOS devices on all signal pins. It must be handled as an ESD-sensitive device. Voltage on any signal pin that exceeds the ranges list in Table 4 can induce destructive latch-up.

Table 5. Characteristics

Parameter	Symbol	Min	Тур	Max	Units
Supply		-	-		
Power Supply — IO	VDDE	3.15	3.3	3.6	V
Power Supply — Digital	VDD	1.62	1.8	1.98	V
Power Supply — Analog 3.3V	VDDAE	3.15	3.3	3.6	V
Power Supply — Analog	Vdda	1.62	1.8	1.92	V
Ambient Operating Temperature	ΤA	-40		+85	°C
Analog Supply current (CVBS only)	laa	-	TBD	-	mA
(S-video)		-	TBD	-	mA
Digital I/O Supply current	Idde	-	TBD	-	mA
Digital Core Supply Current	ldd	-	TBD	-	mA
Digital Inputs					
Input High Voltage (TTL)	Vін	2.0	-	-	V
Input Low Voltage (TTL)	VIL	-	-	0.8	V
Input High Voltage (XTI)	Vін	2.0	-	VDDE +	V
				0.5	
Input Low Voltage (XTI)	Vı∟	-	-	0.8	V
Input High Current (V IN =V DD)	Тн	-	-	10	μA
Input Low Current (V IN =VSS)	١L	-	-	-10	μA
Input Capacitance (f=1 MHz, V IN =2.4 V)	C IN	-	5	-	pF

TECHWELL, INC.

Parameter	Symbol	Min	Тур	Мах	Units
	Maria	0.4		\ /	N
Output High Voltage (I OH = –4mA)	V OH	2.4	-	VDDE	V
Output Low Voltage (I oL = 4mA)	V OL	-	0.2	0.4	V
3-State Current	l oz	-	-	10	μA
Output Capacitance	Со	-	5	-	pF
Analog Input					
Analog Pin Input voltage	Vi	-	1	-	Vpp
YIN0, YIN1, YIN2 and YIN3 Input Range		0.5	1.0	2.0	Vpp
(AC coupling required)					
CIN0, CIN1 Amplitude Range (AC coupling required)		0.5	1.0	2.0	Vpp
VIN Amplitude Range (AC coupling required)		0.5	1.0	2.0	Vpp
SEN0, SEN1 DC Input Range		0.65	1.65	2.65	V
Analog Pin Input Capacitance	СA	-	7	-	pF
ADCs					
ADC resolution	ADCR	-	9	-	Bits
ADC integral Non-linearity	AINL	-	±1	-	LSB
ADC differential non-linearity	ADNL	-	±1	-	LSB
ADC clock rate	f _{ADC}	-	27	60	MHz
Video bandwidth (-3db)	BW	-	10	-	MHz
Horizontal PLL					
Line frequency (50Hz)	f _{LN}	-	15.625	-	KHz
Line frequency (60Hz)	f _{LN}	-	15.734	-	KHz
static deviation	Δf_{H}	-	-	6.2	%
Subcarrier PLL					
Subcarrier frequency (NTSC-M)	f _{SC}	-	3579545	-	Hz
Subcarrier frequency (PAL-BDGHI)	f _{SC}	-	4433619	-	Hz
Subcarrier frequency (PAL-M)	f _{SC}	-	3575612	-	Hz
Subcarrier frequency (PAL-N)	f _{SC}	-	3582056	-	Hz
lock in range	Δf_{H}	±450	-	-	Hz
Crystal spec					
nominal frequency (fundamental)		-	27	-	MHz
Deviation		-	-	±50	ppm
Load capacitance	CL	-	20	-	pF
series resistor	RS	-	80	-	Ohm

Filter Curves

Anti-alias filter

Decimation filter

Chroma Band Pass Filter Curves

Luma Notch Filter Curve for NTSC and PAL

Т

Chrominance Low-Pass Filter Curve

Mechanical Data 208 QFP

0/450	м	ILLIMETE	R	INCH			
SYMBOL	MIN	NOM	MAX	MIN	NOM	МАХ	
Α			4.10			0.161	
A1	0.25		1	0.010	1		
A2	3.15	3.32	3.60	0.124	0.131	0.142	
D	3	0.60 BS0	С.		1.205 E	SC.	
D1	2	8.00 BS(C.		1.102 E	SC.	
E	3	0.60 BS0	C.		1.205 E	SC.	
E1	2	8.00 BS0	С.		1.102 E	SC.	
R2	0.08		0.25	0.003		0.010	
R1	0.08			0.003			
θ	0°	3.5°	7 °	0°	3.5°	7 °	
θ1	0 °			0°			
0 2		8° REF		8° REF			
θ3		8° REF		8° REF			
С	0.09	0.15	0.20	0.004	0.006	0.008	
L	0.45	0.60	0.75	0.018	0.024	0.030	
L1		1.30 REF	-	0.051 REF			
S	0.20			0.008			
b	0.17	0.20	0.27	0.007	0.008	0.011	
е	().50 BSC).	0.020 BSC.			
D2		25.50		1.004			
E2		25.50		1.004			
	TOLER	RANCES	of form	I AND PC	SITION		
aaa		0.20			0.00	8	
bbb		0.20		0.008			
ccc		0.08			0.003		
ddd		0.08			0.003		

CONTROL DIMENSIONS ARE IN MILLMETERS.

NOTES:

1. Dimensions D1 and E1 do not include mold protrusion.

2. Dimension b does not include dambar protrusion. Allowable dambar protrusion shall not cause the lead width to exceed the maximum b dimension by more than 0.08mm. Dambar can not be located on the lower radius or the foot. Minimum space between protrusion and a adjacent lead is 0.07mm.

The top package body size may be smaller than the bottom package body size.

TW8811 Register Summary

The registers are organized in functional groups in this Register Summary. A register containing different functional bits may appear more than once in different functional groups. If a particular bit of a register is not related to that functional group, it is printed in smaller font than those related. For example, bit 7 of index 006 is classified as "General" and is printed in normal size; the other bits in this register are printed in smaller size for their functionality is not classified as "General".

General (Common for any page)

Index (HEX)	7	6	5	4	3	2	1	0	Reset value
0x0FF 0x1FF 0x2FF 0x3FF	*	*	*	*	*	*	PAG	E[1:0]	00h

TOTAL PAGES : 4 (0 to 3)

PAGE #	Register Group
#0	Decoder / 3D Com / NR Control / Hi Speed ADC / Internal Test
#1	OSD / VBI Interrupt / Font OSD / Host IF / DMA / Gamma
#2	Input Ctrl / Input Measure / Scaling / Image / Display / Power Mgm / Memory Ctrl / Pip / Mpip
#3	TCON / Others
=== PAGE 0 : Decoder/3D Com/Hadc ===

Decoder

Index (HEX)	7	6	5	4	3	2	1	0	Reset value
000			ID				REV		28h
001	VDLOSS	HLOCK	SLOCK	FIELD	VLOCK	*	MONO	DET50	-
002	YSEL2	FC27	IFS	EL	YS	EL	CSEL	*	40h
003				-	*				20h
004	*	CK	HY			*			00h
005				-	*				AFh
006	SRESET	*	FBP	AGC_EN	CLKPDN	Y_PDN	C_PDN	V_PDN	00h
007	VDEL	AY_HI	VACTI	VE_HI	HDEL	AY_HI	HACT	IVE_HI	02h
008				VDEL	AY_LO				12h
009				VACTI	VE_LO				F0h
00A				HDEL	AY_LO				0Ch
00B									
00C	PBW	DEM	PALSW	SET7	COMB	HCOMP	YCOMB	PDLY	CCh
00D	*	*	*	* *					
00E	* * *								-
00F	*								
010				BRIGH	TNESS				00h
011				CONT	RAST				60h
012	SCURVE	VSF	C	TI		SHARI	PNESS		51h
013				SA	Γ_U				80h
014				SA	Γ_V				80h
015				HL	JE				00h
016			-				-		-
017		SHO	COR		*		VSHP		80h
018	СТС	COR	CC	OR	VC	OR	C	IF	44h
019					*				-
01A	*	EDS_EN	CC_EN	PARITY	FF_OVF	FF_EMP	CC_EDS	LO_HI	
01B	CC_DATA								
01C	DTSTUS STDNOW ATREG STANDARD						07h		
01D	START PAL60 PALCN PALM NTSC4 SECAM PALB NTSC						7Fh		
01E	*		CVSTD			CVI	-MT		08h
01F				TE	ST				00h

Decoder

Index (HEX)	7	6	5	4	3	2	1	0	Reset	
020		CLP	END			CLF	PST		50h	
021		NMO	GAIN			WPGAIN		AGCGAIN	42h	
022				AGC	GAIN			•	F0h	
023				PEA	KWT				D8h	
024	CLMPLD				CLMPL				BCh	
025	SYNCTD				SYNCT				B8h	
026		MISS	SCNT			HS\	WIN		44h	
027										
028	VL	CKI	VLC	VLCKO VMODE DETV AFLD VINT						
029		BSHT				VSHT				
02A	CKILI	_MAX			CKIL	LMIN			78h	
02B		H	TL			V	TL		44h	
02C	CKLM		YDLY		HFLT				30h	
02D	HPLC	EVCNT	PALC	SDET	TBC_EN	BYPASS	SYOUT	HADV	14h	
02E	HF	PM	AC	СТ	SF	PM	CB	VV	A5h	
02F	NKILL	PKILL	SKILL	CBAL	FCS	LCS	CCS	BST	E0h	
030	SID_FAIL	PID_FAIL	FSC_FAIL	SLOCK_F AIL	CSBAD	MVCSN	CSTRIPE	CTYPE	-	
031	VCR	WKAIR	WKAIR1	VSTD	NINTL	WSSDET	EDSDET	CCDET	-	
032	HFREF/GVAL/PHERRDO/CGAINO/BAMPO/MINAVG/SYTHRD/SYAMP								-	
033	FRM YNR CLMP PSP							05h		
034	Inc	lex			NSEN/SSEN	PSEN/WKTH			1Ah	
035	CTEST	YCLEN	CCLEN	VCLEN	GTEST	VLPF	CKLY	CKLC	00h	

RGB/YPbPr (Analog)

Index (HEX)	7	6	5	4	3	2	1	0	Reset value
036					-				00h
037					-				00h
038				-				SY_C	00h
039					-				
03A					-				
03B					-				
03C					-				
03D					-				
03E					-				
03F		FBS	TUS		-	-		-	0h

LCDC – 3D Comb/NR Control

Index (HEX)	7	6	5	4	3	2	1	0	Reset value	
060				MD	_тн				08h	
061				•	*				50h	
062	3DEN	MIXMD1	MIXMD2	*	*	TEST3D	TM	I_3D	00h	
063				•	*				80h	
064		*								
065		MSTRETCH								
066		*								
067	TESTNR	NREN	NRO	GAIN		NRL	EVEL		14h	
068	NONSTD	*	*	*	*	NS_LNUM	NS_LLEN	NS_FLEN	07h	
069				NS	TH1				04h	
06A				NS	TH2				03h	
06B		NS	SON			NS	OFF		C1h	
06C				•	*				00h	
06D		*								
06E	*	*	*	*	*	*	*	*	00h	
06F	*	*	*	*	*	*	*	*	00h	

Internal Test

Index (HEX)	7	6	5	4	3	2	1	0	Reset value	
0C0				COUNTER_R	EAD_BYTE_0				00h	
0C1				COUNTER_R	EAD_BYTE_1				00h	
0C2				COUNTER_R	EAD_BYTE_2				00h	
0C3				COUNTER_R	EAD_BYTE_3				00h	
0C4		PCCINIA_INDEX FRC_2F FRC_1F PCCINIA_SUB_INDX								
0C5		PCCINID								
0C6	SEL_C	SEL_C GRAYD DATA_0 LDCHMA TLMODE ROMSFT RAMSFT								
0C7				BWY	/MIN				-	
0C8				BWY	MAX				-	
0C9				BWF	FMIN				-	
0CA				BWF	MAX				-	
0CB				BWE	BTILT				-	
000				BWW	VTILT				-	
0CD										
0CE				TEST_	MODE				00h	
0CF				*	*			*	00h	

=== PAGE 1 : OSD/ VBI Int. ===

LCDC – OSD I

Index (HEX)	7	6	5	4	3	2	1	0	Reset value	
100	*	*	XF_ZO	OM[1:0]	*	*	YF_ZO	OM[1:0]	11h	
101		BC_BL	INK[3:0]			FILL_CC	LOR[3:0]		0Ch	
102	*	*	*	WC_ MODE2	WC_MO	DE3[1:0]	WC_MC	DE1[1:0]	00h	
103	*	*	*	B_FILL_ EN	*	*	*	B_TRAN_ EN	00h	
104	*	*	*	*	*	*	*	BT_ START	00h	
105	*	*	*	BITMAP _EN	*	SOURCE _EN	00h			
106				GRH_MA	P_ST[7:0]				00h	
107		•		GRH_MA	P_ST[15:8]		00h			
108	*	*	*	GRH_MAP_ST[20:16]						
109				GRAPH	/_ST[7:0]				14h	
10A		GRAPHH_ST[7:0]								
10B		GRAPHV_ST[11:8] GRAPHH_ST[11:8]								
10C				GRAPH\	/_LN[7:0]				80h	
10D				GRAPH	I_LN[7:0]				80h	
10E		GRAPHV	′_LN[11:8]			GRAPH	I_LN[11:8]		00h	
10F				B1PHV	_ST[7:0]				00h	
110		B1P							00h	
111		B1PHV_	_ST[11:8]			B1PHH_	_ST[11:8]		00h	
112				B1PHV	_LN[7:0]				00h	
113				B1PHH	_LN[7:0]				00h	
114		B1PHV_	_LN[11:8]		0777-01	B1PHH_	_LN[11:8]		000	
115				B2PHV	_ST[7:0]				00h	
110			OT[11:0]	BZPHH	_51[7:0]		CT[11:0]		00h	
117		BZPHV_	51[11.0]			BZPAR_	_31[11.0]		000	
110	*	*	*	UF_DF *	(TA[7.0] *	*	*		00h	
115		STABLE ADD[7:0]								
11R	ST FN	ST SEI		SEL [1:0]	<u>ן</u> אושטיין	TARI F	SEI [3:0]		00h	
11C		OI_OLL			RIBUTE DATA		00h			
11D	WIN_LT SEI	*	*	COLOR	*	00h				
11E		1	CC	DLOR CONTR	OL SELECTION	ON			10h	
11F	*	*	*	*	*	VBEND	BWEND	TWEND	-	

LCDC – Reserve

Index (HEX)	7	6	5	4	3	2	1	0	Reset value	
120	*	*	LUT_SEL _WIN1	LUT_SEL _WIN0	C8T_WIN _SEL	C8T_WEN	C8T_S	EL[1:0]	00h	
121			• -	 C8T_A	DD[7:0]	•			00h	
122				C8T_D/	ATA[7:0]				00h	
123	*	*	*	PKT_EN	*	*	RLC_RST	RLC_ BYPASS	01h	
124		DAT_E	3IT[3:0]			CNT_E	3IT[3:0]		00h	
125	*	*	*	*	*	*	*	GRH_EN _W1	00h	
126	*	*	XF_ZOON	//W1[1:0]	*	*	YF_ZOON	M_W1[1:0]	11h	
127		GRH_MAP_ST_W1[7:0] GRH_MAP_ST_W1[15:8]							00h	
128		GRH_MAP_ST_W1[15:8]								
129	*	* * * GRH_MAP_ST_W1[20:16]								
12A				GRAPHV_	ST_W1[7:0]				00h	
12B				GRAPHH_	ST_W1[7:0]				00h	
12C		GRAPHV_S	ST_W1[11:8]			GRAPHH_S	ST_W1[11:8]		00h	
12D				GRAPH	GRAPHV_LN[7:0]					
12E				GRAPH	I_LN[7:0]				00h	
12F		GRAPHV	′_LN[11:8]			GRAPHH	_LN[11:8]		00h	
130		RF_XZC	OM_W0			RF_YZC	OM_W0		00h	
131		RF_XZC	DOM_W1			RF_YZC	OM_W1		00h	
132			*			LOGIC	SEL		00h	
133		RF_LOGIC							00h	
134				RF_LOG	C_C15~8				00h	
135				RF_LOG	IC_C7~0				00h	
136		*		RF_D_W		*		RF_D_H	00h	

CCFL Control

Index (HEX)	7	6	5	4	3	2	1	0	Reset value		
138	OVEN	OIEN	UIEN	FBEN	LOCKV	LOCKH	CCFLENB	CCFLDEN	F2h		
139	L۱	LVT LILT LIT									
13A	*	* CCFL_LEDC_ST LSTP									
13B				FP	WM				80h		
13C				F	DIM				84h		
13D	LEDC_DIG _EN	*	*			DDIM			00h		
13E				PW	NTOP				20h		

LCDC – External OSD & Misc.

Index (HEX)	7	6	5	4	3	2	1	0	Reset value
151	*	*	*	OSD_W_ MASK	*	*	OSD_ WAIT	*	1-h
152	OSD_ MODE		POLARITY[2:0]]	C	OSDDELAY[2:0)]	OSD_ PORTEN	80h
153	*	*	*	*	*	*	EXSYNC_ SEL	EXHACT _SEL	00h
154	*		OCKTPS[2:0]		*	(OSD_GAIN[2:0]	00h

TECHWELL, INC.

155				OSD_TES	ST_MODE				00h	
156	*	*	SUB_S	EL[1:0]	[1:0] * * MAIN_SEL[1:0]					
157	*	*	*		EXT_ALPHA_CON[4:0]					
158	*	*	*	DMA_W_ MASK	*	*	*	DMA_ WAIT	00h	
159	AEOSD	E	ODEN_DLY[2:	0]	AEO_VS- POL	AEO_HS- POL	*	RLC_ INTR	00h	

LCDC – DMA

Index (HEX)	7	6	5	4	3	2	1	0	Reset value
1A0				*			WAIT	DMA_SEL	02h
1A1		XFER_CNT[15-8]							
1A2		XFER_CNT[7-0]							
1A3		MEM ADR[20-16]							
1A4				MEM_A	.DR[15-8]				00h
1A5				MEM_A	ADR[7-0]				00h
1A6				DAT	A_CH				00h
1A7				*				RD_WR	00h
1A8			*			RD_MON	WR_MON	WAIT_MO N	00h

LCDC – Status & Interrupt

Index (HEX)	7	6	5	4	3	2	1	0	Reset value
1B0	LB_OVF	LB_UNF	V_LOS_C	H_LOS_C	VDLOS_C	V_LOSS	H_LOSS	SYNCS	00h
1B1	M_RDY	PWS_C	V_PRD_C	H_PRD_C	LBOUNF	VDC_C	VH_LOS_C	SYNCS_C	00h
1B2	IRQ_B_B17	IRQ_B_B16	IRQ_B_B15	IRQ_B_B14	IRQ_B_B13	IRQ_B_B12	IRQ_B_B11	IRQ_B_B10	FFh
1B3	*		:	*		IRQ_B_VD	IRQ_B_CC	IRQ_B_50	07h
1B4			P_VLOS_C	P_VLOS_C		P_VLOSS	P_HLOSS	P_SYNCS	00h
1B5			P_VPRD_C	P_HPRD_C			P_VHLOSC	P_SYNCSC	00h
1B6			M_VLOS_C	M_VLOS_C		M_VLOSS	M_HLOSS	M_SYNCS	00h
1B7			M_VPRD_C	M_HPRD_C			M_VHLOSC	M_SYNCS	00h
1B8	MEAS	SEL	IRQ_1B5_5	IRQ_1B5_4			IRQ_1B5_1	IRQ_1B5_0	00h
1B9			IRQ_1B7_5	IRQ_1B7_4			IRQ_1B7_1	IRQ_1B7_0	00h

LCDC : ADC/LLPLL

Index (HEX)	7	6	5	4	3	2	1	0	Reset value	
1C0	INP	_SEL	CS_INV	CS_SEL	SOG_SEL	HS_POL	HS_SEL	CK_SEL	00h	
1C1	VS_POL	HS_POL	VS_DET	HS_DET	CS_DET		IN_SRC			
1C2	LLC_F	POST	LLC_	VCO	*		LLC_IPMP		00h	
1C3		*				LLC_AC	KN[11:8]		03h	
1C4				LLC_AC	KN[7:0]				5Ah	
1C5				LLC_	PHA				00h	
1C6	LLC_ACPL		LLC_APG		*		LLC_APZ		20h	
1C7		*				LLC_AC	CKI[11:8]		04h	
1C8				LLC_AC	CKI[7:0]				00h	
1C9				PRE_C	OAST				06h	
1CA				POST_0	COAST				06h	
1CB	PUSOG	SOG PUPLL * SOG_TH								
1CC		*		VSY_SEL	VSY_SEL * VSY_POLC HSY_POLC					
1CE	ADC_CLK_ SEL	CLK_ * DTV * PDA * INREFI INREFI							00h	
1CF	INP_SE	L_ADC			SA	VE			24h	
1D0			*			GAINY[8]	GAINC[8]	GAINV[8]	00h	
1D1				GAI	NY				F0h	
1D2				GAI	NC				F0h	
1D3			-	GAI	NV		-		F0h	
1D4	RGB_MODE	*	CL_EDGE	CKLY	CKLC	Y_CL_EN	C_CL_EN	V_CL_EN	00h	
1D5				CL_S	TART				00h	
1D6				CL_E	END				10h	
1D7				CL_I	_0C		-		70h	
1D8	*		LLC_DBG_SEI	_	CL_TEST	ADC_TEST	CL_Y_TEST	CL_UV_TEST	00h	
1D9		CL_Y_VAL								
1DA		CL_UV_VAL								
1DD				OFFS	ETR				00h	
1DE				OFFS	ETG				00h	
1DF				OFFS	SETB				00h	

LCDC – Gamma

Index (HEX)	7	6	5	4	3	2	1	0	Reset value
1F0	GAMAE_R	GAMAE_G	GAMAE_B	*	AUTO_IN C	*	GAMMA_F	00h	
1F1			GA	MMA_RAM_S	TARTING_AD	DR			00h
1F2							GAMMA_RA	M_DATA[9:8]	00h
1F3		GAMMA_RAM_DATA[7:0]							00h

=== PAGE 2 : Image/Display/Memory ===

LCDC – Input Type

Index (HEX)	7	6	5	4	3	2	1	0	Reset value
20e	*	*	*	*	*	*	*	DUAL_656	00h
20f	SEQRGB	_LTG[1:0]	SEQRGB_C	DRDER[1:0]	SEQRGB_S	SEL8BIT[1:0]	SEQRGB_ POL	SEQRGB	00h

LCDC – Input and Input Related

Index (HEX)	7	6	5	4	3	2	1	0	Reset value	
210	OFDM	RVODDP	SLVSFLD	ECSYNC	DE_POL	HS_POL	VS_POL	DCLK_POL	00h	
211	EPDEN	PDEN_POL	EXT_HA	SELDE	*	DTVCK_DE	ELAY		20h	
212	VGAFLD	SELFVS	VSDL_656	SELFTHS	CR601	INPUT_	DATA_BUS_F	ROUTING	04h	
213			INT	ERNAL_CLK_	POL			yuv_rgb_hs RGB	01h	
214	COAST	_RANGE	VGA_INP	B8601	COMP	MP yuv_rgb IP_SEL				
215		OFD_DI	ET_END			OFD_DET_ST				
216		CSYNC_VS_OFFSET								
217				IP_HA	_ST_LO				00h	
218				IP_HA_	END_LO				CFh	
219		IP_HA_	END_HI		*		IP_HA_ST_H	I	20h	
21A				IP_VA_S	T_ODD_LO				13h	
21B				IP_VA_S	T_EVN_LO				13h	
21C				IP_VA_LE	ENGTH_LO				00h	
21D	* IP_VA_LENGTH_HI IP_VA_ST_EVN_HI IP_VA_ST_ODD_LO							30h		
21E	HSCKTPS 2[2]	GPIOEN2	GPIOEN1	GPIOEN0	IRQ_AL	*	00h			
21F	GPIO1_P	GPIO ²	I_SRC	GPIO1_D	GPIO0_P	GPIO	_SRC	GPIO0_D	00h	

LCDC – Input Measurement

Index (HEX)	7	6	5	4	3	2	1	0	Reset value	
220					*					
221				MEA_WIN	_H_ST_LO				20h	
222				MEA_WIN_	H_END_LO				FFh	
223		MEA_WIN	_H_END_HI		*	ME	A_WIN_H_ST_	HI	10h	
224		MEA_WIN_V_ST_LO								
225		MEA_WIN_V_END_LO								
226	*	ME	A_WIN_V_END	D_HI	*	ME	EA_WIN_V_ST_	HI	00h	
227				RESI	JLT_0				-	
228				RESU	JLT_1				-	
229				RESU	JLT_2				-	
22A				RESI	JLT_3				-	
22B	RESULT_S	SEL			FIELD_SEL	_	RD_LOCK	STARTM	00h	
22C	U_27M	NOISE_MA	\SK		ERR_TOLE	ĒR		ENDET	00h	
22D	T	HRESHOLD	FOR_ACT_DE	Т	ENALU	NO	FSEL	DE_MEA	30h	
22E										
22F										

LCDC - Scaling

Index (HEX)	7	6	5	4	3	2	1	0	Reset value	
230				X_SCALE	_UP_MID				B4h	
231				X_SCALE_	DOWN_LO				80h	
232				Y_SCALE_UF	P/DOWN_MID				50h	
233	PANORA_ MA	LNDB	PXDB	ZOOMBP	Y_SCA DOW	LE_UP/ /N_HI	X_SCALE _DOWN_H I	X_SCALE _UP_HI	00h	
234		X_OFFSET								
235		Y_ODD_OFFSET								
236			H_NON_DI	SPLAY_PIXEL	_/H_PANORA	MA_PIXEL			00h	
237	LB_CE	*	*	*	*	*	H_NON_[H_PANORI	DISPLAY / MAN_PIXEL	00h	
238			X_SCALE_U	p_lo (at_the	E_SIDE_FOR_	PANORAMA)			00h	
239				X_SCALE	E_UP_LO				00h	
23A				Y_SCALE	E_UP_LO				00h	
23B				Y_EVEN	_OFFSET				00h	
23C										
23D										
23E										
23F										

LCDC – Image Adjustment

Index	7	6	5	4	3	2	0	Reset				
(HEX)		Ŭ	J	-	5	2		Ŭ	value			
240	*	INDX_CB			H	UE			20h			
241			C	ONTRAST_R	/ CONTRAST_	<u>Y</u>			80h			
242			C	ONTRAST_G/	CONTRAST_	Cb			80h			
243			C	ONTRAST_B/	CONTRAST_	Cr			80h			
244			BRI	GHTNESS_R	/ BRIGHTNES	S_Y			80h			
245				BRIGHT	NESS_G				80h			
246				BRIGHT	NESS_B				80h			
247		H_SHAR	RP_COR			H_SHA	RPNESS		3Fh			
248	H_SHARP_F REQ	*	DY	ŃR	*		HFLT		00h			
249		INDX_CB2			HU	JE2			20h			
24A			CC	NTRAST_R2	/ CONTRAST_	Y2			80h			
24B			CO	NTRAST_G2/	CONTRAST_	Cb2			80h			
24C			CC	NTRAST_B2/	CONTRAST_	Cr2			80h			
24D		BRIGHTNESS_R2 / BRIGHTNESS_Y2										
24E		BRIGHTNESS_G2										
24F		BRIGHTNESS_B2										
250		H_SHARP_COR2 H_SHARPNESS2										
251	H_SHARP_F REQ2	SHARP_F * DYNR2 * HFLT2										
252	V_SHARP_ A	_SHARP_ V_SHARP_B DIS_EDG INDEX_FOR_07A										
253		EDGE_ENHANCEMENT_THRESHOLD_REG_0/1/2/3/4										
254	*		*			R	SV		04h			
255	T_BW	*	PEDLVL	WHTLVL	*	*	BPBW	*	1Ch			
256				BW_LIN	E_ST_LO				08h			
257				BW_LINE	_END_LO				F6h			
258		*			BW_LINE	E_END_HI	BW_LIN	E_ST_HI	08h			
259				BW_H_	_DELAY				10h			
25A	*			BM	V_H_FILTER_C	GAIN			0Dh			
25B				BW_BLA	CK_TILT				67h			
25C				BW_WH	ITE_TILT				94h			
25D				BW_BLA	CK_GAIN				2Ah			
25E				BW_WHI	TE_GAIN				D0h			
25F	PDOF_EN				PIP_DN_OFF*				CAh			
260	*				BW_GAIN				02h			
261	HRED_EN			MP	IP_H_REDUCT	ΓΙΟΝ			00h			
262	*	*							18h			
263		CE_CENTER0										
264		CE_CENTER1										
265				CE_CE	NTER2				FCh			
266	CE_EN	CE_SP	READ0			CE_GAIN0			00h			
267	*	CE_SP	READ1			CE_GAIN1			00h			
268	*	CE_SP	READ2			CE_GAIN2			00h			
269	*								00h			
26A	*	*	*	*					00h			
26B	*	*							00h			

Index (HEX)	7	6	5	4	3	2	1	0	Reset value	
270	DBLOP	FPDEAH	FPHSAH	FPVSAH	RVFPCK	RVHILO	RVBIT	FPCLKC	40h	
271	TCONS	USEREG	DEMODE	OP6B	TRIFP	FPCLK_DEL	AY		00h	
272				FPHS_PE	RIOD_LO				3Ah	
273				FPHS_AC	TIVE_PW				10h	
274				FP_H_BAC	K_PORCH				1Bh	
275				FPDE_AC	CTIVE_LO				00h	
276		FPDE_A	CTIVE_HI			FPHS_PE	ERIOD_HI		45h	
277				FPVS_PE	RIOD_LO				26h	
278				FPVS_AC	TIVE_PW				06h	
279				FP_V_BAC	K_PORCH				1Fh	
27A		FP_V_ACTIVE_LO								
27B	EARLY_S T	F	P_V_ACTIVE_	ні	*	FF	н	33h		
27C	*	D	ITHER_OPTIC	N	*	DI	THER_FORM	AT	00h	
27D			-	VSYNC	VSYNC_DELAY					
27E	FRCLONG	FRCSHRT	EPWMX	PWM_AL	VH_DISHA	FRERUN	AUTOC	SDELVS	00h	
27F	DISP_S	SNGFLD	RVF_AC	TVVSF4	NOEVNI	EVNDLY			00h	
280				INI_CNT	_EVN_LO				00h	
281				INI_CNT_	ODD_LO				00h	
282		INI_CNT	_EVN_HI			INI_CNT	_ODD_HI		00h	
283	EV	NPM		NUM	BER_OF_LINE	S_TO_BLACK	_OUT		00h	
284	PWMC_D 2			Р	WM_COUNTE	R			40h	
285		·								
286										
287	DUAL_SE	AL_SE								
289										

LCDC – Display Control

LCDC – Memory Control

Index (HEX)	7	6	5	4	3	2	1	0	Reset value	
2A0	RD_PH		MCLKOSEL		NOMCST	TESTEN	BCON	NFIG	A2h	
2A1				TAFF	RSH				07h	
2A2				RASI	MAX				20h	
2A3		Т	RP			TRO	D		22h	
2A4	AD21	021 * * * TRFC								
2A5	*	* RDLTNC TMINC								
2A6	*	*	CY	CDEL	*	* CASLTNC				
2A7	*	*	*	*	*	*	*		40h	
2A8										
2A9										
2AA										
2AB										
2AC										
2AD										
2AE		PIP_H_POS_ADJ								
2AF				PIP_V_P	OS_ADJ				2Ch	

Index (HEX)	7	6	5	4	3	2	1	0	Reset value	
2B0				PIPGW_	XST[7:0]				10h	
2B1				PIPGW_V	VIDTH[7:0]		-		60h	
2B2	PPFIL_MA N	PIF	GW_WIDTH[1	0:8]	PPFIL	SEL	PIPGW_	_XST[9:8]	20h	
2B3				PIPGW_	YST[7:0]				02h	
2B4				PIPGW_H	EIGHT[7:0]				E0h	
2B5	PIPWHGT[8]	*	PIPEF	DOFF	PIPWYST[8]	*	PIPOF	DOFF	00h	
2B6				PIPDNS	(FAC[7:0]				00h	
2B7				PIPDNS	/FAC[7:0]				00h	
2B8		PIPDNSY	FAC[11:8]			PIPDNSX	(FAC[11:8]		11h	
2B9				PIP_WF	R_BASE				00h	
2BA										
2BB		PIP_WR_HEIGHT[7:0]								
2BC	PIPWREN	PIPWREN WCPH PIPOFEN PIPOFPH HEIGHT[8] * PIP_WR_WIDTH[9:8]								
2BD	PRDEN	PRDEN WR_PDN PIPEN SNGL_FD PFPPOL PXDB * BLACK								
2BE				PUPSX	FAC[7:0]				00h	
2BF				PUPSY	FAC[7:0]				00h	
2C0		PUPSYF	AC[11:8]			PUPSXF	AC[11:8]		88h	
2C1				PIPWBA	SEX[7:0]				80h	
2C2				PIPWBA	SEY[7:0]				80h	
2C3	CK_INV	Р	PWBASEY[10	:8]		PIPWBA	SEX[11:8]		12h	
2C4		PIPW	YOFF			PIPW	XOFF		2Ch	
2C5				PIPWWI	DTH[7:0]				30h	
2C6				PIPWHE	IGHT[7:0]				E0h	
207	PRCPH	PI	PWHEIGHT[10):8]		PIPWWI	DTH[11:8]		01h	
2C8				MPIP_H_	POS_ADJ				2Ch	
2C9				MPIP_V_	POS_ADJ				2Eh	
20A									00h	
208										
200		AFIL_MAN MPIPGW_VVIDTH[10:8] MPFIL_SEL MPIPGW_XST[9:8] MPIPGW VIDTH[10:8] MPIPGW_XST[7:0] MPIPGW_XST[9:8] MPIPGW_XST[9:								
200 20F				MPIPGW H	EIGHT[7:0]				00h	
2CF	MPIPWHGT [8]	*	MPIPEF	DOFF	MPIPWYST [8]	*	MPIPOF	DOFF	00h	

LCDC – PIP/MPIP Control

Index (HEX)	7	6	5	4	3	2	1	0	Reset		
2D0				MPIPDNS	L XFAC[7:0]				00h		
2D1				MPIPDNS	YFAC[7:0]				00h		
2D2		MPIPDNSY	/FAC[11:8]			MPIPDNSX	FAC[11:8]		11h		
2D3				MPIP W	R BASE				00h		
2D4				MPIP WR V					00h		
2D5				MPIP WR H	HEIGHT[7:0]				00h		
2D6	MPWREN	WCPH	MPOFEN	MPOFPH	HEIGHT[8]	*	MPIP_WR_\	NIDTH[9:8]	00h		
2D7	MPRDEN	WR_PDN	MPIPEN	*	MPFPPOL	PXDB	*	BLACK	00h		
2D8				PUPSXF	AC[7:0]				00h		
2D9				PUPSYF	AC[7:0]				00h		
2DA		PUPSYF	AC[11:8]			PUPSXF	AC[11:8]		88h		
2DB				PIPWBAS	SEX[7:0]				20h		
2DC				PIPWBAS	SEY[7:0]				2Ch		
2DD				PIPVUP	S_OFF*				80h		
2DE		PIPWYOFF PIPWXOFF									
2DF		PIPWWIDTH[7:0]									
2E0		PIPWHEIGHT[7:0]									
2E1	CK_INV	CK_INV PIPWHEIGHT[10:8] PIPWWIDTH[11:8]									
2E2	PRCPH							INIT_EN	00h		
2E3				MPIPOR	GX[7:0]				00h		
2E4				MPIPOR	GY[7:0]				00h		
2E5				INIT_C	olor				00h		
2E6	KEY_DSP					ALPHA2			10h		
2E7	MPIPHIGHT [8]		MPIPWIE	DTH[9:8]	MPIPORGY [8]		MPIPOR	GX[9:8]	00h		
2E8		MPIP_VSF	PACE[3:0]			MPIP_HSF	PACE[3:0]		00h		
2E9	MPIP_YN	/IAX[1:0]	MPIP_XN	1AX[1:0]	MPIP_WI	NXY1:0]	MPIP_W	INX[1:0]	00h		
2EA		MPI	P_BORDERW[2:0]	MPIP_H	LY[1:0]	MPIP_H	LX[1:0]	00h		
2EB				MPIP_FRMC	OLOR1[7:0]				1Ch		
2EC			•	MPIP_FRMC	OLOR2[7:0]				E0h		
2ED											
2EE		DTVDE PIP_INMX_SEL[1:0] MPIP_INMX_SEL[1:0]									
2EF	PIPAB_EN	MD565	KEY_INV			ALPHA1			00h		
2F0		RKEY									
2F1		GKEY									
2F2				BK	ΕY				00h		
2F3				KEY_R	ANGE				00h		

LCDC – Power Management

Index (HEX)	7	6	5	4	3	2	1	0	Reset value	
2F4		DIVDE_DOWN_COUNTER_MSB								
2F5	PCLK_PDN	clksel_fppwr	PWR_	STATE	MANPWR	EDPMS	PWR_ST	ATE_WT	00h	
2F6		SUSPEND_	STDBY_CNT				00h			
2F7		OFF_ST	DBY_CNT				00h			
2F8		STDBY_SUS	SPEND_CNT			SUSPEND	ON_CNT		00h	

=== PAGE 3 : TCON/ PLL ===

LCDC – TCON

Index	7	6	5	4	3	2	1	0	Reset
(HEA) 300						*			20h
301		100K_FI	ROE_EN	l	REV EN	*	INIV		00h
302		*				BTM			05h
303		*			ROF P	RSP P		CSP P	0Fh
304	PGM_SHA RP	SP_CTRL	PGM_RC K	PGM_ROE	PGM_RSP	PGM_POL	PGM_CLP	PGM_CSP	00h
305				*		1		INV SW	00h
306							REV_SEL	ANAL_LC D	02h
30A	,	*	RSP_	WIDTH		*	COM	PANY	02h
30B				REVV	_REVC				4Dh
30C		*				V_ST	[11:8]		00h
30D				V_S	T[7:0]				06h
30E		*				V_ED	[11:8]		01h
30F				V_E	D[7:0]				E2h
310						CP_S	N[11:8]		02h
311				CP_S	SW[7:0]				DUN
312		*		01.0	07/7 01	CLP_S	ST[11:8]		U2N D0h
313		*		CLP_	S1[7:0]		D[44.0]		00h
314						CLP_E	D[11:8]		06h
314		*		ULP_		CSD 8	T[11:0]		00h
31B				CSP	ST[7:0]	0	51[11.0]		C8h
31C		*				CSP F	D[11:8]		00h
31D				CSP	ED[7:0]				01h
320		*				RCK S	ST[11:8]		00h
321				RCK_	ST[7:0]	_	• •		00h
322		*				RCK_E	D[11:8]		02h
323				RCK_	ED[7:0]				30h
324		*				RSP_S	ST[11:8]		00h
325				RSP	ST[7:0]				06h
326		*				RSP_E	:D[11:8]		00h
327				RSP_	ED[7:0]				01h
320		*				ROE_S	ST[11:8]		00h
32D				ROE_	_ST[7:0] [UAN
32E		*		505		ROE_E	:D[11:8]		00N
326				ROE_	ED[7:0]				4011
334		*				SHARP	_SIR_H		UUh
335				SHARF	P_STR_L				20h
336		*				SHARP	_END_H		01h
337				SHARF	P_END_L				E2h
338	,	*	CLPW	CSYNC_M ODE	CLF	PSEL	CSF	PSEL	00h
339		*				POL_S	TEP[3:0]		00h

LCDC – PLL & DAC

Index (HEX)	7	6	5	4	3	2	1	0	Reset value	
3A0	IP_P FREQ_P[19:15]									
3A1	FREQ_P[14:7]								00h	
3A2	FREQ_P[6:0] *								00h	
3A3				SSFREG	2_P[7:0]				00h	
3A4		SS	G_P		VC	0_Р	POS	T_P	00h	
3A5		IP_M			F	REQ_M[19:15]			40h	
3A6	FREQ_M[14:7]						00h			
3A7	FREQ_M[6:0] *							*	00h	
3A8				SSFREQ	_M[7:0]				00h	
3A9	selpadpclk	selpadmclk	pd_p	pd_m	PllInSel		SSD		00h	
3AA		SSG	_M		VCC	D_M	POST	T_M	00h	
3AB	*	*	*			DA_RGAIN				
3AC	*	*	*			DA_GGAIN				
3AD	*	*	*			DA_BGAIN				
3AE	DacPd	TEST_C	LK_SEL	Dac_iref		*			00h	
3F0					HSV	VID			10h	
3F1										
3FF				Page_	Num				00h	

TW8811 Register Description

0x000 – Product ID Code Register (ID)

Bit	Function	R/W	Description	Reset
7-3	ID	R	The TW8811 Product ID code is 00101.	00101b
2-0	Revision	R	Revision number	000b

0x001 – Chip Status Register (CSTATUS)

Bit	Function	R/W	Description	Reset
7	VDLOSS	R	1 = Video not present. (sync is not detected in a number of consecutive video lines specified by MISSCNT register)	0
			0 = Video detected.	
6	HLOCK	R	1 = Horizontal sync PLL is locked to the incoming video source.	0
			0 = Horizontal sync PLL is not locked.	
5	SLOCK	R	1 = Sub-carrier PLL is locked to the incoming video source.	0
			0 = Sub-carrier PLL is not locked.	
4	FIELD	R	0 = Odd field is being decoded.	0
			1 = Even field is being decoded.	
3	VLOCK	R	1 = Vertical logic is locked to the incoming video source.	0
			0 = Vertical logic is not locked.	
2	Reserved	R	Reserved	0
1	MONO	R	1 = No color burst signal detected.	0
			0 = Color burst signal detected.	
0	DET50	R	0 = 60Hz source detected	0
			1 = 50Hz source detected	
			The actual vertical scanning frequency depends on the current standard invoked.	

0x002 – Input Format (INFORM)

Bit	Function	R/W	Description	Reset	
7	YSEL[2]	R/W	MSB of YSEL. (see description below)	0	
6	FC27	R/W	1 = Input crystal clock frequency is 27MHz.	1	
			Square pixel mode. Must use 24.54MHz for 60Hz field rate source or 29.5MHz for 50Hz rate source.		
5-4	IFSEL	R/W	10 = Component video decoding	00	
			01 = S-video decoding		
			00 = Composite video decoding		
3-2	YSEL[1:0]	R/W	These three bits control the Y input video selection Mux.	00	
			000 : YOUT = YIN0 001 : YOUT = YIN1		
			010 : YOUT = YIN2 011 : YOUT = YIN3		
			1xx : NA		
1	CSEL	R/W	This bit controls the C input source selection.	0	
			0 = CIN0 1 = CIN1		
0	Reserved	R/W		0	

0x003 - QCLAMP

Bit	Function	R/W	Description	Reset
7-0	QCLAMP	R/W	Reserved	20h

Reset

0

0

0x004 - CKHY Bit Function R/W Description 7 Reserved R/W Reserved CKHY 6-5 R/W Color killer time constant 0: fast 3: slow 4-0 Reserved R/W Reserved for test.

0x005 - Reserved

Bit	Function	R/W	Description	Reset
7-0	SAGCGAIN	R/W		AFh

0x006 – Analog Control Register (ACNTL)

Bit	Function	R/W	Description	Reset
7	SRESET	W	A 1 written to this bit resets the device to its default state but all register content remain unchanged. This bit is self-resetting.	0
6		R/W	Reserved	0
5	FBYP	R/W	1 = Anti-alias Filter Bypass 0 = Enable	0
4	AGC_ENB	R/W	0 = AGC loop function enabled.	0
			1 = AGC loop function disabled. Gain is set to by AGCGAIN.	
3	CLK_PDN	R/W	0 = Normal clock operation.	0
			1 = 27 MHz clock in power down mode.	
2	Y_PDN	R/W	0 = Luma ADC in normal operation.	0
			1 = Luma ADC in power down mode.	
1	C_PDN	R/W	0 = Chroma ADC in normal operation.	1
			1 = Chroma ADC in power down mode.	
0	V_PDN	R/W	0 =V channel ADC in normal operation.	1
			1 = V channel ADC in power down mode.	

0x007 – Cropping Register, High (CROP_HI)

Bit	Function	R/W	Description	Reset
7-6	VDELAY_HI	R/W	These bits are bit 9 to 8 of the 10-bit Vertical Delay register.	0
5-4	VACTIVE_HI	R/W	These bits are bit 9 to 8 of the 10-bit VACTIVE register. Refer to description on Reg09 for its shadow register.	0
3-2	HDELAY_HI	R/W	These bits are bit 9 to 8 of the 10-bit Horizontal Delay register.	0
1-0	HACTIVE_HI	R/W	These bits are bit 9 to 8 of the 10-bit HACTIVE register.	10b

0x008 - Vertical Delay Register, Low (VDELAY_LO)

Bit	Function	R/W	Description	Reset
7-0	VDELAY_LO	R/W	These bits are bit 7 to 0 of the 10-bit Vertical Delay register. The two MSBs are in the CROP_HI register. It defines the number of lines between the leading edge of VSYNC and the start of the active video.	15h

0x009 - Vertical Active Register, Low (VACTIVE_LO)

Bit	Function	R/W	Description	Reset
7-0	VACTIVE_LO	R/W	These bits are bit 7 to 0 of the 10-bit Vertical Active register. The two MSBs are in the CROP_HI register. It defines the number of active video lines per frame output. The VACTIVE register has a shadow register for use with 50Hz source when Atreg of Reg0x1C is not set. This register can be accessed through the same index address by first changing the format standard to any 50Hz standard.	F0h

0x00A – Horizontal Delay Register, Low (HDELAY_LO)

Bit	Function	R/W	Description	Reset
7-0	HDELAY_LO	R/W	These bits are bit 7 to 0 of the 10-bit Horizontal Delay register. The two MSBs are in the CROP_HI register. It defines the number of pixels between the leading edge of the HSYNC and the start of the image cropping for active video.	84h
			The HDELAY_LO register has two shadow registers for use with PAL and SECAM sources respectively. These register can be accessed using the same index address by first changing the decoding format to the corresponding standard.	

0x00B – Horizontal Active Register, Low (HACTIVE_LO)

Bit	Function	R/W	Description	Reset
7-0	HACTIVE_LO	R/W	These bits are bit 7 to 0 of the 10-bit Horizontal Active register. The two MSBs are in the CROP_HI register. It defines the number of active pixels per line output.	D0h

0x00C - Control Register I (CNTRL1)

Bit	Function	R/W	Description	Reset
7	PBW	R/W	1 = Wide Chroma BPF BW	1
			0 = Normal Chroma BPF BW	
6	DEM	R/W	Color killer sensitivity. 1= low 0 = high	0
5	PALSW	R/W	1 = PAL switch sensitivity low.	0
			0 = PAL switch sensitivity normal.	
4	SET7	R/W	1 = The black level is 7.5 IRE above the blank level.	0
			0 = The black level is the same as the blank level.	
3	COMB	R/W	1 = Adaptive comb filter on for NTSC/PAL	1
			0 = Notch filter	
2	HCOMP	R/W	1 = Operation mode 1. (recommended)	1
			0 = Operation mode 0.	
1	YCOMB	R/W	This bit controls the Comb operation in the case of monochrome video.	0
			1 = Comb enabled.	
			0 = Comb disabled.	
0	PDLY	R/W	PAL delay line. 0 = enabled. 1 = disabled.	0

0x010 – BRIGHTNESS Control Register (BRIGHT)

Bit	Function	R/W	Description	Reset
7-0	BRIGHTNESS	R/W	These bits control the brightness. They have value of -128 to 127 in 2's complement form. Positive value increases brightness. A value 0 has no effect on the data.	00h

0x011 – CONTRAST Control Register (CONTRAST)

Bit	Function	R/W	Description	Reset
7-0	CONTRAST	R/W	These bits control the contrast. They have value of 0 to 3.98 (FFh). A value of 1 (100_0000`) has no effect on the video data.	60h

0x012 – SHARPNESS Control Register I (SHARPNESS)

Bit	Function	R/W	Description	Reset
7	SCURVE	R/W	This bit controls the center frequency of the peaking filter. The corresponding gain adjustment is HFLT.	0
			0 = low 1 = center	
6	VSF	R/W	Reserved	1
5-4	СТІ	R/W	Color transient improvement level control. There are 4 enhancement levels with 0 being the lowest and 3 being the highest.	1
3-0	SHARP	R/W	These bits control the amount of sharpness enhancement on the luminance signals. There are 16 levels of control with '0' having no effect on the output image. 1 through 15 provides sharpness enhancement with '15' being the strongest.	1

0x013 – Chroma (U) Gain Register (SAT_U)

Bit	Function	R/W	Description	Reset
7-0	SAT_U	R/W	These bits control the digital gain adjustment to the U (or Cb) component of the digital video signal. The color saturation can be adjusted by adjusting the U and V color gain components by the same amount in the normal situation. The U and V can also be adjusted independently to provide greater flexibility. The range of adjustment is 0 to 200%.	80h

0x014 - Chroma (V) Gain Register (SAT_V)

Bit	Function	R/W	Description	Reset
7-0	SAT_V	R/W	These bits control the digital gain adjustment to the V (or Cr) component of the digital video signal. The color saturation can be adjusted by adjusting the U and V color gain components by the same amount in the normal situation. The U and V can also be adjusted independently to provide greater flexibility. The range of adjustment is 0 to 200%.	80h

0x015 – Hue Control Register (HUE)

Bit	Function	R/W	Description	Reset
7-0	HUE	R/W	These bits control the color hue. They have value from +96° (7Fh) to -96° (80h) with an increment of 0.75°. The default value is 0 (00h).	00h

0x016 - Reserved

Bit	Function	R/W	Description	Reset
7-4	Reserved	R/W		С
3-0	Reserved	R/W		8

0x017 - Vertical Peaking Control I

Bit	Function	R/W	Description	Reset
7-4	SHCOR	R/W	These bits provide coring function for the sharpness control.	3
3	Reserved		Reserved	0
2-0	VSHP	R/W	These bits control the vertical peaking level with '0' being the minimum and '7' being the maximum.	0

Bit	Function	R/W	Description	Reset
7-6	CTCOR	R/W	These bits control the coring function for the CTI. It has internal step size of 2.	1
5-4	CCOR	R/W	These bits control the low level coring function for the Cb/Cr output.	0h
3-2	VCOR	R/W	These bits control the coring function of the vertical peaking logic. It has an internal step size of 2.	1h
1-0	CIF	R/W	These bits control the IF compensation level.	0h
			0 = None 1 = 1.5 dB 2 = 3 dB 3 = 6 dB (Secam)	

0x018 – Coring Control Register (CORING)

0x019 - Reserved

Bit	Name	R/W	Description	Reset
7-0	Reserved		Reserved	

0x01A - CC/EDS Status Register (CC_STATUS)

Bit	Function	R/W	Description	Reset
7-0	Reserved	R/W	Reserved	0

0x01B - CC/EDS Data Register (CC_DATA)

Bit	Function	R/W	Description	Reset
7-0	Reserved	R	Reserved	00h

Bit	Function	R/W	Description	Reset
7	DETSTUS	R	0 = Idle 1 = detection in progress	0
6-4	STDNOW	R	Current standard invoked	0
			0 = NTSC(M)	
			1 = PAL (B,D,G,H,I)	
			2 = SECAM	
			3 = NTSC4.43	
			4 = PAL (M)	
			5 = PAL (CN)	
			6 = PAL 60	
			7 = Not valid	
3	ATREG	R/W	1 = Disable the shadow registers.	0
			0 = Enable VACTIVE and HDELAY shadow registers value depending on standard	
2-0	Standard	R/W	Standard selection	0h
			0 = NTSC(M)	
			1 = PAL (B,D,G,H,I)	
			2 = SECAM	
			3 = NTSC4.43	
			4 = PAL (M)	
			5 = PAL (CN)	
			6 = PAL 60	
			7 = Auto detection	

0x01C – Standard Selection (SDT)

0x01D – Standard Recognition (SDTR)

Bit	Function	R/W	Description	Reset
7	ATSTART	R/W	Writing 1 to this bit will manually initiate the auto format detection process. This bit is a self-resetting bit.	0
6	PAL6_EN	R/W	1 = enable recognition of PAL60.	0
			0 = disable recognition.	
5	PALN_EN	R/W	1 = enable recognition of PAL (CN).	0
			0 = disable recognition.	
4	PALM_EN	R/W	1 = enable recognition of PAL (M).	0
			0 = disable recognition.	
3	NT44_EN	R/W	1 = enable recognition of NTSC 4.43.	0
			0 = disable recognition.	
2	SEC_EN	R/W	1 = enable recognition of SECAM.	0
			0 = disable recognition.	
1	PALB_EN	R/W	1 = enable recognition of PAL (B,D,G,H,I).	0
			0 = disable recognition.	
0	NTSC_EN	R/W	1 = enable recognition of NTSC (M).	0
			0 = disable recognition.	

0x01E – Component Video Format (CVFMT)

Bit	Name	R/W	Description	Reset
7	RSV	R	Reserved	0
6-4	CVSTD	R	Component video input format detection.	0h
			0 = 480i, 1 = 576i, 2 = 480p, 3 = 576p	
3-0	CVFMT	R/W	Component video format selection.	8h
			0 = 480i, 1 = 576i, 2 = 480p, 3 = 576p, 8 = Auto	

Bit	Name	R/W	Description	Reset		
7-3		R	Reserved	0		
2	VREF	R/W	Video ADC voltage reference control. 0=normal operation	0		
1	IREF	R/W	Video ADC bias control, 0=normal operation	0		
0	SAVE	R/W	Video ADC reference current control, 0=normal current, 1=2/3 of normal current	0		

0x01F - Control Register

REV C 02/07/2008

Bit	Function	R/W	Description	Reset
7-4	CLPEND	R/W	These 4 bits set the end time of the clamping pulse in the increment of 8 system clocks. The clamping time is determined by this together with CLPST.	5
3-0	CLPST	R/W	These 4 bits set the start time of the clamping pulse in the increment of 8 system clocks. It is referenced to PCLAMP position.	0

0x020 - Clamping Gain (CLMPG)

0x021 – Individual AGC Gain (IAGC)

Bit	Function	R/W	Description	Reset
7-4	NMGAIN	R/W	These bits control the normal AGC loop maximum correction value.	4
3-1	WPGAIN	R/W	Peak AGC loop gain control.	1
0	AGCGAIN[8]	R/W	This bit is the MSB of the 9-bit register that controls the AGC gain when AGC loop is disabled.	0

0x022 - AGC Gain (AGCGAIN)

Bit	Function	R/W	Description	Reset
7-0	AGCGAIN[7:0]	R/W	These bits are the lower 8 bits of the 9-bit register that controls the AGC gain when AGC loop is disabled.	F0h

0x023 - White Peak Threshold (PEAKWT)

Bit	Function	R/W	Description	Reset
7-0	PEAKWT	R/W	These bits control the white peak detection threshold.	D8h

0x024- Clamp level (CLMPL)

Bit	Function	R/W	Description	Reset
7	CLMPLD	R/W	0 = Clamping level is set by CLMPL.	1
			1 = Clamping level preset at 60d.	
6-0	CLMPL	R/W	These bits determine the clamping level of the Y channel.	3Ch

0x025– Sync Amplitude (SYNCT)

Bit	Function	R/W	Description	Reset
7	SYNCTD	R/W	0 = Reference sync amplitude is set by SYNCT.	1
			1 = Reference sync amplitude is preset to 38h.	
6-0	SYNCT	R/W	These bits determine the standard sync pulse amplitude for AGC reference.	38h

0x026 – Sync Miss Count Register (MISSCNT)

Bit	Function	R/W	Description	Reset
7-4	MISSCNT	R/W	These bits set the threshold for horizontal sync miss count threshold.	4
3-0	HSWIN	R/W	These bits set the size for the horizontal sync detection window.	4

0x027 – Clamp Position Register (PCLAMP)

Bit	Function	R/W	Description	Reset
7-0	PCLAMP	R/W	These bits set the clamping position from the PLL sync edge	2Ah

Bit	Function	R/W	Description	Reset
7-6	VLCKI	R/W	Vertical lock in time.	0
			0 = fastest 3 = slowest.	
5-4	VLCKO	R/W	Vertical lock out time.	0
			0 = fastest 3 = slowest.	
3	VMODE	R/W	This bit controls the vertical detection window.	0
			1 = search mode.	
			0 = vertical count down mode.	
2	DETV	R/W	1 = recommended for special switching application only.	0
			0 = Normal Vsync logic	
1	AFLD	R/W	Auto field generation control	0
			0 = Off 1 = On	
0	VINT	R/W	Vertical integration time control.	0
			1 = long 0 = normal	

0x028 - Vertical Control Register

0x029 - Vertical Control II

Bit	Function	R/W	Description	Reset
7-5	BSHT	R/W	Burst PLL center frequency control. (Reserved)	0
4-0	VSHT	R/W	Vsync output delay control in the increment of half line length (Reserved)	15h

0x02A – Color Killer Level Control

Bit	Function	R/W	Description	Reset
7-6	CKILMAX	R/W	These bits control the amount of color killer hysteresis. The hysteresis amount is proportional to the value.	2
5-0	CKILMIN	R/W	These bits control the color killer threshold. Larger value gives lower killer level.	20h

0x02B – Comb Filter Control

Bit	Function	R/W	Description	Reset
7-4	HTL	R/W	Adaptive Comb filter combing control.	4
3-0	VTL	R/W	Adaptive Comb filter combing control.	4

0x02C – Luma Delay and HSYNC Control

Bit	Function	R/W	Description	Reset
7	CKLM	R/W	Color Killer mode. 0 = Normal 1 = fast (for special application)	0
6-4	YDLY	R/W	Luma delay fine adjustment. This 2's complement number provides –4 to +3 unit delay control.	3
3-0	HFLT	R/W	Peaking control 2. The peaking curve is controlled by SCURVE bit.	000

02D – Miscellaneous Control Register I (MISC1)						
Bit	Function	R/W	Description	Reset		
7	HPLC	R/W	Reserved for internal use.	0		
6	EVCNT	R/W	1 = Even field counter in special mode. 0 = Normal operation.	0		
5	PALC	R/W	Reserved for future use.	0		
4	SDET	R/W	ID detection sensitivity. A "1" is recommended.	1		
3	TBC_EN	R/W	Reserved.	0		
2	BYPASS	R/W	Debug use	1		
1	SVOLIT		Pesenved	0		

0x02

0

HADV

0x02E - Miscellaneous Control Register II (MISC2)

Reserved.

R/W

Bit	Function	R/W	Description	Reset
7-6	HPM	R/W	Horizontal PLL acquisition time.	0
			0 = slow 1 = auto1 2 = auto 3 = Fast	2
5-4	ACCT	R/W	ACC time constant	0
			00 = No ACC 01 = slow 10 = medium 11 = fast	2
3-2	SPM	R/W	Burst PLL control.	4
			0 = Slowest 1 = Slow 2 = Fast 3 = Fastest	
1-0	CBW	R/W	Chroma low pass filter bandwidth control.	4
			0 = Low 1 = Medium 2 = High 3 = Extended	1

0x02F – Miscellaneous Control III (MISC3)

Bit	Function	R/W	Description	Reset
7	NKILL	R/W	1 = Enable noisy signal color killer function in NTSC mode.	1
			0 = Disabled.	
6	PKILL	R/W	1 = Enable automatic noisy color killer function in PAL mode.	1
			0 = Disabled.	
5	SKILL	R/W	1 = Enable automatic noisy color killer function in SECAM mode.	1
			0 = Disabled.	
4	CBAL	R/W	0 = Normal output	0
			1 = special output mode.	
3	FCS	R/W	1 = Force decoder output value determined by CCS.	0
			0 = Disabled.	
2	LCS	R/W	1 = Enable pre-determined output value indicated by CCS when video loss is detected.	0
			0 = Disabled.	
1	CCS	R/W	When FCS is set high or video loss condition is detected when LCS is set high, one of two colors display can be selected.	0
			1 = Bluer.	
			0 = Black.	
0	BST	R/W	1 = Enable blue stretch.	0
			0 = Disabled	

0

(U3U – Macrovision Detection						
Bit	Function	R/W	Description	Reset		
7	SID_FAIL	R	Secam status			
6	PID_FAIL	R	PAL status			
5	FSC_FAIL	R	FSC status			
4	SLOCK_FAIL	R	PLL status			
3	CSBAD	R	1 = Macrovision color stripe detection may be un-reliable			
2	MCVSN	R	1 = Macrovision AGC pulse detected.			
			0 = Not detected.			
1	CSTRIPE	R	1 = Macrovision color stripe protection burst detected.			
			0 = Not detected.			
0	CTYPE2	R	This bit is valid only when color stripe protection is detected, i.e. CSTRIPE=1.			
			1 = Type 2 color stripe protection			
			0 = Type 3 color stripe protection			

М - -... 0x030

0x031 - CSTATUS III

Bit	Function	R/W	Description		Reset
7	VCR	R	1 = VCR mode		
6	WKAIR	R	1= Weak Signal	0 = Normal	
5	WKAIR1	R	Weak signal indicator.		
4	VSTD	R	1= Standard Signal	0 = non – standard signal	
3	NINTL	R	1 = Non-interlaced signal	0 = interlaced signal	
2	WSSDET	R	1 = WSS data detected.	0 = Not detected.	
1	EDSDET	R	1 = EDS data detected.	0 = Not detected.	
0	CCDET	R	1 = CC data detected.	0 = Not detected.	

0x032 - HFREF

Bit	Function	R/W	Description	Reset
7-0	Reserved	R	HREF[9:2] / GVAL[8:1] / PHERRDO / CGAINO / BAMPO / MINAVG / SYTHRD / SYAMP	-

0x033 – Miscellaneous Control Register

Bit	Function	R/W	Description	Reset	
7-6	FRM	R/W	Free run mode. 0X = Auto mode 10 = 60 Hz 11 = 50 Hz	00	
5-4	YNR	R/W	Y HF Noise Reduction.	00	
			0 = None 1 = smallest 2 = small 3 = medium		
3-2	CLMD	R/W	Clamping mode control.	01	
			00 = Sync top 1 = Auto 2 = Pedestal 3 = N/A	01	
1-0	PSP	R/W	Slice level for sync top mode.	01	
			0 = Low 1 = Medium 2 = High 3=highest	01	

0x034 - NSEN/SSEN/PSEN/WKTH

Bit	Function		R/W	Description	Reset
7-6	Index		R/W	These two bits indicate which of the four lower 6-bit registers is currently being controlled. The write sequence is a two steps process unless the same register is written. A write of {ID,000000} selects one of the four registers to be written. A subsequent write will actually write into the register.	00
5-0	NSEN	/	R/W	IDX = 0 controls the NTSC ID detection sensitivity (NSEN).	1A/
	SSEN	/		IDX = 1 controls the SECAM ID detection sensitivity (SSEN).	20 /
	PSEN	1		IDX = 2 controls the PAL ID detection sensitivity (PSEN).	1C /
	WKTH			IDS = 3 controls the weak signal detection sensitivity (WKTH).	2A

R/W

x035 – Clamp Cntl2					
Bit	Function	R/W	Description	Reset	
7	CTEST	R/W	Clamping control for debug use.	0	
6	YCLEN	R/W	1 = Y channel clamp disabled	0	
			0 = Enabled.		
5	CCLEN	R/W	1 = C channel clamp disabled	0	
			0 = Enabled.		
4	VCLEN	R/W	1 = V channel clamp disabled	1	
			0 = Enabled.		
3	GTEST	R/W	1 = Test.	0	
			0 = Normal operation.		
2	VLPF	R/W	Clamping filter control	0	
1	CKLY	R/W	Clamping current control for Y.	0	

0x03

0

0x038 – Analog Cntl

CKLC

Bit	Function	R/W	Description	Reset
7-6	Reserved			
0	SY_C	R/W	YOUT control	0
			0 = Y 1 = Y+C	

Clamping current control for C/V.

0x03A - 0x03E Reserved

0x03F – DAC Current Reference

Bit	Function	R/W	Description	Reset
7-4	FBSTUS	R	Reserved	-
3	SYSEL	R/W	Y(CVBS) input selection 0 = G ADC Input Selection 1 = Y ADC Input selection	0
2	FBTYP	R/W	Reserved	0
1-0	FBTHD	R/W	Reserved	00

0

3D Comb Control (0x060 to 0x06F)

0x060 – MDTH

Bit	Function	R/W	Description	Reset
7-0	MDTH	R/W	Motion detection Threshold (Smaller value yields more 2D)	08h

0x062 - 3D_MODE

Bit	Function	R/W	Description	Reset
7	3D_EN	R/W	1: 3D Comb enable, 0: Disable (2D only and no SDRAM access)	0
6	MIXMD1	R/W	1: Fixed mode (chosen by bit 5), 0 : Adaptive mode	0
5	MIXMD2	R/W	When 0x72 bit 6 is "1", this bit defines fixed mode selection 1: 2D, 0 : 3D	0
4-3	Reserved	-		00
2	TEST3D	R/W	1: 3D Comb test mode enable. Should be "0" for normal operation	0
1-0	TM_3D	R/W	3D-Comb test mode. According to the setting of these bits, vd[15:0] will output following signals. 0: Frame delay test 1 (F0 and F1), 1: Frame delay test 2 (F1 and F2), 2: Frame-combed Y and Motion test, 3: Frame-combed Y and C test	0h

0x065 - STR

Bit	Function	R/W	Description	Reset
7-0	M_STRCH	R/W	Stretch of detected motion	4Ch

0x067 - NRLEVEL

Bit	Function	R/W	Description	Reset
7	TESTNR	R/W	1: 3D-NR test mode enable. vd[15:8] will output current Y and vd[7:0] will output 1 frame delayed Y. Should be "0" for normal operation.	0
6	NR_EN	R/W	1: 3D-NR enable, 0: Disable	0
			In some mode, 3D-NR is not available with 3D-coymb. Please refer the description of "Memory controller" in the previous section for detail.	
5-4	NRGAIN	R/W	Noise reduction correction gain 0: ¾ , 1: ½, 2: ¼, 3: 1/8	1h
3-0	NRLEVEL	R/W	Noise identification level (bigger value will correct bigger noise but may induce obvious tailing)	4h

0x068 - NSMODE

Bit	Function	R/W	Description	Reset
7	NONSTD	R	1: Non-standard signal, 0: Standard signal	
6-3	Reserved	R/W		0
2	NS_LNUM	R/W	1: Check line number per frame, 0: Ignore line number	1
1	NS_LLEN	R/W	1: Check line length error, 0: Ignore length error	1
0	NS_FLEN	R/W	1: Check frame length error, 0: Ignore frame length error	1

0x069 - NSLEVEL1

Bit	Function	R/W	Description	Reset
7-0	NSTH1	R/W	Non standard detection threshold 1	02h

0x06A - NSLEVEL2

Bit	Function	R/W	Description	Reset
7-0	NSTH2	R/W	Non standard detection threshold 2	03h

0x06B - NSHYS

Bit	Function	R/W	Description	Reset
7-4	NSON	R/W	Non standard detection hysteresis for ON point	Ch
3-0	NSOFF	R/W	Non standard OFF point	1h

Address	Bit	R/W	Description	Reset
0x0C0	7 - 0	R	These four index addresses provide real time data read out of some internal counters.	0000
0x0C1			I ne index of these counters is set by 0x22B[7:4].	
0x0C2			Index 0x0C0 0x0C1 0x0C2 0x0C3	
0x0C3			0 LVPCNT_ODD[7:0] LVPCNT_ODD[15:8] LVPCNT_ODD[23:16] 1 LVPCNT_EVN[7:0] LVPCNT_EVN[15:8] LVPCNT_EVN[23:16]	
			2 LIVCNT_ODD[7:0] LIVCNT_ODD[11:8]	
			3 LIVCNT_EVN[7:0] LIVCNT_EVN[11:8]	
Astalassas	Dit	DAA	Description	Deset
Address	Βιτ 7 - 4	R/W	Description	0000
0x0C4	/ - 4	R/W	0: VPCNT[23:0] Pixel counter for 1 VSYNC period	0000
			1: LVPCNT_ODD[23:0] Pixel counter for 1 Odd field VSYNC period	
			3: IVCNT[11:0] Line counter for 1 VSYNC period	
			4: LIVCNT_ODD[11:0] Line counter for 1 Odd field VSYNC period	
			6: GOCNT[23:0] Line counter for 1 Even field VSYNC period Pixel counter from VSYNC to the beginning of output display	
			7: LGOOCNT[23:0] Pixel counter from VSYNC to the beginning of output display (odd)	
	3		8: LGOECNT[23:0] Pixel counter from VSYNC to the beginning of output display (even)	0
	2	R/W	1: Force auto calculation to treat input as two fields.	0
	2	R/W	1: Force auto calculation to treat input as one field.	00
	1-0	R/W	00: Bits [7:0] of the counter pointed by the index	00
			01: Bits [15:8] of the counter pointed by the index	
	D''		10: Bits [23:16] of the counter pointed by the index	Decet
Address	Bit 7-0			- Reset
0x0C5		R/W	Data port for those counters mentioned in index 0x0C0.	Deast
Address	Вії. 7		Chip test usage only. Data output selection for analog circuit test. 0: V data 1: C data	Reset
UXUC6	6	R/W	When set, dray scale data replace the normal data output to papel. The content of index 61 is	0
	0	R/W	used as the first pixel data.	0
	5	R/W	If this bit is set to "1", the scaler output is forced to all 0's.	0
	4	R/W	Load CHMAX counter (for debugging).	0
	3-2	R/W	Gray scale data selection.	0
	1	R/W	Start OSD ROM self test.	0
	0	R/W	Start OSD RAM self test.	0
Address	Bit	R/W	Description	Reset
0x0C7	7-0	R	BWYMIN	
Address	Bit	R/W	Description	Reset
0x0C8	7-0	R	BWYMAX	
Address	Bit	R/W	Description	Reset
0x0C9	7-0	к	BWFMIN	
Address	Bit	R/W	Description	Reset
0x0CA	7-0	R	BWFMAX	
Address	Bit	R/W	Description	Reset
0x0CB	7 - 0	R	BWBTILT	

0x0C0 to 0x0CF – Internal Test

Address	Bit	R/W	Description	Reset
0x0CC	7 - 0	R	BWWTILT	
Address	Bit	R/W	Description	Reset
0x0CD	7 - 0			
Address	Bit	R/W	Description	Reset
0x0CE	7 - 0	WR	TEST_MODE	
			This register is reserved for testing purpose. In normal operation, only 0 should be written into this register.	
			03h = Digital video decoder & RGB mix direct input test This test mode allows digital data to be input from DTVD[23:0] pins to the input of the digital logic of the video decoder (replaces YCADC output) as the case when the contents of this register is 04h. Besides this, the FPG1/FPB1/FPR1 pins become inputs and provide data in place of RGBADC data output.	
			04h = Digital video decoder direct input test This test mode allows digital data to be input from DTVD pins to the input of the digital logic of the video decoder. (Replaces ADC output)	
			DTVD(23-16) > "Y" decoder input data, DTVD(15-8) > "U" decoder input data	
			DTVD(7-0) > "V" decoder input data	
			05h = Closed caption test mode.	
			06h = YCADC test mode (DTVD pins become outputs) YCADC digital output is made available externally.	
			"Y" ADC output data > DTVD(15-8), "C" & "FB" ADC output data > DTVD(7-0)	
			Index-63-bit-7 = 1 > "C" data Index-63-bit-7 = 0 > "FB" data.	
			07h = Digital video decoder output test (DTVD pins become outputs) The output of the digital video decoder output is available externally.	
			"R" decoder out data > DTVD(23-16), "G" decoder out data > DTVD(15-8)	
			"B" decoder out data > DTVD(7-0)	
			"Vsync" > CLAMP "Hsync" > GPIO[1] "Hactive" > GPIO[0]	
			08h = RGBADC test mode (DTVD pins become outputs) RGBADC digital output is	
			made available externally.	
			"G" ADC output data > DTVD(15-8), "B" & "R" ADC output data > DTVD(7-0)	
			Index-63-bit-7 = 1 > "B" data Index-63-bit-7 = 0 > "R" data.	
			09h = DAC test mode. DTVD[7:0] inputs are routed to the DAC data input "DIN". 11h = TW88 internal node to flat panel output	
Address	Bit	R/W	Description	Reset
0x0CF	7-0	R/W	Reserved	0

0x100 to 0x12F - OSD1

Address	Bit	R/W	Description	Reset
0X100	7 - 6		Reserved.	0
	5 - 4	R/W	OSD Window0 Horizontal Zoom Up Control	01
			00: X1, 01: X2, 10: X3, 11: X4	
	3 - 2		Reserved	0
	1 - 0	R/W	OSD Window0 Vertical Zoom Up Control	01
			00: X1, 01: X2, 10: X3, 11: X4	
Address	Bit	R/W	Description	Reset
0x101	7 - 4	R/W	OSD Window blinking background color	0000
	3 - 0	R/W	OSD Window auto fill color	0000
Address	Bit	R/W	Description	Reset
0x102	7 - 5		Reserved.	000
	4	R/W	Bitmap Color Write Assign Mode2	0
	-		0: 1pixel/8bits, 1: 1pixel/4bits (4bits color max)	
	3-2	R/W	Bitmap Color Write Assign Mode3 (0x102 bit[1:0]=2'b11, 8-bit mode case)	00
	• <u>-</u>		00: 1pixel/8bits, 01: 1pixel/4bits, 10: 1pixel/2bit, 11: 1pixel/1bit	
	1-0	R/W	Bitmap Color Write Assign Mode1	00
			00: 1pixel/4bits, 01: 1pixel/2bits, 10: 1pixel/1bit, 11: 1pixel/8bit (8-bit mode selection)	
Address	Bit	R/W	Description	Reset
0x103	7 - 5		Reserved.	000
	4	R/W	Block Fill mode enable/disable control (1: Enable)	0
	3 - 1		Reserved.	000
	1	R/W	Block Transfer mode enable/disable control (1: Enable)	0
Address	Bit	R/W	Description	Reset
0x104	7 - 1		Reserved.	000 0000
	0	R/W	Block Fill/Transfer mode start (1: Start, 0: Auto Clear)	0
Address	Bit	R/W	Description	Reset
0x105	7 - 5		Reserved.	000
	4	R/W	Bitmap Data Write Enable	0
	3 - 1		Reserved.	000
	0	R/W	Source bitmap Data Write Enable	0
Address	Bit	R/W	Description	Reset
0x106	7 - 0	R/W	Bitmapped Window0 Start Address (7 – 0)	0000 0000
Address	Bit	R/W	Description	Reset
0x107	7 - 0	R/W	Bitmapped Window0 Start Address (15 – 8)	0000 0000
Address	Bit	R/W	Description	Reset
0x108	7 - 5		Reserved.	000
	4 - 0	R/W	Bitmapped Window0 Start Address (20 – 16)	0 1010
Address	Bit	R/W	Description	Reset
0x109	7 - 0	R/W	Bitmap Window0 V- Start Location (lower 8 bits) : 1 scanline per step	0001 0100
Address	Bit	R/W	Description	Reset
0x10A	7 - 0	R/W	Bitmap Window0 H – Start Location (1 pixel per step)	0010 0000
Address	Bit	R/W	Description	Reset
0x10B	7 - 4	R/W	Bitmap Window0 V- Start Location (upper 4 bits)	0000
	3-0	R/W	Bitmap Window0 H- Start Location (upper 4 bits)	0011
Address	Bit	R/W	Description	Reset
0x10C	7 - 0	R/W	Bitmap Window0 V – Length (1 line per step)	1000 0000

Address	Bit	R/W	Description	Reset
0x10D	7 - 0	R/W	Bitmap Window0 H - Length (1 pixel per step)	1000 0000
Address	Bit	R/W	Description	Reset
0x10E	7 - 4	R/W	Bitmap Window0 V - Length (upper 4 bits)	0000
	3 - 0	R/W	Bitmap Window0 H - Length (upper 4 bits)	0000
Address	Bit	R/W	Description	Reset
0x10F	7 - 0	R/W	Source Window V - Start Location (lower 8 bits) : 1 scanline per step	0000 0000
Address	Bit	R/W	Description	Reset
0x110	7 - 0	R/W	Source Window H - Start Location (1 pixel per step)	0000 0000
Address	Bit	R/W	Description	Reset
0x111	7 - 4	R/W	Source Window V - Start Location (upper 4 bits)	0000
	3 - 0	R/W	Source Window H - Start Location (upper 4 bits)	0000
Address	Bit	R/W	Description	Reset
0x112	7 - 0	R/W	Source/Destination Window V- Length (lower 8 bits) : 1 scanline per step	0000 0000
Address	Bit	R/W	Description	Reset
0x113	7 - 0	R/W	Source/Destination Window H – Length (1 pixel per step)	0000 0000
Address	Bit	R/W	Description	Reset
0x114	7 - 4	R/W	Source/Destination Window V- Length (upper 4 bits)	0000
	3 - 0	R/W	Source/Destination Window H- Length (upper 4 bits)	0000
Address	Bit	R/W	Description	Reset
0x115	7 - 0	R/W	Destination Window V- Start Location (lower 8 bits) : 1 scanline per step	0000 0000
Address	Bit	R/W	Description	Reset
0x116	7 - 0	R/W	Destination Window H – Start Location (1 pixel per step)	0000 0000
Address	Bit	R/W	Description	Reset
0x117	7 - 4	R/W	Destination Window V- Start Location (upper 4 bits)	0000
	3 - 0	R/W	Destination Window H- Start Location (upper 4 bits)	0000
Address	Bit	R/W	Description	Reset
0x118	7 0	R/W	Write Data from Host Interface to OSD	0000 0000
	7-0		The internal write enable signal is generated automatically when 0x118 is accessed.	
Address	Bit	R/W	Description	Reset
0x119	7 - 1		Reserved.	000 0000
	0	R/W	Bitamp OSD window0 Enable/Disable (1: Enable)	0
Address	Bit	R/W	Description	Reset
0x11A	7 - 0	R/W	Special Color Look-up table selection Address[7:0]	0000 0000
Address	Bit	R/W	Description	Reset
0x11B	7	R/W	Special Color Look-up table operation ON/OFF 1: ON, 0: OFF	0
	6	R/W	Special Color Look-up table Select	0
	5-4	R/W	Color Look-up Table Data Select 00: R 01: G 10: B 11: Color Attribute Data	00
	3-0	R/W	Color Look-up Table Select 0000: Table0 ~ 1111: Table15	0000
Address	Bit	R/W	Description	Reset
0x11C	7 0	R/W	Color Look-up Table Write Data	0000 0000
	7-0		When 0x11B[5:4] Attr. = 11, bit[5] : Blink, bit[4:0] : Alpha Blending 0 ~10000(Maximum)	

Address	Bit	R/W	Description	Reset
0x11D	-	R/W	Look-up table Write Window Selection. (0x11A, 0x11B, 0x11C : control by this bit)	0
	1		0: Window 0 1: Window 1	
	6 - 5		Reserved.	00
	4	R/W	Color Look-up Table Conversion Enable 0: Disable, 1: Enable	0
	3		Reserved.	0
		R/W	Color Look-up Table Conversion Selection	000
			For 4 bit display,	
	2 - 0		000: Conversion[1:0] 001: Conversion[3:2] 010: Conversion[5:4] 011: Conversion[7:6]	
			100: Conversion[9:8] 101: Conversion[b:a] 110: Conversion[d:c] 111: Conversion[f:e]	
			For 8 bit display, 000 : Table0 ~ 111 : Table 7	
Address	Bit	R/W	Description	Reset
0x11E	7 - 0	R/W	Color Look-up Table Conversion Value Write.	0001 0000
			-	
Address	Bit	R/W		Reset
0x11F	7-3			0 0000
	2	R	For every end of active window, this signal is toggled.	-
	1	R	For every end of Bitmap window active, this signal is toggled.	-
	0	R	For every end of Teletext window active, this signal is toggled.	-
Address	Bit	R/W		Reset
0x120	7-6			00
	5	R/W	Window 1, 8-bit Mode Case : 16 color table or 256 color table selection	0
	4	R/W	Window U, 8-bit Mode Case : 16 color table or 256 color table selection	0
	3	R/W	Color 8-bit Table Write Window Selection 0: Window 0 1: Window 1	0
	2	R/W	Color 8-bit Table Write enable/disable 0: Disable 1: Enable	0
	1-0	R/W	Color 8-bit Table Write Select 00: All Table 01: R Table 10: G Table 11: B Table	00
Address	Bit	R/W		Reset
0x121	7-0	R/W	Color 8-bit Table Write Address[7:0]	0000 0000
Address	Bit	R/W		Reset
0x122	7-0	R/W	Color 8-bit Table Write Data[7:0]	0000 0000
Address	Bit	R/W		Reset
0x123	7-5			000
	4	R/W	RLC Packet Enable U: Disable 1: Enable	0
	3-2		Reserved.	00
	1	R/W	RLC Reset U: Normal 1: Reset	0
A al al an a a	0	R/W	RLC Bypass Mode 0: Disable 1: Bypass Enable	1 Deset
Address			Description	Reset
UX124	7 - 4	R/W		0000
Addusse	3-0	R/W		Desst
Address		R/W	Description	Reset
0x125	/ -1		Reserved.	000 0000
	U	K/W	Bitamp USD Window1 Enable/Disable (1: Enable)	U

Address	Bit	R/W	Description	Reset
0X126	7 - 6		Reserved.	0
	5 - 4	R/W	OSD Window1 Horizontal Zoom Up Control	01
			00: X1, 01: X2, 10: X3, 11: X4	
	3 - 2		Reserved	0
	1 - 0	R/W	OSD Window1 Vertical Zoom Up Control	01
			00: X1, 01: X2, 10: X3, 11: X4	
Address	Bit	R/W	Description	Reset
0x127	7 - 0	R/W	Bitmapped Window1 Start Address (7 – 0)	0000 0000
Address	Bit	R/W	Description	Reset
0x128	7 - 0	R/W	Bitmapped Window1 Start Address (15 – 8)	0000 0000
Address	Bit	R/W	Description	Reset
0x129	7 - 5		Reserved.	000
	4 - 0	R/W	Bitmapped Window1 Start Address (20 – 16)	0 1010
Address	Bit	R/W	Description	Reset
0x12A	7 - 0	R/W	Bitmap Window1 V- Start Location (lower 8 bits) : 1 scanline per step	0000 0000
Address	Bit	R/W	Description	Reset
0x12B	7 - 0	R/W	Bitmap Window1 H – Start Location (1 pixel per step)	0000 0000
Address	Bit	R/W	Description	Reset
0x12C	7 - 4	R/W	Bitmap Window1 V- Start Location (upper 4 bits)	0000
	3 - 0	R/W	Bitmap Window1 H- Start Location (upper 4 bits)	0000
Address	Bit	R/W	Description	Reset
0x12D	7 - 0	R/W	Bitmap Window1 V – Length (1 line per step)	0000 0000
Address	Bit	R/W	Description	Reset
0x12E	7 - 0	R/W	Bitmap Window1 H - Length (1 pixel per step)	0000 0000
Address	Bit	R/W	Description	Reset
0x12F	7 - 4	R/W	Bitmap Window1 V - Length (upper 4 bits)	0000
	3 - 0	R/W	Bitmap Window1 H - Length (upper 4 bits)	0000
Address	Bit	R/W	Description	Reset
0x130	7 - 4	R/W	Bitmap Window0 H Zoom fraction control	0000
	3 - 0	R/W	Bitmap Window0 V Zoom fraction control	0000
Address	Bit	R/W	Description	Reset
0x131	7 - 4	R/W	Bitmap Window1 H Zoom fraction control	0000
	3 - 0	R/W	Bitmap Window1 V Zoom fraction control	0000
Address	Bit	R/W	Description	Reset
0x132	7-4	R/W	Reserved	0000
	3-0	R/W	Select OSD Logic color table 0~0x0F	0000
Address	Bit	R/W	Description	Reset
0x133	7-0	R/W	Data for Logic operation, It can be one of color look up table number.	00h
Address	Bit	R/W	Description	Reset
0x134	7	R/W	Enable Logical Operation table 15	0
	6	R/W	Enable Logical Operation table 14	0
	5	R/W	Enable Logical Operation table 13	0
	4	R/W	Enable Logical Operation table 12	0
	3	R/W	Enable Logical Operation table 11	0
	2	R/W	Enable Logical Operation table 10	0
	1	R/W	Enable Logical Operation table 9	0
	0	R/W	Enable Logical Operation table 8	0

Address	Bit	R/W	Description	Reset
0x135	7	R/W	Enable Logical Operation table 7	0
	6	R/W	Enable Logical Operation table 6	0
	5	R/W	Enable Logical Operation table 5	0
	4	R/W	Enable Logical Operation table 4	0
	3	R/W	Enable Logical Operation table 3	0
	2	R/W	Enable Logical Operation table 2	0
	1	R/W	Enable Logical Operation table 1	0
	0	R/W	Enable Logical Operation table 0	0
Address	Bit	R/W	Description	Reset
0x136	7 -5	R/W	Reserved	0000
		R/W	Double width Control during Block Transfer.	0
	4		1: Enable	
	3-1	R/W	Reserved	000
		R/W	Double Height Control during Block Transfer.	0
	U		1: Enable	
Bit	Function	R/W	Description	Reset
-----	----------	-----	--	-------
7	OVEN	R/W	Over voltage feedback control	1
			0 = disable 1 = enable	
6	OIEN	R/W	Over current feedback control	1
			0 = disable 1 = enable	
5	UIEN	R/W	Under current feedback control	1
			0 = disable 1 = enable	
4	FBEN	R/W	CCFL feedback loop control	1
			0 = open loop 1 = close loop	
3	LOCKV	R/W	0 = Dimming frequency set by FDIM	0
			1 = Dimming frequency locked to panel vertical sync.	
2	LOCkH	R/W	0 = PWM frequency set by FPWM	0
			1 = PWM frequency locked to panel horizontal frequency	
1	CCFLENB	R/W	0 = analog sense power down	1
			1 = analog sense power up.	
0	CCFLDEN	R/W	0 = CCFL out disable. 1 = CCFL out enable.	0

0x138 – CCFL/LED Control I

0x139 - CCFL/LED Sense Threshold

Bit	Function	R/W	Description	Reset
7-6	LVT	R/W	Lamp voltage threshold	2h
5-4	LILT	R/W	Lamp low current threshold	2h
3-0	LIT	R/W	Lamp normal current threshold	Dh

0x13A - CCFL/LED Control II

Bit	Function	R/W	Description	Reset
7-6	Reserved	R/W		00
5-4	CC_LED_ST	R/W	CCFL or LEDC status	-
3-0	LSTP	R/W	Feedback gain control with 1 being the smallest gain.	4h

0x13B - CCFL/LED PWM

Bit	Function	R/W	Description	Reset
7-0	FPWM	R/W	PWM control frequency. In CCFL mode, Freq = 6.75MHz / Fpwm.	80h
			In LED mode, Freq = 27MHz / Fpwm and Fpwm[7:6] should be 0.	

0x13C – CCFL/LED Dim Frequency

Bit	Function	R/W	Description	Reset
7-0	FDIM	R/W	Dimming frequency control. Freq = 13.18KHz / Fdim	84h

0x13D – CCFL/LED Dim Control

Bit	Function	R/W	Description	Reset
7	LED_DIG_EN	R/W	0 = LEDC disable, 1 = LEDC enable	0
4-0	DDIM	R/W	dimming control. 0=full brightness, 1F=lowest brightness	00h

0x13E - PWMTOP

Bit	Function	R/W	Description	Reset
7-0	PWMTOP	R/W	Reserved	20h

Address	Bit	R/W	Description	Reset
0x151	7-5		Reserved	000
0,0101	4	R/W	OSD Wait Mask Signal 0: Mask Enable 1: Mask Disable	1
	3-2	-	Reserved	00
	1	R	OSD Wait Signal (Active High)	-
	0		Reserved.	0
Address	Bit	R/W	Description	Reset
0x152	7	R/W	External OSD Clock mode 0: free-run. 1: triggered osd clk	1
	6	R/W	External OSD VS polarity control	0
	5	R/W	External OSD Horizontal active polarity control	0
	4	R/W	External OSD Clock polarity control	0
	3 - 1	R/W	External OSD Access Latency control	000
	0	R/W	External OSD Port Enable/Disable 0: Disable, 1: Enable	0
Address	Bit	R/W	Description	Reset
0x153	7-2		Reserved.	00 0000
		R/W	External OSD Horizontal Active Signal mode Selection	0
	1		0: Fontmap Window type, 1: Internal H-active Window type	
	0	R/W	External OSD Sync mode Selection 0: Hactive style, 1: Hsync, Vsync style	0
Address	Bit	R/W	Description	Reset
0x154	7		Reserved.	0
	0.4	R/W	External OSD clock EOCLK delay time selection.	000
	6-4		000: No delay time inserted. Each increment increases the delay by 1 ns.	
	3		Reserved.	0
		R/W	Bitmap Window OSD Gain Value Control	000
			Gain[2:0] OSD Value	
			0 1.000	
			1 0.953	
	2 0		2 0.906	
	2-0		3 0.859	
			4 0.797	
			5 0.750	
			6 0.703	
			7 0.656	
Address	Bit	R/W	Description	Reset
0x155	7-0	R/W	OSD Test Mode	0000 0000
Address	Bit	R/W	Description	Reset
0x156	7	R/W	Reserved.	0
	6		Reserved.	0
	5 -4	R/W	Sub Path OSD Selection 00: No OSD, 01: Bitmap0 & Ext, 10: Bitmap1, 11: All OSD	00
	3		Reserved.	0
	2		Reserved.	0
	1 - 0	R/W	Main Path OSD Selection 00: No OSD, 01: Bitmap0 & Ext, 10: Bitmap1, 11: All OSD	00
Address	Bit	R/W	Description	Reset
0x157	7 - 5		Reserved.	000
	4 - 0	R/W	External OSD Alpha-Blending Level Control.	

0x151 to 0x15F - External OSD & Misc.

Address	Bit	R/W	Description	Reset
0x158	7 - 5		Reserved.	000
	4	R/W	DMA Interface Wait Mask Signal 0: Mask Enable, 1: Mask Disable	0
	3 - 1		Reserved.	000
	0	R	DMA Interface Wait Signal	0
Address	Bit	R/W	Description	Reset
0x159	7	R/W	Analog External Osd Input Enable	0
	6:4	R/W	External Osd Input Data Enable signal Delay	000
			: 0 ~ 7 clock cycle delay	
	3	R/W	Analog External Osd Vsync polarity Inversion	0
	2	R/W	Analog External Osd Hsync polarity Inversion	0
	1	R/W	*	0
	0	R	RLC Wait Signal (Active High)	-

Host Parallel Interface / DMA Configuration Registers

Bit	Function	R/W	Description	Reset
7-2		R/W	Reserved	
1	WAIT	R/W	Generation wait signal	1
			0 : Wait signal doesn't working (Always off)	
			1 : Wait signal working depend on status	
0	DMA_SEL	R/W	Select data transfer type	0
			0 : Host parallel path	
			1 : DMA	

0x1A0 – Mode Setting Register

0x1A1– Total Transfer Count High Byte Register

Bit	Function	R/W	Description	Reset
7-0	XFER_CNT	R/W	It is indicate that how many bytes data transfer base on four bytes unit either read or write to/from chip per command. It's support up to 64KBbytes a command so bit[15:8].	00h

0x1A2– Total Transfer Count Low Byte Register

Bit	Function	R/W	Description	Reset
7-0	XFER_CNT	R/W	It is indicate that how many bytes data transfer base on four bytes unit either read or write to/from chip per command. This is bit 7-0.	00h
			The data transfer must be multiple of four.	
			(ex) 4Bytes = 04h, 8Bytes = 08h	

0x1A3 – Memory Access Address High Byte Register

Bit	Function	R/W	Description	Reset
7-5		R/W	Reserved	
4-0	MEM_ADR	R/W	Memory access address include in row and column address.	00h
			Bit[20-16]	

0x1A4 – Memory Access Address Medium Byte Register

Bit	Function	R/W	Description	Reset
7-0	MEM_ADR	R/W	Memory access address include in row and column address.	00h
			Bit[15-8]	

0x1A5– Memory Access Address Low Byte Register

Bit	Function	R/W	Description	Reset
7-0	MEM_ADR	R/W	Memory access address include in row and column address.	00h
			Bit[7-0]	

0x1A6- Data Access (Read/Write) Register

Bit	Function	R/W	Description	Reset
7-0	DATA_CH	R/W	Data access channel from/to Memory to/from Microprocessor.	00h

0x1A7 – Command Register

Bit	Function	R/W	Description	Reset
7-1		R/W	Reserved	
0	RD_WR	R/W	Data transfer direction command bit	0
			0 : read command (data flow : MCU data read from memory)	
			1 : write command (data flow : MCU data write to memory)	
			It il be write access later than other register setting because	
			of immediately start operation after access this bit.	

0x1A8– Status Read Register

Bit	Function	R/W	Description	Reset
7-3			Reserved	
2	RD_MON	R	Read (Microprocessor from Memory) operation done	0
			0 : Still operation	
			1 : Read data transfer done	
1	WR_MON	R	Write (Microprocessor to Memory) operation done	
			0 : Still operation	
			1 : Write data transfer done	
0	WAIT_MON	R	Wait status monitoring bit	0
			0 : No wait	
			1 : Wait	

Address	Bit	D/M	Name	Description	Posot
0X1B0	7	R	Line buffer over flow	This bit is set if the FP clock count exceeds the maximum number in between two consecutive FPHS pulses for the even field, cleared by	0
	6	R	Line buffer under flow	writing back a "1". This bit is set if the FP clock count exceeds the maximum number in between two consecutive FPHS pulses for the odd field, cleared by	0
	5	R	Input VSYNC Loss status changed	Writing back a "1". This bit is set when the status bit of "Input VSYNC Loss" had changed, either 1 to 0 or 0 to 1. This bit is cleared by writing back a "1", or by resetting the "endet" bit.	0
	4	R	Input HSYNC Loss status changed	This bit is set when the status bit of "Input HSYNC Loss" had changed, either 1 to 0 or	0
				0 to 1. This bit is cleared by writing back a "1", or by resetting the "endet" bit.	
	3	R/W	Video input status changed indication	Vdloss status bit change (register 1 bit 7) or det50 status bit change (register 1 bit 0) Write a one to this bit to reset.	0
	2	R	Input VSYNC Loss	This bit is set when the input VSYNC pulse is lost, reset by re- appearance of VSYNC. An 11-bit counter is used for VSYNC period measurement. If this counter overflows 4 times, the VSYNC is considered to be lost.	0
	1	R	Input HSYNC Loss	This bit is set when the input HSYNC pulse is lost, reset by re-appearance of HSYNC. An 11-bit counter is used for HSYNC period measurement. If this counter overflows 4 times, the HSYNC is considered to be lost.	0
	0	R	SYNC detect status	Logic function of: Inverted "bit 1" ANDing with inverted "bit 2"	
Address	Bit	R/W	Name	Description	Reset
0X1B1	7	R	Input Measurement Data Ready	This bit is set when the measurement data is ready for readout, reset when a new "startm" is set.	0
	6	R	Power State Changed	This bit is set when the power management state has changed, reset by writing back a "1".	0
	5	R	Input VSYNC Period Change Detected	This bit is set when the input VSYNC period is changed, reset when "endet" is cleared. When "endet" bit is set, the VSYNC period is measured for every frame. If the difference from the last measurement result stored in the registers, is larger than the error tolerance, the VSYNC period is considered to have changed.	0
	4	R	Input HSYNC Period Change Detected	This bit is set when the input HSYNC period is changed, reset when "endet" is cleared. When "endet" bit is set, the HSYNC period is measured for every scan line. If the difference from the last measurement result stored in the registers, is larger than the error tolerance, the HSYNC period is considered to have changed.	0
	3	R	Line buffer Overflow or Underflow		0
	2	R	VDCCDET	High if there is a change in VDLOSS or DET50 or CCVALID	0
	1	R	VLOSS/ HLOSS status changed	This bit reflects the "OR" condition of status bit index B0 bit 5 (VLOSS status changed) and index B0 bit 4 (HLOSS status changed).	0
	0	R	"SYNC Detect Status" Changed	This bit is set when the status bit of "SYNC Detect Status" had changed, either 1 to 0 or 0 to 1. This bit is cleared by writing back a "1", or by resetting the "endet" bit.	0
Address	Bit	R/W	Description		Reset
0X1B2	7	R/W	Enable/Disable 0x1B1 I	bit 7 as an IRQ source	1
	6		Enable/Disable 0v1D1	1. Disable	1
	0	F(/VV	0: Enable	1: Disable	
	5	R/W	Enable/Disable 0x1B1 I	pit 5 as an IRQ source	1
			0: Enable	1: Disable	

0x1B0 to 0x1BF – Status and Interrupt Registers

חחרו	
PREL	.IIVIIINAR I

Address	Bit	R/W	Name	Description	Reset
	4	R/W	Enable/Disable 0x1B1 b	bit 4 as an IRQ source	1
			0: Enable	1: Disable	
	3	R/W	Enable/Disable 0x1B1 b	bit 3 as an IRQ source	1
			0: Enable	1: Disable	
	2	R/W	Enable/Disable 0x1B1 b	bit 2 as an IRQ source	1
			0: Enable	1: Disable	
	1	R/W	Enable/Disable 0x1B1 b	bit 1 as an IRQ source	1
			0: Enable	1: Disable	
	0	R/W	Enable/Disable 0x1B1 b	bit 0 as an IRQ source	1
			0: Enable	1: Disable	
Address	Bit	R/W	Description		Reset
0X1B3	7 - 3	R/W	*		00h
	2	R/W	Enable/Disable VDLOS	S as an IRQ source	1
			0: Enable	1: Disable	
	1	R/W	Reserved		1
	0	R/M	Enable/Disable DET50	as an IRO source	1
	Ū	1000	0. Enable	1. Disable	1
Address	Bit	RM	Name		Reset
0X1R4	7	R	Line buffer over flow	Same as 0x1B0[7]	0
0/104	6	P	Line buffer under	Same as 0x1B0[7]	0
	0	IX.	flow		0
	5	R	PIP Input VSYNC	This bit is set when the status bit of "Input VSYNC Loss" had	0
			Loss status	changed, either 1 to 0 or 0 to 1. This bit is cleared by writing back a	
			changed	"1", or by resetting the "endet" bit.	
	4	R	PIP Input HSYNC	This bit is set when the status bit of "Input HSYNC Loss" had	0
			changed	0 to 1. This bit is cleared by writing back a "1" or by resotting the	
			0	"endet" bit.	
	3	R/W	Video input status	Same as 0x1B0[3]	0
			changed indication		
	2	R	PIP Input VSYNC	This bit is set when the input VSYNC pulse is lost, reset by re-	0
			Loss	appearance of VSYNC. An 11-bit counter is used for VSYNC period	
				considered to be lost.	
	1	R	PIP Input HSYNC	This bit is set when the input HSYNC pulse is lost, reset by re-appearance	0
			Loss	of HSYNC. An 11-bit counter is used for HSYNC period measurement. If	
				this counter overflows 4 times, the HSYNC is considered to be lost.	
	0	R	PIP SYNC detect	Logic function of: Inverted "bit 1" ANDing with inverted "bit 2"	
	D ''	DAAL	status		
Address	Bit	R/W	Name		Reset
UX1B5	/	R	Data Ready	Same as 0X1B1[/]	U
	6	R	Power State	Same as 0x1B1/61	0
	Ľ		Changed		
	5	R	PIP Input VSYNC	This bit is set when the input VSYNC period is changed, reset when	0
			Period Change	"endet" is cleared. When "endet" bit is set, the VSYNC period is	
			Delected	result stored in the registers, is larger than the error tolerance the VSYNC.	
				period is considered to have changed.	
	4	R	PIP Input HSYNC	This bit is set when the input HSYNC period is changed, reset when	0
			Period Change	"endet" is cleared. When "endet" bit is set, the HSYNC period is	
			Delected	result stored in the registers, is larger than the error tolerance the HSYNC.	
				period is considered to have changed.	

PRELIMINARY

Address	Bit	R/W	Name	Description	Reset
	3	R	Line buffer Overflow or Underflow	Same as 0x1B1[3]	0
	2	R	VDCCDET	Same as 0x1B1[2]	0
	1	R	PIP VLOSS/ HLOSS status changed	This bit reflects the "OR" condition of status bit index B0 bit 5 (VLOSS status changed) and index B0 bit 4 (HLOSS status changed).	0
	0	R	PIP "SYNC Detect Status" Changed	This bit is set when the status bit of "SYNC Detect Status" had changed, either 1 to 0 or 0 to 1. This bit is cleared by writing back a "1", or by resetting the "endet" bit.	0
Address	Bit	R/W	Name	Description	Reset
0X1B6	7	R	Line buffer over flow	Same as 0x1B0[7]	0
	6	R	Line buffer under flow	Same as 0x1B0[6]	0
	5	R	MPIP Input VSYNC Loss status changed	This bit is set when the status bit of "Input VSYNC Loss" had changed, either 1 to 0 or 0 to 1. This bit is cleared by writing back a "1", or by resetting the "endet" bit.	0
	4	R	MPIP Input HSYNC Loss status	This bit is set when the status bit of "Input HSYNC Loss" had changed, either 1 to 0 or	0
			changed	0 to 1. This bit is cleared by writing back a "1", or by resetting the "endet" bit.	
	3	R/W	Video input status changed indication	Same as 0x1B0[3]	0
	2	R	MPIP Input VSYNC Loss	This bit is set when the input VSYNC pulse is lost, reset by re- appearance of VSYNC. An 11-bit counter is used for VSYNC period measurement. If this counter overflows 4 times, the VSYNC is considered to be lost.	0
	1	R	MPIP Input HSYNC Loss	This bit is set when the input HSYNC pulse is lost, reset by re-appearance of HSYNC. An 11-bit counter is used for HSYNC period measurement. If this counter overflows 4 times, the HSYNC is considered to be lost.	0
	0	R	MPIP SYNC detect status	Logic function of: Inverted "bit 1" ANDing with inverted "bit 2"	
Address	Bit	R/W	Name	Description	Reset
0X1B7	7	R	Input Measurement Data Ready	This bit is set when the measurement data is ready for readout, reset when a new "startm" is set.	0
	6	R	Power State Changed	Same as 0x1B1[6]	0
	5	R	MPIP Input VSYNC Period Change Detected	This bit is set when the input VSYNC period is changed, reset when "endet" is cleared. When "endet" bit is set, the VSYNC period is measured for every frame. If the difference from the last measurement result stored in the registers, is larger than the error tolerance, the VSYNC period is considered to have changed.	0
	4	R	MPIP Input HSYNC Period Change Detected	This bit is set when the input HSYNC period is changed, reset when "endet" is cleared. When "endet" bit is set, the HSYNC period is measured for every scan line. If the difference from the last measurement result stored in the registers, is larger than the error tolerance, the HSYNC period is considered to have changed.	0
	3	R	Line buffer Overflow or Underflow	Same as 0x1B1[3]	0
	2	R	VDCCDET	Same as 0x1B1[2]	0
	1	R	MPIP VLOSS/ HLOSS status changed	This bit reflects the "OR" condition of status bit index B0 bit 5 (VLOSS status changed) and index B0 bit 4 (HLOSS status changed).	0
	0	R	MPIP "SYNC Detect Status" Changed	This bit is set when the status bit of "SYNC Detect Status" had changed, either 1 to 0 or 0 to 1. This bit is cleared by writing back a "1", or by resetting the "endet" bit.	0
Address	Bit	R/W	Name	Description	Reset

PRELIMINARY

Address	Bit	R/W	Name	Description	Reset
0X1B8	7-6	R/W	Measurement input selection	0,1: Main, 2: PIP, 3: MPIP	00
	5	R/W		0: Enable 0x1B5[5] as an IRQ source	0
	4	R/W		0: Enable 0x1B5[4] as an IRQ source	0
	3-2	R/W		Reserved	00
	1	R/W		0: Enable 0x1B5[1] as an IRQ source	0
	0	R/W		0: Enable 0x1B5[0] as an IRQ source	0
Address	Bit	R/W	Name	Description	Reset
0X1B9	7-6	R/W		Reserved	00
	5	R/W		0: Enable 0x1B7[5] as an IRQ source	0
	4	R/W		0: Enable 0x1B7[4] as an IRQ source	0
	3-2	R/W		Reserved	00
	1	R/W		0: Enable 0x1B7[1] as an IRQ source	0
	0	R/W		0: Enable 0x1B7[0] as an IRQ source	0

ADC/LLPLL Configuration Registers

Bit	Function	R/W	Description	Reset
7-6	INP_SEL	R/W	SOG input selection. 0=SOG0, 1=SOG1, 2,3=NA	0
5	CS_INV	R/W	CSYNC Detection Input Polarity, active low needed.	0
			0 : No Inversion	
			1 : Inversion	
4	CS_SEL	R/W	PLL Input Selection	0
			0 : Slicer or HS	
			1:CS_PAS	
3	SOG_SEL	R/W	CSYNC Detection Selection	
			0 : SOG Slicer	
			1 : HSYNC	
2	HS_POL	R/W	PLL Input Polarity	0
			0 : Inversion	
			1 : Normal	
1	Reserved	R/W		0
0	CK_SEL	R/W	PLL Output Clock selection	0
			0 : Select PLL clock	
			1 : Select oscillator clock	

0x1C0 – LLPLL Input Control Register

0x1C1 – LLPLL Input Detection Register

Bit	Function	R/W	Description	Reset
7	VS_POL	R	Detected VSYNC polarity, 0 = low active	-
6	HS_POL	R	Detected HSYNC polarity, 0 = low active	-
5	VS_DET	R	VSYNC detection	-
4	HS_DET	R	HSYNC detection	-
3	CS_DET	R	Composite Sync detection	-
2-0	DET_FMT	R	Composite Sync format detection	-
			0 : 480i, 1 : 576i, 2 : 480p, 3 : 576p	
			4 : 1080i, 5 : 720p 6: 1080p 7: none of above	

Bit	Function	R/W	Description	Reset
7-6	LLC_POST	R/W	PLL post divider	0
			0= 1 1= 1/2 2= 1/4 3= 1/8	
5-4	LLC_VCO	R/W	VCO range select (MHz)	0
			00 = 5 ~ 27	
			01 = 10 ~ 54	
			10 = 20 ~ 108	
			11 = 40 ~ 216	
3	Reserved			
2-0	LLC_IPMP	R/W	Charge pump currents (uA)	0
			000 = 1.5	
			001 = 2.5	
			010 = 5	
			011 = 10	
			100 = 20	
			101 = 40	
			110 = 80	
			111 = 160	

0x1C2 – LLPLL Control Register

0x1C3 – LLPLL Divider High Register

Bit	Function	R/W	Description	Reset
7-4	Reserved	R/W	Reserved	-
3-0	LLC_ACKN[11:8]	R/W	PLL feedback divider.	3h

0x1C4 – LLPLL Divider Low Register

Bit	Function	R/W	Description	Reset
7-0	LLC_ACKN[7:0]	R/W	PLL feedback divider	5Ah

0x1C5 – LLPLL Clock Phase Register

Bit	Function	R/W	Description	Reset
7-5	Reserved	R/W	Reserved	-
4-0	LLC_PHA	R/W	This 5bit value adjusts the sampling phase in 32 steps across on pixel time. Each step represents an 11.25 degree shift in sampling phase.	00h

0x1C6 – LLPLL Loop Control Register

Bit	Function	R/W	Description	Reset
7	LLC_ACPL	R/W	PLL loop control	0
			0: Closed Loop 1: Open Loop	
6-4	LLC_APG	R/W	PLL loop gain control	2h
3	Reserved	R/W	Reserved	0
2-0	LLC_APZ	R/W	PLL filter control	0h

0x1C7 – LLPLL VCO Control Register

Bit	Function	R/W	Description	Reset
3-0	LLC_ACKI[11-8]	R/W	PLL VCO nominal frequency. Reserved for internal use.	4h

0x1C8 – LLPLL VCO Control Register

Bit	Function	R/W	Description	Reset
7-0	LLC_ACKI[7-0]	R/W	PLL_VCO nominal frequency. Reserved for internal use.	00h

0x1C9 - LLPLL Pre Coast Register

Bit	Function	R/W	Description	Reset
7-0	PRE_COAST	R/W	Sets the number of HSYNC periods that coast is active before VSYNC edge.	06h

0x1CA – LLPLL Post Coast Register

Bit	Function	R/W	Description	Reset
7-0	POST_COAST	R/W	Sets the number of HSYNC periods that coast is active after VSYNC edge.	06h

0x1CB – SOG Threshold Register

Bit	Function	R/W	Description	Reset
7	PUSOG	R/W	SOG power down control, 0 – power down	0
6	PUPLL	R/W	PLL power down control, 0 - power down	0
5	COAST_EN	R/W	PLL Coast control, 1 - Enable	1
4-0	SOG_TH[4:0]	R/W	SOG slicer threshold	10h
			This bits control the comparator threshold of the SOG slicer at 10mV per every step.	
			The setting value of 5"b00000 equals 330mV and the maximum setting value is 5'11111 which equals 10mV.	

0x1CC – Scaler Sync Selection Register

Bit	Function	R/W	Description	Reset
7-5	Reserved	R/W	Reserved	0
4	VSY_SEL	R/W	Active VSYNC select	0
			0 : Composite Sync Separation Output	
			1 : VSYNC input pin	
3-2	HSY_SEL	R/W	Active HSYNC select	0h
			00 - HSYNC pin	
			01 – CS_PAS	
			10 – Sync separator output	
			11 – HSO	
1	VSY_POLC	R/W	VSYNC polarity control	0
			0 – No inversion 1 - Inversion	
0	HSY_POLC	R/W	HSYNC polarity control	0
			0 – No inversion 1 - Inversion	

Bit	Function	R/W	Description	Reset
0	INIT	R/W	PLL initialization, self-resetting	0

0x1CD – PLL Initialization Register

0x1CE - RGB ADC Misc. Register

Bit	Function	R/W	Description	Reset
7	ADC_CLK_SEL	R/W	RGB Path Clock selection	0
			1: Select Xtall clock	
			0: Select Original Line Lock clock	
6		R/W	Reserved	0
5	DTV	R/W	ADC Input mode selection	0
			1: DTV	
			0: RGB	
4		R/W	Reserved	0
3	PDA	R/W	ADC G-channel Power Down	0
			1 : Power Down	
			0: Normal Operation	
2		R/W	Reserved	0
1	INREFV	R/W	ADC Reference voltage select	0
			1: Internal Reference Disable	
			0: Internal Reference Enable	
0	INREFI	R/W	ADC Bias Reference current select	0
			1: Bias Current Boost	
			0: Bias Current Normal	

0x1CF - RGB ADC Misc2. Register

Bit	Function	R/W	Description	Reset
7:6	INP_SEL_ADC	R/W	ADC Data Input pin Select	00
			3: Select input #3	
			2: Select input #2	
			1: Select input #1	
			0: Select input #0	
5:0	SAVE	R/W	PGA/ADC Power Save Mode	001001
			[5:3]=: PGA bias current control : Bigger value means Smaller current setting	
			[2:0] = ADC bias current control : Bigger value means Smaller current setting	

0x1D0 – Clamp Gain Control Register

Bit	Function	R/W	Description	Reset
7-4	Reserved	R/W	Reserved	-
3	Reserved	R/W	Reserved	-
2	GAINY[8]	R/W	Y channel gain adjust bit[8]	0
1	GAINC[8]	R/W	C channel gain adjust bit[8]	0
0	GAINV[8]	R/W	V channel gain adjust bit[8]	0

0x1D1 – Y Channel Gain Adjust Register

Bit	Function	R/W	Description	Reset
7-0	GAINY[7-0]	R/W	Y channel gain adjust bit[7-0]	F0h

0x1D2 – C Channel Gain Adjust Register

Bit	Function	R/W	Description	Reset
7-0	GAINC[7-0]	R/W	C channel gain adjust bit[7-0]	F0h

0x1D3 - V Channel Gain Adjust Register

Bit	Function	R/W	Description	Reset
7-0	GAINV[7-0]	R/W	V channel gain adjust bit[7-0]	F0h

0x1D4 – Clamp Mode Control Register

Bit	Function	R/W	Description	Reset
7	RGB_SEL	R/W	RGB or YCV selection	0
			0 : YCV Mode 1 : RGB Mode	
6	Reserved	R/W	Reserved	-
5	CL_EDGE	R/W	Clamp reference edge	0
4	CLKY	R/W	Clamping current control 1	0
3	CLKC	R/W	Clamping current control 2	0
2	CL_Y_EN	R/W	Green / Y channel clamp	0
			0 : enable, 1 : disable	
1	CL_C_EN	R/W	Blue / C channel clamp	0
			0 : enable, 1 : disable	
0	CL_V_EN	R/W	Red / V channel clamp	0
			0 : enable, 1 : disable	

0x1D5 – Clamp Start Position Register

Bit	Function	R/W	Description	Reset
7-0	CL_ST	R/W	This register sets programmable clamping start position.	00h
			It is start count value that after the trailing edge of the HSYNC signal.	

0x1D6 – Clamp Stop Position Register

Bit	Function	R/W	Description	Reset
7-0	CL_ED	R/W	This register sets programmable clamping stop position.	10h
			Clamping duration set between start and stop position.	

0x1D7 – Clamp Master Location Register

Bit	Function	R/W	Description	Reset
7-0	CL_LOC	R/W	This bit sets the RGB(YCV) clamp position from the H sync edge.	70h

Bit	Function	R/W	Description	Reset
7	Reserved			0
6-4	LLC_DBG_SE L	R/W	Debugging register for internal use	00h
3	Reserved			
2	RGB_ADC_ TEST	R/W	Internal Test Only	0
1	CL_TEST_Y	R/W	Programmable Green / Y select 0: Use default value (G:0x10, U/V:0x3c) 1: Programmable value	0
0	CL_TEST_UV	R/W	Programmable Blue and Red / U and V select 0: Use default value (R/B:0x10, U/V:0x80) 1: Programmable value	0

0x1D8 – ADC TEST Register

0x1D9 – Y Clamp Reference Register

Bit	Function	R/W	Description	Reset
7-0	CL_Y_VAL	R/W	Green/ Y channel Clamping reference level in programmable mode.	10h

0x1DA – C Clamp Reference Register

Bit	Function	R/W	Description	Reset
7-0	CL_C_VAL	R/W	Blue and Red/ U and V channel Clamping reference level in programmable mode.	80h

0x1DC - HSYNC Width Register

Bit	Function	R/W	Description	Reset
7-6		R/W	Reserved	00
5-0	HSWID	R/W	Hsync Widith. The unit of HWSID is one clock cycle.	00h

0x1DD - R Channel ADC Offset Register

Bit	Function	R/W	Description	Reset
7-0	OFFSETR	R/W	R Channel ADC Offset Value.	80h

0x1DE – G Channel ADC Offset Register

Bit	Function	R/W	Description	Reset
7-0	OFFSETG	R/W	G Channel ADC Offset Value.	80h

0x1DF - B Channel ADC Offset Register

Bit	Function	R/W	Description	Reset
7-0	OFFSETB	R/W	B Channel ADC Offset Value.	80h

Address	Bit	R/W	Description	Reset		
0x1F0	7	R/W	Enable Red gamma correction.	0		
	6	R/W	Enable Green gamma correction.	0		
	5	R/W	Enable Blue gamma correction.	0		
	4	R/W	Reserved.	0		
	3-2	R/W	Enable Gamma table address auto increment for reading/writing Gamma data port.	00		
		00: Disable, 01: Read Only,				
			10: Write Only, 11: Read/Write			
	1 - 0 R/W Gamma tables access selection:					
			Index address 0x1F1 to 0x1F2 are used for gamma table accesses. There are 3 sets of gamma table, one table for one color, sharing the same address port and data port. These 2 bits identifies which table is accessed.			
			00: RGB Gamma table 01: Red Gamma table			
			10: Green Gamma table 11: Blue Gamma table			
Address	Bit	R/W	Description	Reset		
0x1F1	7-4	R/W	Gamma table address port.	0000 0000		
Address	Bit	R/W	Description	Reset		
0x1F2	7 - 2	R/W	Reserved	00 0000		
	1 - 0	R/W	Gamma table data port (upper bits)	00		
Address	Bit	R/W	Description	Reset		
0x1F3	7 - 0	R/W	Gamma table data port (lower bits)	0000 0000		

0x1F0 to 0x1FE - LCDC - Gamma

Flat Panel Display Registers

Address	Bit	R/W	Description	Reset
0x20E	7		Reserve	
	6		Reserve	
	5		Reserve	
	4		Reserve	
	3		Reserve	
	2		Reserve	
	1		Reserve	
	0	R/W	Dual_656 input enable; 1=Enable, 0=Disable	0
Address	Bit	R/W	Description	Reset
0x20F	7:6	R/W	Sequentiall RGB alternative line data based on RGB input order	0
			3 = G->B->R	
			2 = R->G->B	
			1 = B->R->G	
			0 = G->B->R	
	5:4	R/W	Sequentiall RGB Input order	0
			3 = R->G->B	
			2 = B->R->G	
l			1 = G->B->R	
			0 = R->G->B	
l	3:2	R/W	Sequentiall RGB Input 8 bit selection out of [23:0]	0
			3 = Select 8 bit for [7:0]	
			2 = Select 8 bit for [23:16]	
			1 = Select 8 bit for [15:0]	
			0 = Select 8 bit for [7:0]	
	1	R/W	0 = Sequential RGB Clock polarity disable	0
			1 = Sequential RGB Clock polarity Inversion	
	0	R/W	0 = Sequential RGB mode disable	0
			1 Sequential RGB mode enable	

0x20E to 0x20F - Input Type Registers

0x210 to 0x21F - Input and Input Related Registers

Address	Bit	R/W	Description			
0x210	7	R/W This bit has dual function. It serves as odd field detection method selection or ITU656 progressive/interlaced selection. If bits 3:2 of Index 0x214h does not choose ITU656:		0		
			Odd Field Detection Method for Digital input port			
			0: Use internal default method			
	1: Use Detection method defined by register 0x215					
		If bits 3:2 selects ITU656, this bit sets the input to interlaced (0) or progressive(1).				
	6 R/W Invert internal detected field signal					
	5 R/W Field is determined by the leading or trailing edge of input VSYNC when using 0x215 for field determination. 1: Trailing edge.			0		
	4	R/W	Enable CSYNC (Composite SYNC); Input pin DTVHS is treated as a CSYNC input.	0		
	3	R/W	DE polarity of the digital source. 0: Active High	0		
	2	R/W	HSYNC polarity of the digital source. 0: Active High	0		
	1	R/W VSYNC polarity of the digital source. 0: Active High				
	0	R/W	Invert Digital input port DTVCLK polarity, 0: Rising edge 1: Falling edge	0		

Address	Bit	R/W	Description				Reset		
0x211	7	R/W	EPDEN				0		
	6	R/W	PDEN_POL.						
	5	R/W	Select Explicit DE (Data Enable also called HA for Horizontal Active);						
			0: HA is ass	serted in the input a	ctive region de	efined by registers 0x217 through 0x21D			
			1: HA is sou	urced by individual v	ideo source				
	4	R/W	0 = DTVDE	E is used as the data	a enable (DE)		0		
			1 = DTVDE	E is used as HSYNC	C input				
	3	-	Reserved.				0		
	2 - 0	R/W	Input clock	DTVCLK delay time	selection.		000		
			000: No del	ay time inserted. Ea	ach incremen	t increases the delay by 1 ns.			
Address	Bit	R/W	Description				Reset		
0x212	7	R/W	Enable field	detection for Digita	l input port wh	nen index 0x214 bit 1 & 0 is 2'b10.	0		
	6	R/W	Set this bit t	o "1" if the DTVVS i	nput is not a p	oulse but a "field" signal.	0		
	5	R/W	ITU656 eve	n field VSYNC dela	у.		0		
			1: Delay the	e assertion to the fall	ling edge of "h	าล".			
			0: No delay						
	4	R/W	Use filtered	HSYNC to maintain	n constant inp	ut HSYNC period.	0		
	3	R/W	Set this bit t	et this bit to 1 in 8 bit 601 mode if the Cr data arrives before Cb data.					
	2 - 0	0 R/W	Data bus r	outing selection f	or Digital inp	put port	100		
			For 24 bit Y	pbPr or 24 bit RGB					
			[DTVD[23:16]	DTVD[15:8]	DTVD[7:0]			
			000: F	Pr/B Y	//R	Pb/G			
			001: F	Pr/B F	Pb/G	Y/R			
			010: F	Pb/G Y	//R	Pr/B			
			011: F	Pb/G F	Pr/B	Y/R			
			100: Y	r/R F	°b/G	Pr/B			
			101: N	r/R F	Pr/B	Pb/G			
			For 16 bit Y Example: If bus routing If Explicit I assumed t reset, Inde For 8 bit Y/F Example: If "011" or "10 Use the ta Explicit DE 1	Pb/Pr: Follow the ta Y data is connected selection should be DE, Inde0x214 bit [4, to have Pb data. Or tx 0x210 bit [3] is us Pb/Pr: Follow the tat Y/Pb/Pr data is con 11". ble below for the col Index-0x210-bit-3 X	able above wit d to DTVD[23: set to "101".], is set, the ven the other ha ed to select the ole above with nected to DTP rrect data orde Index 0x27 0	th Y and Pb. :16] and Pb/Pr data is connected DTVD[7:0], the ery first DTVDE is nd if Explicit DE is he order of Pb /Pr. h Pr. VD[15:8], the bus routing selection can be set to er. 'A-bit-5 Data Order Pb-Y-Pr-Y			
			1	х	1	Pr-Y-Pb-Y			
			0	0	0	Pb-Y-Pr-Y			
			0	0	1	Pr-Y-Pb-Y			
			0	1	0	Y-Pb-Y-Pr			
1	1	1	0	1	1	Y-Pr-Y-Ph			

Address	Bit	R/W	Description						
0x213	7:1	R/W	Internal clock polarity control	000_0000					
	0	R/W	RGB color space selection	0					
			1: RGB, 0: YUV						
Address	Bit	R/W	Description	Reset					
0x214	7 - 6	R/W	COAST is driven to "enabled" state in the window defined below	00					
			00: COAST enabled 1 HSYNC period before VSYNC and 7 HSYNC periods after VSYNC						
			01: COAST enabled 2 HSYNC periods before VSYNC and 8 HSYNC periods after VSYNC						
			10: COAST enabled 3 HSYNC periods before VSYNC and 9 HSYNC periods after VSYNC						
	11: COAST enabled 4 HSYNC periods before VSYNC and10 HSYNC periods after VSYNC								
	5	R/W	Reserved.	0					
	4 R/W 1: Choose 8 bit 601 input mode 0: Choose 8bit 656 input mode								
	3 - 2	R/W	Input format selection;	10					
			00: 422 (16 bit ITU601),						
			01: ITU656 (8 bits) or ITU601 (8 bit) ; determined by bit 4.						
			10: 444, 11: RGB						
	1 - 0	R/W	Input Video source selection;	00					
			00: Internal analog video decoder,						
			01: RGB 10: Digital input						
			11: PIP						
Address	Bit	R/W	Description	Reset					
0x215	7 - 4	R/W	Horizontal Ending Locations of internal Odd Field Detection for Digital input port	0101					
	3 -0	R/W	Horizontal Starting Locations of internal Odd Field Detection for Digital input port	0100					
			Start Pixel End Pixel Start Pixel End Pixel						
			0000 32 64 1000 512 1024						
			0001 64 128 1001 576 1152						
			0010 128 256 1010 640 1280						
			0011 192 384 1011 704 1408						
			0100 256 512 1100 768 1536						
			0101 320 640 1101 832 1664						
	D'1	D4 4/	0111 448 896 1111 960 1920						
Address	Bit	R/W	Description	Reset					
UX2 10	7-0	FV VV	Offset amount to re-construct VSYNC from CSYNC input. The L to H transition of CSYNC input provides the L to H transition of HSYNC. This register defines the amount of offset from this transition edge for generating VSYNC.						
Address	Bit	R/W	Description	Reset					
0x217	7 - 0	R/W	Input Active Window definition: Horizontal Starting Pixel Position - Low Byte.	0000 0000					
Address	Bit	R/W	Description	Reset					
0x218	7 - 0	R/W	Input Active Window definition:	1100 1111					
1	1	1	L Horizontal Ending Pixel Position - Low Byte						

Address	Bit	R/W	Description	Reset
0x219	7 - 4	R/W	Input Active Window definition:	0010
			Horizontal Ending Pixel Position – High (Total 12 bits).	
			This position is referenced to the rising edge of input HSYNC.	
	3	R/W	Reserved.	
	2-0	R/W	Input Active Window definition:	000
			Horizontal Starting Pixel Position - High (Total 11 bits)	
			This position is referenced to the rising edge of input HSYNC.	
*Note: The	value wr	itten in thi	is register does not come into effect until a register write to index 0x217 or 0x218 is followed.	
Address	Bit	R/W	Description	Reset
0x21A	7-0	R/W	Input Active Window definition:	0001 0011
0.12			Odd Field Vertical Line Start Position - Low Byte	
Address	Bit	RM		Reset
0v21B	7.0		Input Active Window definition:	0001 0011
0,210	7-0		Even Field Vertical Line Start Desition Low Pute	
Addroop	Dit			Poset
Address			Description	
0x21C	7-0	R/W		5000 0000
Address	Bit	R/W	Description	Reset
UX21D	6-4		Reserveu.	011
	0-4		Vertical Length - High (Total 11 bits)*	011
			The unit of this length is one input HSYNC.	
	3 - 2	R/W	Input Active Window definition:	00
			Even Field Vertical Line Start Position - High (Total 10 bits)*.	
			This position is referenced to the rising edge of input VSYNC.	
	1 - 0	R/W	Input Active Window definition:	00
			This position is referenced to the rising edge of VSYNC.	
*Note: Wh	en the Ev	I nlicit_DE i	is not used (Register 0x211, bit 5), the input active window is defined by the above H_Active and V_A	ctive
registers.				ouve
Address	Bit	R/W	Description	Reset
0x21E	7	R/W	Line Lock PLL output Clock Polarity	0
	6	R/W	Reserved	0
	5	R/W	GPIO[1] input/output selection.	0
			1: Output (see 0x213 for data source). 0 : input	_
	4	R/W	1: Output (see 0x213 for data source) 0 : input	0
	3	R/W	Set IRQ Active Low	0
	2		*	0
	1_0		Line Lock PLL output Clock delay [1:0]	00
Addross	Dit			Bosot
			Invert CDIO[1] output	
UXZIF			Output source selection GPIO[1]	0
	6-5	R/W	00: Data written to bit 4, 01: VDLOSS, 10: HLOCK, 11: BW_ACTIVE	00
	4	R/W	Read: Shows the sampled input value of GPIO[1]	0
	<u> </u>		Write: Holds the data that can be output to GPIO[1]	
	3	R/W		0
	2 - 1	R/W	00: Data written to bit 0.01: FIFLD 10: HZ50.11:IRO	000
	0	R/M	Read: Shows the sampled input value from GPIO[0]	0
	U	1000	Write: Holds the data that can be output to GPIO[0]	5

			· · · · · · · · · · · · · · · · · · ·	
Address	Bit	R/W	Description	Reset
0x220	7:0		Reserved	
Address	Bit	R/W	Description	Reset
0x221	7-0	R/W	Input Measurement Window definition:	0010 0000
			Horizontal Start - Low Byte	
Address	Bit	R/W	Description	Reset
0x222	7-0	R/W	Input Measurement Window definition:	1111 1111
			Horizontal Stop - Low Byte	
Address	Bit	R/W	Description	Reset
0x223	7-4	R/W	Input Measurement Window definition:	0001
			Horizontal Stop - High three bits (Total 12 bits)	
			This Horizontal Stop position if referenced to the rising edge of input HSYNC and the unit is one input pixel.	
	3		Reserved	0
	2-0	R/W	Input Measurement Window definition:	000
			Horizontal Start - High three bits (Total 11 bits)	
			This Horizontal Start position if referenced to the rising edge of input HSYNC and the unit is one input pixel.	
Address	Bit	R/W	Description	Reset
0x224	7-0	R/W	Input Measurement Window definition:	0010 0000
			Vertical Start - Low Byte	
Address	Bit	R/W	Description	Reset
0x225	7-0	R/W	Input Measurement Window definition:	1111 1010
			Vertical Stop - Low Byte	
Address	Bit	R/W	Description	Reset
0x226	7		Reserved	0
	6-4	R/W	Input Measurement Window definition:	
			Vertical Stop - High three bits (Total 11 bits)	000
			This Vertical Stop position is referenced to the rising edge of input VSYNC and the unit is one input HSYNC.	
	3		Reserved	0
	2-0	R/W	Input Measurement Window definition:	
			Vertical Start - High three bits (Total 11 bits)	000
			This Vertical Start position is referenced to the rising edge of input VSYNC and the unit is one input HSYNC.	
Address	Bit	R/W	Description	Reset
0x227	7-0	R	Result 0: Data port 0 to read Input Measurement Result	0000 0000
			(0X22B bits 7-4 specifies which result to read out)	
Address	Bit	R/W	Description	Reset
0x228	7-0	R	Result 1: Data port 1 to read Input Measurement Result	0000 0000
			(0X22B bits 7-4 specifies which result to read out)	
Address	Bit	R/W	Description	Reset
0x229	7-0	R	Result 2: Data port 2 to read Input Measurement Result	0000 0000
			(0X22B bits 7-4 specifies which result to read out)	
Address	Bit	R/W	Description	Reset
0x22A	7-0	R	Result 3: Data port 3 to read Input Measurement Result	0000 0000
		1	(0X22B bits 7-4 specifies which result to read out)	

0x220 to 0x22F – Input Format Measurement Registers

Address	Bit	R/W	Description	Reset	
0x22B	7 - 4	R/W	Select which measurement result to read out from 0x227~0x22A		
			0000: Phase Measurement Result - Blue (use Result 3-0 registers)		
			0001: Phase Measurement Result - Green (use Result 3-0 registers)		
			0010: Phase Measurement Result - Red (use Result 3-0 registers)		
			0011: Minimum Value (Result2: R. Result1: G. Result 0:B)		
			0100: Maximum Value (Result2: R. Result1: G. Result 0:B)		
			0101: VSYNC Period (Result3, 2) HSYNC Period (Result 1, 0)		
			0110: HSYNC Rise to HSYNC Fall Interval (Result 1, 0) and HSYNC Rise to HACTIVE Fall Interval (Result 3, 2)		
			0111: VSYNC pulse width (Result 1.0). Horizontal pixel counter value at		
			the leading edge of VSYNC (Result 3, 2). 1000: Min Horizontal Active Starting Pixel (Results 1 & 0) Max Horizontal Active Starting Pixel (Results 3 & 2)	0000	
			1001: Min Horizontal Active Ending Pixel (Results 1 & 0) Max Horizontal Active Ending Pixel (Results 3 & 2)		
			1010: Vertical Active Starting Line recorded witha. the first Horizontal Active Starting Pixel (Results 1 & 0)b. the first Horizontal Active Ending Pixel (Results 3 & 2)		
			 1011: Vertical Active Ending Line recorded with a. the last Horizontal Active Starting Pixel (Results 1 & 0) b. the last Horizontal Active Ending Pixel (Results 3 & 2) 		
			 1100: Horizontal counter value when buffer read pointer starts to toggle. (Results 1 & 0) 1101: Luminance values. Minimum luminance (Result 0) Maximum luminance (Result 1) Average luminance (Result 2) 1110: VSYNC Period measured with 27 MHz clock (Result 2, 1 & 0). 		
	3 - 2	R/W	Field Select for Input Measurement	00	
			00: Odd field only 01: Even field only 1x: Disregard field	00	
	1	R/W	Reserved.	0	
	0	R/W	STARTM	0	
			Start Input Measurement. This bit is self-cleared after the measurement is done.	_	
Address	Bit	R/W		Reset	
0x22C	1	R/W	Use 2/MHZ clock for input HS YNC period measurement.	0	
	0-4		Noise mask bits for each of the 3 LSB input signals.	000	
	5-1		000: Exact match 001: Up to 4 counts 0 10: Up to 8 counts 011: Up to 16 counts 100: Up to 32 counts 101: Up to 64 counts 110: Up to 128 counts 111: Up to 256 counts	000	
	0	R/W	ENDET		
			Enable Input VSYNC, HSYNC Period Change/Loss Detection.		
			When this bit is set, the internal circuitry will perform new measurements. The new results are compared against the results retained in the registers obtained by the most recent "startm" measurement.	0	
Address	Bit	R/W	Description	Reset	
0x22D	7 - 4	R/W	Threshold value for input active region detection.	0011	
		DAA	Each increment increases the threshold value by 16.		
	3	R/W	Enable luminance measurement.	0	
	2-1		Noise iller selection for luminance measurement.	000	
Address	Dit			Rosot	
0x22F	7-0	1000	*	I COCL	

Address	Bit	R/W	Description	Reset
0x230	7 – 0	R/W	Horizontal (X-Direction) Scale Up Factor – Higher Fraction Byte (Coarse adjustment) 65536 * (Input Horizontal Active Pixel Number) / (Flat Panel Horizontal Active Pixel Number) Example: VGA 640x480, Panel Resolution: 1024x768 65536 * 640 / 1024 = 40960 = 0A000h Example: Decoder 720x240, Panel Resolution: 1024x768	1011 0100
			65536 * 720 / 1024 = 46080 = 0B400h	
Address	Bit	R/W	Description	Reset
0x231	7 – 0	R/W	Horizontal (X-Direction) Scale Down Factor - Fraction Byte 128 * (Input Horizontal Active Pixel Number) / (Flat Panel Horizontal Active Pixel Number) Example: Decoder 720x240, Panel Resolution: 640x480 128 * 720 / 640 = 144 = 090h	1000 0000
Address	Bit	R/W	Description	Reset
0x232	7 – 0	R/W	Vertical (Y-Direction) Scale Up Factor – Higher Fraction Byte (Coarse adjustment) 65536 * (Input Vertical Active Pixel Number) / (Flat Panel Vertical Active Pixel Number) Example: VGA 640x480 , Panel Resolution: 1024x768 65536 * 480 / 768 = 40960 = 0A000h Example: Decoder 720x240, Panel Resolution: 1024x768 65536 * 240 / 768 = 20480 = 05000h	0101 0000
Address	Bit	R/W	Description	Reset
0x233	7	R/W	Enable Panorama / Water-glass scaling.	0
	6	R/W	1: Line doubling, 0: Normal vertical scaling	0
	5	R/W	1: Pixel doubling, 0: Normal horizontal scaling	0
	4	R/W	Set Zoom by-pass. When this bit is set, the Horizontal and Vertical scale up factors has no effects.	0
	3-2	R/W	Integer portion of Vertical (Y-Direction) Scale factor (Total 18 bits). For vertical scale up, maximum value is 0x10000. For vertical Y-direction scale down, the value should be larger than 0x100. Vertical Scale Factor < 0x10000 : Up scaling Vertical Scale Factor = 0x10000 : No scaling Vertical Scale Factor > 0x10000 : Down scaling The max vertical down scaling factor that the scaler can handle is 0x20000.	00
	1	R/W	Horizontal (X-Direction) Scale Down Factor – High bit (Total of 9 bits)	0
	0	R/W	Horizontal (X-Direction) Scale Up Factor – Integer portion bit (Total 17 bits)	0
Address	Bit	R/W	Description	Reset
0x234	7 - 0	R/W	Horizontal (X-Direction) Scale Up Offset	0000 0000
Address	Bit	R/M	Description	Reset
0v235	7.0		Vertical (V-Direction) Scale I In Offset for Odd field	1000.0000
0,200	7 - 0	1000	This offset is used to adjust the initial value for the Y-Direction scale up operation.	1000 0000
Address	Bit	R/W	Description	Reset
0x236	7 - 0	R/W	Horizontal non-display pixel number applied to both left and right sides. This is useful when displaying 4:3 image on wide screen 16:9 panel. Example: A wide screen panel with 1024 horizontal pixels. If this register has a value of 100, the active horizontal display will be 824 pixels. Each side is "blacked" out by 100 pixels. This register also serves as the panorama horizontal width definition.	0000 0000
Address	Bit	R/W	Description	Reset
0x237	7	R/W	Line buffer SRAMs' CE are always active.	0000 0000
	6 - 2	R/W	*	0000 0000
	1 - 0	R/W	High 2 bits of 0x246 register.	0000 0000
Address	Bit	R/W	Description	Reset
0x238	7-0	R/W	Horizontal scale at the side of display in panorama scaling mode.	0000 0000
Address	Bit	R/W	Description	Reset
0x239	7 - 0	R/W	Horizontal (X-Direction) Scale Up Factor – Lower Fraction Byte (Fine adjustment)	0000 0000

0x230 to 0x23F – Scaling/Zoom Control

PRELIMINARY

Address	Bit	R/W	Description	Reset
0x23A	7 - 0	R/W	Vertical (Y-Direction) Scale Up Factor – Lower Fraction Byte (Fine adjustment)	0000 0000
Address	Bit	R/W	Description	Reset
0x23B	7 - 0	R/W	Vertical (Y-Direction) Scale Up Offset for Even field	0000 0000
			This offset is used to adjust the initial value for the Y-Direction scale up operation.	

0x240 to 0x26F – Image Adjustment

Address	Bit	R/W	Description	Reset
0x240	7	R/W	*	0
	6	R/W	There are 2 sets of registers for index 0x241 ~ 0x246.	
			0: Select the 1 st set, R/G/B Contrast and R Brightness	0
			1: Select the 2 nd set, Y/Cb/Cr Contrast and Y Brightness	
	5 - 0	R/W	Hue Adjustment for Main path. These bits control the color hue. The range is +45 degrees to -45 degrees in 1.4 degree increments.	10 0000
			0 degrees is the default (xx10 0000)	
Address	Bit	R/W	Description	Reset
0x241	7 - 0	R/W	Red (or Y) Contrast Adjustment for Main path	1000 0000
			80h+ : Higher contrast, 80h: Neutral, 80h-: Lower contrast	1000 0000
Address	Bit	R/W	Description	Reset
0x242	7 - 0	R/W	Green (or Cb) Contrast Adjustment for Main path	1000 0000
			80h+ : Higher contrast, 80h: Neutral, 80h-: Lower contrast	1000 0000
Address	Bit	R/W	Description	Reset
0x243	7 - 0	R/W	Blue (or Cr) Contrast Adjustment for Main path	1000 0000
			80h+ : Higher contrast, 80h: Neutral, 80h-: Lower contrast	1000 0000
Address	Bit	R/W	Description	Reset
0x244	7 - 0	R/W	Red (or Y) Brightness Adjustment for Main path	1000 0000
			80h+ : Higher brightness, 80h: Neutral, 80h-: Lower brightness	1000 0000
Address	Bit	R/W	Description	Reset
0x245	7 - 0	R/W	Green Brightness Adjustment for Main path	1000 0000
			80h+ : Higher brightness, 80h: Neutral, 80h-: Lower brightness	1000 0000
Address	Bit	R/W	Description	Reset
0x246	7 - 0	R/W	Blue Brightness Adjustment for Main path	1000 0000
			80h+ : Higher brightness, 80h: Neutral, 80h-: Lower brightness	1000 0000
Address	Bit	R/W	Description	Reset
0x247	7 - 4	R/W	Coring function for sharpness control of Main path.	0011
	3 - 0	R/W	Sharpness Adjustment for Main path	1111
Address	Bit	R/W	Description	Reset
0x248	7	R/W	Main path Sharpness frequency select. 0 = Low freq. 1 = High freq.	0
	6	R/W	Reserved.	000
	5 - 4	R/W	Main path YNR.	000
	3	R/W	Reserved.	000
	2 - 0	R/W	Main path Hflt.	000
Address	Bit	R/W	Description	Reset
0x249	7	R/W	*	0
	6	R/W	There are 2 sets of registers for index 71 ~ 76.	
			0: Select the 1 st set, R/G/B Contrast and R Brightness	0
			1: Select the 2 nd set, Y/Cb/Cr Contrast and Y Brightness	
	5 - 0	R/W	Hue Adjustment for Sub path. These bits control the color hue. The range is +45 degrees to – 45 degrees in 1.4 degree increments.	10 0000
			0 degrees is the default (xx10 0000)	

Address	Bit	R/W	Description	
0x24A	7 - 0	R/W	Red (or Y) Contrast Adjustment for Sub path	1000 0000
			80h+ : Higher contrast, 80h: Neutral, 80h-: Lower contrast	1000 0000
Address	Bit	R/W	Description	Reset
0x24B	7 - 0	R/W	Green (or Cb) Contrast Adjustment for Sub path	1000 0000
		5	80h+ : Higher contrast, 80h: Neutral, 80h-: Lower contrast	
Address	Bit	R/W		Reset
0x24C	7 - 0	R/W	Blue (or Cr) Contrast Adjustment for Sub path. 80h+ : Higher contrast, 80h: Neutral, 80h-: Lower contrast	1000 0000
Address	Bit	R/W	Description	Reset
0x24D	7 - 0	R/W	Red (or Y) Brightness Adjustment for Sub path. 80h+ : Higher brightness, 80h: Neutral, 80h-: Lower brightness	1000 0000
Address	Bit	R/W	Description	Reset
0x24E	7 - 0	R/W	Green Brightness Adjustment for Sub path. 80h+ : Higher brightness, 80h: Neutral, 80h-: Lower brightness	1000 0000
Address	Bit	R/W	Description	Reset
0x24F	7 - 0	R/W	Blue Brightness Adjustment for Sub path	1000 0000
			80h+ : Higher brightness, 80h: Neutral, 80h-: Lower brightness	1000 0000
Address	Bit	R/W	Description	Reset
0x250	7 - 4	R/W	Coring function for sharpness control of Sub path.	0011
	3 - 0	R/W	Sharpness Adjustment for Sub path	1111
Address	Bit	R/W	Description	
0x251	7	R/W	Sub path Sharpness frequency select. 0 = Low freq. 1 = High freq.	0
	6	R/W	Reserved.	000
	5-4	R/W	Sub path YNR.	000
	3	R/W	Reserved.	000
	2-0	R/W	Sub path Hfit.	000
Address	Bit	R/W	Description	Reset
0x252	7 - 4	R/W	Edge enhancement parameter	0100
	3	R/W	Disable edge enhancement.	0
	2 - 0	R/W	Index for registers sharing the address space 0x25A	000
Address	Bit	R/W	Description	Reset
0x253 (252[2:0]=0)	7 - 0	R/W	2D edge enhancement register threshold #0	0011 0000
0x253 (252[2:0]=1)	7 - 0	R/W	2D edge enhancement register threshold #1	0011 0000
0x253 (252[2:0]=2)	7 - 0	R/W	2D edge enhancement register threshold #2	0011 0000
0x253 (252[2:0]=3)	7 - 0	R/W	2D edge enhancement register threshold #3	0000 0000
0x253 (252[2:0]=4)	7 - 0	R/W	2D edge enhancement register threshold #4	0000 0000
Address	Bit	R/W	Description	Reset
0x254	7 - 4	R/W	Reserved.	0000
	3 - 0	R/W		0100

Address	Bit	R/W	Description	Reset
0x255	7	R/W	Test BW. Should be 0 for normal operation.	0
	6	R/W	Reserved	0
	5	R/W	Black level selection. 0: 0 1: 16d	0
	4	R/W	White level selection. 0: 235d 1: 255d	1
	3	R/W	Reserved	1
	2	R/W	Reserved	1
	1	R/W	Reserved.	00
	0	R/W	1: BW stretch enable, 0: BW disable	0
Address	Bit	R/W	Description	Reset
0x256	7 - 0	R/W	Black/White stretch line start for detection window, lower 8 bits (total 10 bits).	0000 1000
Address	Bit	R/W	Description	Reset
0x257	7 - 0	R/W	Black/White stretch line end for detection window, lower 8 bits (total 10 bits).	1111 0110
Address	Bit	R/W	Description	Reset
0x258	7 - 4	R/W	Reserved.	0000
	3-2	R/W	Black/White stretch line end for detection window, upper 2 bits.	10
	1 - 0	R/W	Black/White stretch line startfor detection window, upper 2 bits.	00
Address	Bit	R/W	Description	Reset
0x259	7 - 0	R/W	BWHDLY, Black/White stretc horizontal distance from Start/End pixel of HACTIVE.	0001 0000
Address	Bit	R/W	Description	Reset
0x25A	7 - 6	R/W	Reserved	00
	5-0	R/W	Y Min/Max Horizontal filter gain.	00 1011
Address	Bit	R/W	Description	Reset
0x25B	7 - 0	R/W	Tilt point for black stretch.	0110 0111
Address	Bit	R/W	Description	Reset
0x25C	7 - 0	R/W	Tilt point for white stretch.	1001 0100
Address	Bit	R/W	Description	Reset
0x25D	7 - 0	R/W	Black stretch Limit	0010 1010
Address	Bit	R/W	Description	Reset
0x25E	7 - 0	R/W	White stretch Limit	1101 0000
Address	Bit	R/W	Description	Reset
0x25F	7 - 0	R/W	See PIP register explanation	1100 1010
Address	Bit	R/W	Description	Reset
0x260	7	R/W	Reserved.	0
	6 - 0	R/W	Black/White Stretch Field recursive filter gain.	000 0010
Address	Bit	R/W	Description	Reset
0x261	7	R/W	1: MPIP write height reduction enable, 0: Normal operation (write and read height are same)	0
	6 - 0	R/W	MPIP write height reduction amount	0000000
Address	Bit	R/W	Description	Reset
0x262	7 - 0	R/W	Reserved.	0001 1000
Address	Bit	R/W	Description	Reset
0x263	7 - 0	R/W	Color Enhancement Center Color phase for color 1. The range for center color phase is -180° ~ + 180°	3Dh
Address	Bit	R/W	Description	Reset
0x264	7 - 0	R/W	Color Enhancement Center Color phase for color 2. The range for center color phase is -180° \sim + 180°	C3h
Address	Bit	R/W	Description	Reset
0x265	7 - 0	R/W	Color Enhancement Center Color phase for color 3. The range for center color phase is -180° $\sim +180^{\circ}$	FCh
Address	Bit	R/W	Description	Reset
0x266	7	R/W	1: Color Enhancement Enable, 0: Disable	0

Address	Bit	R/W	Description	Reset
0x255	7	R/W	Test BW. Should be 0 for normal operation.	0
	6	R/W	Reserved	0
	5	R/W	Black level selection. 0: 0 1: 16d	0
	4	R/W	White level selection. 0: 235d 1: 255d	1
	3	R/W	Reserved	1
	2	R/W	Reserved	1
	1	R/W	Reserved.	00
	0	R/W	1: BW stretch enable, 0: BW disable	0
Address	Bit	R/W	Description	Reset
0x256	7 - 0	R/W	Black/White stretch line start for detection window, lower 8 bits (total 10 bits).	0000 1000
Address	Bit	R/W	Description	Reset
0x257	7 - 0	R/W	Black/White stretch line end for detection window, lower 8 bits (total 10 bits).	1111 0110
Address	Bit	R/W	Description	Reset
	6 - 5	R/W	Color Enhancement Gain Spread Range for color 1 00 : no enhance 01 : $-8^{\circ} \sim +8^{\circ}$ of center color phase 10 : $-16^{\circ} \sim +16^{\circ}$ of center color phase 11 : $-32^{\circ} \sim +32^{\circ}$ of center color phase	00
	4 - 0	R/W	Color Enhancement Gain for color 1. The minimum Gain value is 00000 and maximum is 11111 from 0 to 0.484 with 31 step of 1/64.	0h
Address	Bit	R/W	Description	Reset
0x267	7	R/W	Reserved	
	6 - 5	R/W	Color Enhancement Gain Spread Range for color 2	00
	4 - 0	R/W	Color Enhancement Gain for color 2	0h
Address	Bit	R/W	Description	Reset
0x268	7	R/W	Reserved	
	6 - 5	R/W	Color Enhancement Gain Spread Range for color 3	00
	4 - 0	R/W	Color Enhancement Gain for color 3	0h

DRFI	імп	NΛ	PV
FREL		٧A	ΓI

Address	Bit	R/W	Description	Reset
0x270	7	R/W	Set Double Pixel output to flat panel. 0: Single Pixel	0
	6	R/W	Set FPDE Active High 0: Active Low	1
	5	R/W	Set FPHS Active High 0: Active Low	0
	4	R/W	Set FPVS Active High 0: Active Low	0
	3	R/W	Invert FPCLK polarity	0
			0: Output signals to flat panel (FPVS, FPHS, etc.) are referenced to the falling edge of FPCLK.	
	2	R/W	Reverse the pixel order on panel data bus for dual pixel output.	0
			0: First pixel is out on FPR0/FPG0/FPB0.	
			1: First pixel is out on FPR1/FPG1/FPB1	
	1	R/W	Reverse the bit order on panel data bus.	0
			0: MSB is on FPR0[7], FPR1[7], FPG0[7], FPG1[7], FPB0[7], and FPB1[7].	
			1: MSB is on FPR0[0], FPR1[0], FPG0[0], FPG1[0], FPB0[0], and FPB1[0].	
	0	R/W	Set this bit to 1 making FPCLK become inactive during vertical blanking time.	0
Address	Bit	R/W	Description	Reset
0x271	7	R/W	TCON output. 1: Set panel output pins to TCON interface signals.	00
	6	R/W	When this bit is set, the internal circuitry uses the programmed value of index B6[3:0] and index B2[7:0] as the FPHS period disregarding the setting of "Auto Calculation", bit 1 of index BE.	0
	5	R/W	DE mode selection. 1: FPVS and FPHS are forced to inactive state.	0
	4	R/W	FP data outputs shift down 2 bits. When set, FPR0, FPR1, FPG0, FPG1, FPB0, FPB1 bus signals are shifted down by 2 bits.	0
	3	R/W	Tri-state all the output signals to flat panel.	0
	2 - 0	R/W	Panel clock FPCLK delay time selection.	000
			000: No delay time inserted. Each increment increases the delay by 1 ns.	
Address	Bit	R/W	Description	Reset
0x272	7 - 0	R/W	FPHS Period - Low Byte	0011 1010
Address	Bit	R/W	Description	Reset
0x273	7 - 0	R/W	FPHS Active Pulse Width	0001 0000
			This register is usually filled in with the minimum FPHS pulse width requirement from the flat panel specification	
Address	Bit	R/W	Description	Reset
0x274	7 - 0	R/W	Flat Panel Horizontal Back Porch Width The duration from the trailing edge of FPHS to the leading edge of FPDE.	00011011
			This register is usually filled in with the minimum horizontal back porch requirement from the flat panel specification.	
Address	Bit	R/W	Description	Reset
0x275	7 - 0	R/W	FPDE Horizontal Active Length	0000 0000

0x270 to 0x28F - DISPLAY CONTROL

PRELIMINARY

Address	Bit	R/W	Description	Reset
0x276	7 - 4	R/W	FPDE Horizontal Active Length – High three bits (Total 11 bits)	100
			This horizontal active length is equivalent to the panel horizontal resolution. For example, the horizontal resolution of an XGA panel is 1024.	
	3 - 0	R/W	FPHS Period – High three bits (Total 12 bits)	0101
			The following formula gives the correct number to fill in for FPHS period.	
			FPHS_Period = F_pllcki / (F_ihsync * VSUR)	
			Where <i>F</i> _pllcki is the frequency of PCLK, <i>F</i> _ihsync is the frequency of input HSYNC, and VSUR is the vertical scale up ratio.	
			VSUR = (Panel Vertical Resolution) / (Input Vertical Resolution)	
			Example: Input is VGA with HSYNC frequency 31.5KHz with 60 Hz refresh rate to be displayed on an XGA panel.	
			VSUR = 768/480 = 1.6	
			Choose <i>F</i> _pllcki = 69 MHz	
			FPHS_Period = 69000000 / (31500 * 1.6) = 1369.05 → 1369 = 559h	
Note: The u	unit for Inc	lex 0x272 tl	hrough 0x276 is one panel pixel clock, which is either the output of internal PLL or PCLK.	
The FPHS	Period sh	ould be lar	ger than the sum of 1) FPHS Active Pulse Width, 2) FPHS Back Porch Width, and 3) FPDE	
Horizontal	Active Le	ngth.		
		-		_
Address	Bit	R/W	Description	Reset
0x277	7 - 0	R/W	FPVS Period - Low Byte	0010 0110
Address	Bit	R/W	Description	Reset
0x278	7 - 0	R/W	FPVS Active Pulse Width	0000 0110
			The unit of this pulse width is one FPHS.	
			This register is usually filled in with the minimum FPVS pulse width requirement from the flat panel specification.	
Addross	Bit	R/W	Description	Reset
Audiess				
0x279	7-0	R/W	Flat Panel Vertical Back Porch Width	0001 1111
0x279	7 - 0	R/W	Flat Panel Vertical Back Porch Width The unit of this pulse width is one FPHS.	0001 1111
0x279	7 - 0	R/W	Flat Panel Vertical Back Porch Width The unit of this pulse width is one FPHS. The following formula gives the correct number to fill in for FPVS back porch.	0001 1111
0x279	7 - 0	R/W	Flat Panel Vertical Back Porch Width The unit of this pulse width is one FPHS. The following formula gives the correct number to fill in for FPVS back porch. FPVS_Back_Porch = (VAS–VSYNC_pw+2)* VSUR–FPVS_Pulse_Width	0001 1111
0x279	7-0	R/W	Flat Panel Vertical Back Porch Width The unit of this pulse width is one FPHS. The following formula gives the correct number to fill in for FPVS back porch. FPVS_Back_Porch = (VAS–VSYNC_pw+2)* VSUR–FPVS_Pulse_Width Where VAS is the input Vertical active starting line number, VSYNC_pw is the input VSYNC pulse width, VSUR is the Vertical Scale Up ratio.	0001 1111
0x279	7-0	R/W	Flat Panel Vertical Back Porch Width The unit of this pulse width is one FPHS. The following formula gives the correct number to fill in for FPVS back porch. FPVS_Back_Porch = (VAS–VSYNC_pw+2)* VSUR–FPVS_Pulse_Width Where VAS is the input Vertical active starting line number, VSYNC_pw is the input VSYNC pulse width, VSUR is the Vertical Scale Up ratio. VSUR = (Panel Vertical Resolution) / (Input Vertical Resolution)	0001 1111
Address Address	7 - 0 Bit	R/W R/W	Flat Panel Vertical Back Porch Width The unit of this pulse width is one FPHS. The following formula gives the correct number to fill in for FPVS back porch. FPVS_Back_Porch = (VAS–VSYNC_pw+2)* VSUR–FPVS_Pulse_Width Where VAS is the input Vertical active starting line number, VSYNC_pw is the input VSYNC pulse width, VSUR is the Vertical Scale Up ratio. VSUR = (Panel Vertical Resolution) / (Input Vertical Resolution) Description	0001 1111 Reset
Address 0x279 Address 0x27A	7 - 0 Bit 7 - 0	R/W R/W R/W	Flat Panel Vertical Back Porch Width The unit of this pulse width is one FPHS. The following formula gives the correct number to fill in for FPVS back porch. FPVS_Back_Porch = (VAS–VSYNC_pw+2)* VSUR–FPVS_Pulse_Width Where VAS is the input Vertical active starting line number, VSYNC_pw is the input VSYNC pulse width, VSUR is the Vertical Scale Up ratio. VSUR = (Panel Vertical Resolution) / (Input Vertical Resolution) Description Flat Panel Vertical Active Length - Low Byte	0001 1111 Reset 0000 0000
Address 0x279 Address 0x27A Address	7 - 0 Bit 7 - 0 Bit	R/W R/W R/W R/W	Flat Panel Vertical Back Porch Width The unit of this pulse width is one FPHS. The following formula gives the correct number to fill in for FPVS back porch. FPVS_Back_Porch = (VAS-VSYNC_pw+2)* VSUR-FPVS_Pulse_Width Where VAS is the input Vertical active starting line number, VSYNC_pw is the input VSYNC pulse width, VSUR is the Vertical Scale Up ratio. VSUR = (Panel Vertical Resolution) / (Input Vertical Resolution) Description Flat Panel Vertical Active Length - Low Byte Description	0001 1111 Reset 0000 0000 Reset
Address 0x279 Address 0x27A Address 0x27B	7-0 Bit 7-0 Bit 7	R/W R/W R/W R/W	Flat Panel Vertical Back Porch Width The unit of this pulse width is one FPHS. The following formula gives the correct number to fill in for FPVS back porch. FPVS_Back_Porch = (VAS–VSYNC_pw+2)* VSUR–FPVS_Pulse_Width Where VAS is the input Vertical active starting line number, VSYNC_pw is the input VSYNC pulse width, VSUR is the Vertical Scale Up ratio. VSUR = (Panel Vertical Resolution) / (Input Vertical Resolution) Description Flat Panel Vertical Active Length - Low Byte Description Early start. Start to output data earlier in non auto calculation mode.	0001 1111 Reset 0000 0000 Reset 0
Address 0x279 Address 0x27A Address 0x27B	7 - 0 Bit 7 - 0 Bit 7 - 0 Bit 7 6 - 4	R/W R/W R/W R/W R/W	Flat Panel Vertical Back Porch Width The unit of this pulse width is one FPHS. The following formula gives the correct number to fill in for FPVS back porch. FPVS_Back_Porch = (VAS-VSYNC_pw+2)* VSUR-FPVS_Pulse_Width Where VAS is the input Vertical active starting line number, VSYNC_pw is the input VSYNC pulse width, VSUR is the Vertical Scale Up ratio. VSUR = (Panel Vertical Resolution) / (Input Vertical Resolution) Description Flat Panel Vertical Active Length - Low Byte Description Early start. Start to output data earlier in non auto calculation mode. Flat Panel Vertical Active Length - High three bits (Total 11 bits)	0001 1111 Reset 0000 0000 Reset 0 011
Address 0x279 Address 0x27A Address 0x27B	7 - 0 Bit 7 - 0 Bit 7 6 - 4	R/W R/W R/W R/W R/W	Flat Panel Vertical Back Porch Width The unit of this pulse width is one FPHS. The following formula gives the correct number to fill in for FPVS back porch. FPVS_Back_Porch = (VAS–VSYNC_pw+2)* VSUR–FPVS_Pulse_Width Where VAS is the input Vertical active starting line number, VSYNC_pw is the input VSYNC pulse width, VSUR is the Vertical Scale Up ratio. VSUR = (Panel Vertical Resolution) / (Input Vertical Resolution) Description Flat Panel Vertical Active Length - Low Byte Description Early start. Start to output data earlier in non auto calculation mode. Flat Panel Vertical Active Length - High three bits (Total 11 bits) The unit of this active length is one FPHS	0001 1111 Reset 0000 0000 Reset 0 011
Address 0x279 Address 0x27A Address 0x27B	7 - 0 Bit 7 - 0 Bit 7 6 - 4	R/W R/W R/W R/W R/W	Flat Panel Vertical Back Porch Width The unit of this pulse width is one FPHS. The following formula gives the correct number to fill in for FPVS back porch. FPVS_Back_Porch = (VAS–VSYNC_pw+2)* VSUR–FPVS_Pulse_Width Where VAS is the input Vertical active starting line number, VSYNC_pw is the input VSYNC pulse width, VSUR is the Vertical Scale Up ratio. VSUR = (Panel Vertical Resolution) / (Input Vertical Resolution) Description Flat Panel Vertical Active Length - Low Byte Description Early start. Start to output data earlier in non auto calculation mode. Flat Panel Vertical Active Length - High three bits (Total 11 bits) The unit of this active length is one FPHS This vertical active length is equivalent to the panel vertical resolution. For example, the vertical resolution of an XGA panel is 768.	0001 1111 Reset 0000 0000 Reset 0 011
Address 0x279 Address 0x27A Address 0x27B	7 - 0 Bit 7 - 0 Bit 7 6 - 4 3	R/W R/W R/W R/W R/W	Flat Panel Vertical Back Porch Width The unit of this pulse width is one FPHS. The following formula gives the correct number to fill in for FPVS back porch. FPVS_Back_Porch = (VAS-VSYNC_pw+2)* VSUR-FPVS_Pulse_Width Where VAS is the input Vertical active starting line number, VSYNC_pw is the input VSYNC pulse width, VSUR is the Vertical Scale Up ratio. VSUR = (Panel Vertical Resolution) / (Input Vertical Resolution) Description Flat Panel Vertical Active Length - Low Byte Description Early start. Start to output data earlier in non auto calculation mode. Flat Panel Vertical Active Length - High three bits (Total 11 bits) The unit of this active length is one FPHS This vertical active length is equivalent to the panel vertical resolution. For example, the vertical resolution of an XGA panel is 768. Reserved	0001 1111 Reset 0000 0000 Reset 0 011 0
Address 0x279 Address 0x27A Address 0x27B	7-0 Bit 7-0 Bit 7 6-4 3 2-0	R/W R/W R/W R/W R/W R/W	Flat Panel Vertical Back Porch Width The unit of this pulse width is one FPHS. The following formula gives the correct number to fill in for FPVS back porch. FPVS_Back_Porch = (VAS-VSYNC_pw+2)* VSUR-FPVS_Pulse_Width Where VAS is the input Vertical active starting line number, VSYNC_pw is the input VSYNC pulse width, VSUR is the Vertical Scale Up ratio. VSUR = (Panel Vertical Resolution) / (Input Vertical Resolution) Description Flat Panel Vertical Active Length - Low Byte Description Early start. Start to output data earlier in non auto calculation mode. Flat Panel Vertical Active Length - High three bits (Total 11 bits) The unit of this active length is equivalent to the panel vertical resolution. For example, the vertical resolution of an XGA panel is 768. Reserved FPVS Period – High three bits (Total 11 bits)	0001 1111 Reset 0000 0000 Reset 0 011 0 0 011
Address 0x279 Address 0x27A Address 0x27B	7 - 0 Bit 7 - 0 Bit 7 - 0 Bit 7 6 - 4 3 2 - 0	R/W R/W R/W R/W R/W R/W	Flat Panel Vertical Back Porch Width The unit of this pulse width is one FPHS. The following formula gives the correct number to fill in for FPVS back porch. FPVS_Back_Porch = (VAS-VSYNC_pw+2)* VSUR-FPVS_Pulse_Width Where VAS is the input Vertical active starting line number, VSYNC_pw is the input VSYNC pulse width, VSUR is the Vertical Scale Up ratio. VSUR = (Panel Vertical Resolution) / (Input Vertical Resolution) Description Flat Panel Vertical Active Length - Low Byte Description Early start. Start to output data earlier in non auto calculation mode. Flat Panel Vertical Active Length - High three bits (Total 11 bits) The unit of this active length is equivalent to the panel vertical resolution. For example, the vertical resolution of an XGA panel is 768. Reserved FPVS Period – High three bits (Total 11 bits) The unit of this period is one FPHS.	0001 1111 Reset 0000 0000 Reset 0 011 0 0 011
Address 0x279 Address 0x27A Address 0x27B	7 - 0 Bit 7 - 0 Bit 7 - 0 Bit 7 6 - 4 3 2 - 0 unit for Incode should gth.	R/W R/W R/W R/W R/W R/W R/W ex 0x277 ti be larger ti	Flat Panel Vertical Back Porch Width The unit of this pulse width is one FPHS. The following formula gives the correct number to fill in for FPVS back porch. FPVS_Back_Porch = (VAS-VSYNC_pw+2)* VSUR-FPVS_Pulse_Width Where VAS is the input Vertical active starting line number, VSYNC_pw is the input VSYNC pulse width, VSUR is the Vertical Scale Up ratio. VSUR = (Panel Vertical Resolution) / (Input Vertical Resolution) Description Flat Panel Vertical Active Length - Low Byte Description Early start. Start to output data earlier in non auto calculation mode. Flat Panel Vertical Active Length - High three bits (Total 11 bits) The unit of this active length is one FPHS This vertical active length is equivalent to the panel vertical resolution. For example, the vertical resolution of an XGA panel is 768. Reserved FPVS Period – High three bits (Total 11 bits) The unit of this period is one FPHS. hrough 0x27B is one FPHS, i.e. whenever there is an active FPHS, the count is incremented by 1 han the sum of 1) FPVS Active Pulse Width, 2) FPVS Back Porch Width, and 3) Flat Panel Vertic	0001 1111 Reset 0000 0000 Reset 0 011 0 011 . The FPVS al Active
Address 0x279 Address 0x27A Address 0x27B Note: The u Perio Leng	7 - 0 Bit 7 - 0 Bit 7 - 0 Bit 2 - 0 unit for Incod should gth.	R/W R/W R/W R/W R/W R/W R/W R/W en in this re	Flat Panel Vertical Back Porch Width The unit of this pulse width is one FPHS. The following formula gives the correct number to fill in for FPVS back porch. FPVS_Back_Porch = (VAS-VSYNC_pw+2)* VSUR-FPVS_Pulse_Width Where VAS is the input Vertical active starting line number, VSYNC_pw is the input VSYNC pulse width, VSUR is the Vertical Scale Up ratio. VSUR = (Panel Vertical Resolution) / (Input Vertical Resolution) Description Flat Panel Vertical Active Length - Low Byte Description Early start. Start to output data earlier in non auto calculation mode. Flat Panel Vertical Active Length - High three bits (Total 11 bits) The unit of this active length is one FPHS This vertical active length is equivalent to the panel vertical resolution. For example, the vertical resolution of an XGA panel is 768. Reserved FPVS Period – High three bits (Total 11 bits) The unit of this period is one FPHS. hrough 0x27B is one FPHS, i.e. whenever there is an active FPHS, the count is incremented by 1 han the sum of 1) FPVS Active Pulse Width, 2) FPVS Back Porch Width, and 3) Flat Panel Vertical egister does not come into effect until it is followed by a register write to index 0x277 or 0x27A.	0001 1111 Reset 0000 0000 Reset 0 011 0 011 . The FPVS al Active
Address 0x279 Address 0x27A Address 0x27B Note: The u Period	7 - 0 Bit 7 - 0 Bit 7 6 - 4 3 2 - 0 unit for Incode should gth. value writt	R/W R/W R/W R/W R/W R/W R/W R/W en in this re	Flat Panel Vertical Back Porch Width The unit of this pulse width is one FPHS. The following formula gives the correct number to fill in for FPVS back porch. FPVS_Back_Porch = (VAS-VSYNC_pw+2)* VSUR-FPVS_Pulse_Width Where VAS is the input Vertical active starting line number, VSYNC_pw is the input VSYNC pulse width, VSUR is the Vertical Scale Up ratio. VSUR = (Panel Vertical Resolution) / (Input Vertical Resolution) Description Flat Panel Vertical Active Length - Low Byte Description Early start. Start to output data earlier in non auto calculation mode. Flat Panel Vertical Active Length - High three bits (Total 11 bits) The unit of this active length is one FPHS This vertical active length is equivalent to the panel vertical resolution. For example, the vertical resolution of an XGA panel is 768. Reserved FPVS Period – High three bits (Total 11 bits) The unit of this period is one FPHS. hrough 0x27B is one FPHS, i.e. whenever there is an active FPHS, the count is incremented by 1 han the sum of 1) FPVS Active Pulse Width, 2) FPVS Back Porch Width, and 3) Flat Panel Vertical explicit pulse Width, 2) FPVS Back Porch Width, and 3) Flat Panel Vertical explicit pulse Width, 2) FPVS Back Porch Width, and 3) Flat Panel Vertical explicit pulse Width, 2) FPVS Back Porch Width, and 3) Flat Panel Vertical explicit pulse Width (FPVS Pulse Width, 2) FPVS Back Porch Width, and 3) Flat Panel Vertica explicit pulse Width (FPVS Pulse Width, 2) FPVS Back Porch Wid	0001 1111 Reset 0000 0000 Reset 0 011 0 011 . The FPVS al Active

Address	Bit	R/W	Description		Reset
0x27C	7		Reserved	Reserved	
	6 - 4	R/W	Dither Option Code	"010" is recommended for 6:6:6 output	000
	3	R/W	Reserved		0
	2 - 0	R/W	Dither Output Format Selection	"001" is recommended for 6:6:6 output	000

Table 6 Dither Output Selection and Calculations

Dither Output Format Selection	Flat Panel RGB Bit Format Output 8:8:8	Dither Option Code	Input LSBs Used in Dither Calculation n/a	Dither Method	Dither Output Format Selection	Flat Panel RGB Bit Format Output	Dither Option Code 001 010	Input LSBs Used in Dither Calculation (5) (5) (5)	Dither Method 2x2 2x2	
					100	4:4:4	011	(5,4,3) (5,4,3) (5,4,3)	2x2	
		001	(3) (3) (3)	2x2			100	(5,4,3,2) (5,4,3,2) (5,4,3,2)	4x4	
		010	(3,2) (3,2)(3,2)	2x2			001	(6) (6) (6)	2x2	
001	6:6:6	5:6 011 100	(3,2,1) (3,2,1)(3,2,1)	2x2	101	3:3:3	010	(6,5) (6,5) (6,5)	2x2	
001			(3,2,1,0) (3,2,1,0)(3,2,1,0)	4x4			011	(6,5,4) (6,5,4) (6,5,4)	2x2	
		001	(4) (3) (4)	2x2			100	(6,5,4,3) (6,5,4,3) (6,5,4,3)	4x4	
010	5:6:5	010	(4,3) (3,2) (4,3)	2x2				001	(6) (6) (7)	2x2
		011	(4,3,2) (3,2) (4,3,2)	2x2		3:3:2	010	(6,5) (6,5) (7,6)	2x2	
		100	4,3,2,1) (3,2,1) (4,3,2,1)	4x4	110		011	(6,5,4) (6,5,4) (6,5,4)	2x2	
		001	(4) (4) (4)	2x2			100	(6,5,4,3) (6,5,4,3) (7,6,5,4)	4x4	
011	5:5:5	010	(4,3) (4,3) (4,3)	2x2						
		011	(4,3,2) (4,3,2) (4,3,2)	2x2						
		100	(4,3,2,1) (4,3,2,1) (4,3,2,1)	4x4						

Address	Bit	R/W	Description	Reset
0x27D	7 - 0	R/W	Output Vsync delay from Input Vsync	0000 1000
Address	Bit	R/W	Description	Reset
0x27E	7	R/W	Force long. In auto calculation with this bit set, the FPHS period assumes the next higher integer value if the calculated FPHS contains fractional part.	0
	6	R/W	Force short. In auto calculation with is bit set, the FPHS period assumes the integer part; i.e. the fractional part of the calculated FPHS period is discarded.	0
	5	R/W	Tri-State PWM pin.	0
	4	R/W	PWM polarity. 1: Active low	0
	3	R/W	When set, the input "HACTIVE" or "DE" is forced to inactive if either VSYNC or HSYNC is active.	0
	2	R/W	Force into free run mode.	0
	1	R/W	Enable auto calculation. When this bit is set, an internal circuitry calculates the optimum FPHS period, and then adjusts the FPHS period dynamically so that for one vsync (FPVS) period it has integer multiples of FPHS. The internal circuitry also adjust the FPHS active position to minimize the line buffer overflow/underflow.	0
	0	R/W	When this bit is set, the input VSYNC is delayed by the amount specified by index 0x27D in the unit of input HSYNC. The regular meaning of index 0x27D – "Output VSYNC delay from Input VSYNC" is fixed at 2.	0

PRELIMINARY

Address	Bit	R/W	Description	Reset
0x27F	7 - 6	R/W	Display single field on flat panel.	00
			0x : Function disabled. 10 : Display odd field. 11 : Display even field.	
	5	R/W	When set the field signal is reversed in the auto calculation circuitry.	000
	4	R/W	Select different vertical sync source in single field input.	000
	3	R/W	No even field initialization	0
	2 - 0	R/W	Even field delay. 001= +1, 010= +2, 101= +5, 110= -1, 111= -2	000
Address	Bit	R/W	Description	Reset
0x280	7	R/W	Bits 8 to 1 of 13 bit counter – 0x282(3-0), 0x280(7-0)	
Address	Bit	R/W	Description	Reset
0x281	7	R/W	Bits 8 to 1 of 13 bit counter – 0x282(7-4), 0x281(7-0)	
Address	Bit	R/W	Description	Reset
0x282	7 - 4	R/W	Upper 4 bits (bits 13 to 9) of 13 bit counter – 0x282(7-4), 0x281(7-0)	
			For non-Free-Run mode, this specifies the upper 12-bits of the initial value of a	
			13-bit counter for the even field.	
			For Free-Run with Calibrate bit set, this specifies the value for the vertical line	
			counter to load at the falling edge of input VSYNC.	
	3 - 0	R/W	Upper 4 bits (bits 13 to 9) of 13 bit counter – 0x282(3-0), 0x280(7-0)	0
			For non-Free-Run mode, this specifies the upper 12-bits of the initial value of a	
			13-bit counter for the odd field.	
			For Free-Run with Calibrate bit set, this specifies the value for pixel counter to	
Address	Bit	R/W	Description	Reset
0x283	7 - 6	R/W	Even field vertical start point adjustment.	0
			00 : Even field start with the same line count specified in 0x27D as odd field.	
			01 : Even field start with one extra line count specified in 0x27D.	
			10 : Even field start with one less line count specified in 0x27D.	
	5-0	R/W	Number of lines to be black out from top and the bottom of the display.	00 0000
Address	Bit	R/W	Description	Reset
0x284	7	R/W	PWM clock selection	0
			0: 27 MHz (XTAL27I input frequency) 1: 27/2 MHz	
	6 - 0	R/W	Positive pulse width of the PWM.	100
			If this register has an "N" value, the positive pulse width duration is "N+1" PWM clocks.	0000
Address	Bit	R/W	Description	Reset
0x285	7-0	R/W	Reserved	0000
Address	Dit		Description	Deast
Address			Description	Reset
0X286	7-0	R/W	Reserved	
Address	Bit	R/W		Reset
0x287	1	R/W	0: Dual output selection lower 24 of 48 bits	0
			1: Dual output selection upper 24 of 48 bits	
1	6-0	I R/W	Reserved	00h

	-	-		
Address	Bit	R/W	Description	Reset
0x2A0	7	R/W	Memory read phase control.	0
	6-4	R/W	This is for the control of clock phase of memory clock output.	0
	3	R/W	nomcst	0
	2	R/W	Test Enable for Memory Controller.	0
	1-0	R/W	Memory configuration type.	10
Address	Bit	R/W	Description	Reset
0x2A1	7-0	R/W	This is for the refresh request timing setting. The values that written in registers uses to calculate the refresh request period.	07h
Address	Bit	R/W	Description	Reset
0x2A2	7-0	R/W	This is for the control of the RAS max timing setting.	20h
Address	Bit	R/W	Description	Reset
0x2A3	7-4	R/W	RAS Pre-charge time for memory operation.	0010
	3-0	R/W	RAS to CAS delay time for memory operation.	0010
Address	Bit	R/W	Description	Reset
0x2A4	7	R/W	This bit indicates bit21 of the address.	0
	6-4	R/W	*	0
	3-0	R/W	Refresh back time for memory operation.	0111
Address	Bit	R/W	Description	Reset
0x2A5	7	R/W	*	0
	6-4	R/W	Data read time adjustor based on memory clock period.	100
	3-0	R/W	Minimum time for mode register setting.	0011
Address	Bit	R/W	Description	Reset
0x2A6	7	R/W	Reserved.	0
	6-4	R/W	Data Delay	001
	3	R/W	Reserved.	0
	2-0	R/W	CAS Latency timing for mode register setting.	011
Address	Bit	R/W	Description	Reset
0x2A7	7	R/W	*	0
	6	R/W	*	0
	5	R/W	*	0
	4	R/W	*	0
	3	R/W	*	0
	2	R/W	*	0
	1-0	R/W	*	0

0x2A0 to 0x2AF – Memory Control

Address	Bit	R/W	Description	Reset
0x25F	7	R/W	1: PIP down scaler offset enable (Interlace input), 0: offset disabled (Progressive input)	0
	6 - 0	R/W	PIP down scaler offset	
Address	Bit	R/W	Description	Reset
0x2AE	7 - 0	R/W	PIP horizontal position offset adjustment	20h
Address	Bit	R/W	Description	Reset
0x2AF	7 - 0	R/W	PIP vertical position offset adjustment	2Ch
Address	Bit	R/W	Description	Reset
0x2B0	7 - 0	R/W	Horizontal input cropping start[7:0]. These bits indicate the start point of the cropping window of the PIP data which is going to be written into memory.	10h
Address	Bit	R/W	Description	Reset
0x2B1	7 - 0	R/W	Horizontal input cropping window width[7:0]. These bits indicate the width of the cropping window of the PIP data which is going to be written into memory.	60h
Address	Bit	R/W	Description	Reset
	7	R/W	1: Down scaler pre-filter manual selection enable. 0: Auto selection (default)	00
	6 - 4	R/W	Horizontal input cropping window width[10:8]. These bits indicate the width of the cropping window of the PIP data which is going to be written into memory.	010
0x2B2	3-2	R/W	Down scaler pre-filter manual selection. 0: No filter, 1: Weak filter, 2: Strong filter, 3: Medium filter	00
	1 - 0	R/W	Horizontal input cropping start[9:8]. These bits indicate the start point of the cropping window of the PIP data which is going to be written into memory.	00
Address	Bit	R/W	Description	Reset
0x2B3	7 - 0	R/W	Vertical input cropping start[7:0]. These bits indicate the start point of the cropping window of the PIP data which is going to be written into memory.	02h
Address	Bit	R/W	Description	Reset
0x2B4	7 - 0	R/W	Vertical input cropping window height[7:0]. These bits indicate the height of the cropping window of the PIP data which is going to be written into memory.	E0h
Address	Bit	R/W	Description	Reset
	7	R/W	Vertical input cropping start[8].	0
0x2B5	6 - 4	R/W	Vertical input cropping window height[10:8].	000
UNEDO	3 - 2	R/W	Even field offset for the cropping window.	00
	1 - 0	R/W	Odd field offset for the cropping window.	00
Address	Bit	R/W	Description	Reset
0x2B6	7 - 0	R/W	PIP horizontal down scaling ratio [7:0]. 100h for no down scaling.	00h
Address	Bit	R/W	Description	Reset
0x2B7	7 - 0	R/W	PIP vertical down scaling ratio [7:0]. 100h for no down scaling	00h
Address	Bit	R/W	Description	Reset
0x2B8	7 - 4	R/W	PIP vertical down scaling ratio [11:8].	0001
	3 - 0	R/W	PIP horizontal down scaling ratio [11:8].	0001
Address	Bit	R/W	Description	Reset
0x2B9	7 - 0	R/W	PIP window write buffer base address. It defines start address of PIP memory area.	00h
Address	Bit	R/W	Description	Reset
0x2BA	7 - 0	R/W	PIP window write width[7:0]. These bits indicate the width of the PIP window written into the memory.	30h
Address	Bit	R/W	Description	Reset
0x2BB	7 - 0	R/W	PIP window write height[7:0]. These bits indicate the height of the PIP window written into the memory.	70h

0x2AE to 0x2C9 – PIP Control

Address	Bit	R/W	Description	Reset
	7	R/W	1 : PIP window write enable. When disabled read-out image will freeze.	0
	6	R/W	Write Data Color Phase control.	0
	5	R/W	Reserved	0
0x2BC	4	R/W	Reserved	0
	3	R/W	PIP window write height[8].	0
	2 - 0	R/W	PIP window write width[10:8]. These bits indicate the width of the PIP window written into the memory. Maximum width is 400h.	00
Address	Bit	R/W	Description	Reset
	7	R/W	1 : PIP window read enable.	0
	6	R/W	1: PIP write power down (image will freeze), 0: Normal	0
	5	R/W	PIP mode enable.	0
	4	R/W	1: PIP blending single field mode, 0: Normal	0
0x2BD	3	R/W	PIP read buffer field polarity.	0
	2	R/W	1: Pixel doubling when up scaling, 0: Normal.	0
	1	R/W	Reserved.	0
	0	R/W	1: Force Black, 0: Normal.	0
Address	Bit	R/W	Description	Reset
0x2BE	7 - 0	R/W	PIP horizontal Up scaling ratio [7:0]. 800h for no up scaling.	00h
Address	Bit	R/W	Description	Reset
0x2BF	7-0	R/W	PIP vertical Up scaling ratio [7:0]. 800h for no up scaling.	00h
Address	Bit	R/W	Description	Reset
	7 - 4	R/W	PIP vertical Up scaling ratio [11:8].	1000
0x2C0	3 - 0	R/W	PIP horizontal Up scaling ratio [11:8].	1000
Address	Bit	R/W	Description	Reset
0x2C1	7-0	R/W	PIP Window position base x start[7:0]. These bits indicate the origin of the PIP Window.	80h
Address	Bit	R/W	Description	Reset
0x2C2	7 - 0	R/W	PIP Window position base y start[7:0]. These bits indicate the origin of the PIP Window.	80h
Address	Bit	R/W	Description	Reset
	7	R/W	1: PIP clock inverse, 0: Normal.	0
0x2C3	6-4	R/W	PIP Window position base y start[10:8]. These bits indicate the origin of the PIP Window.	1h
	3 - 0	R/W	PIP Window position base x start[11:8]. These bits indicate the origin of the PIP Window.	2h
Address	Bit	R/W	Description	Reset
	7-4	R/W	PIP Window position base y start offset. These bits indicate the base position of the PIP Window.	2h
0x2C4	3 - 0	R/W	PIP Window position base x start offset. These bits indicate the base position of the PIP Window.	Ch
Address	Bit	R/W	Description	Reset
0x2C5	7-0	R/W	PIP Window width[7:0]. These bits indicate the display width of the PIP Window.	30h
Address	Bit	R/W	Description	Reset
0x2C6	7-0	R/W	PIP Window height[7:0]. These bits indicate the display height of the PIP Window.	E0h
Address	Bit	R/W	Description	Reset
	7	R/W	PIP Window Color Phase Control for 16 to 24 Conversion.	0
0x2C7	6-4	R/W	PIP Window height[10:8]. These bits indicate the display height of the PIP Window.	0h
	3-0	R/W	PIP Window width[11:8]. These bits indicate the display width of the PIP Window.	1h
Address	Bit	R/W	Description	Reset
0x2C8	7 - 0	R/W	MPIP frame horizontal position offset adjustment	2Ch
Address	Bit	R/W	Description	Reset
0x2C9	7 - 0	R/W	MPIP frame vertical position offset adjustment	2Eh

Address	Bit	R/W	Description	Reset
0x2CA	7 - 0	R/W	Horizontal input cropping start[7:0]. These bits indicate the start point of the cropping window of the MPIP data which is going to be written into memory.	10h
Address	Bit	R/W	Description	Reset
0x2CB	7 - 0	R/W	Horizontal input cropping window width[7:0]. These bits indicate the width of the cropping window of the MPIP data which is going to be written into memory.	60h
Address	Bit	R/W	Description	Reset
	7	R/W	1: Down scaler pre-filter manual selection enable. 0: Auto selection (default)	00
0,200	6 - 4	R/W	Horizontal input cropping window width[10:8]. These bits indicate the width of the cropping window of the MPIP data which is going to be written into memory.	010
0,200	3-2	R/W	Down scaler pre-filter manual selection. 0: No filter, 1: Weak filter, 2: Strong filter, 3: Medium filter	00
	1 - 0	R/W	Horizontal input cropping start[9:8]. These bits indicate the start point of the cropping window of the MPIP data which is going to be written into memory.	00
Address	Bit	R/W	Description	Reset
0x2CD	7 - 0	R/W	Vertical input cropping start[7:0]. These bits indicate the start point of the cropping window of the MPIP data which is going to be written into memory.	02h
Address	Bit	R/W	Description	Reset
0x2CE	7 - 0	R/W	Vertical input cropping window height[7:0]. These bits indicate the height of the cropping window of the MPIP data which is going to be written into memory.	E0h
Address	Bit	R/W	Description	Reset
	7	R/W	Vertical input cropping start[8].	0
0x2CF	6 - 4	R/W	Vertical input cropping window height[10:8].	000
0,0201	3-2	R/W	Even field offset for the cropping window.	00
	1 - 0	R/W	Odd field offset for the cropping window.	00
Address	Bit	R/W	Description	Reset
0x2D0	7 - 0	R/W	MPIP horizontal down scaling ratio [7:0]. 100h for no down scaling.	00h
Address	Bit	R/W	Description	Reset
0x2D1	7 - 0	R/W	MPIP vertical down down scaling ratio [7:0]. 100h for no down scaling.	00h
Address	Bit	R/W	Description	Reset
0,202	7 - 4	R/W	MPIP vertical down down scaling ratio [11:8].	0001
0,202	3 - 0	R/W	MPIP horizontal down down scaling ratio [11:8].	0001
Address	Bit	R/W	Description	Reset
0x2D3	7 - 0	R/W	MPIP window write buffer base address. It defines start address of MPIP memory area	00h
Address	Bit	R/W	Description	Reset
0x2D4	7 - 0	R/W	MPIP window write width[7:0]. These bits indicate the width of the single MPIP sub-window.	30h
Address	Bit	R/W	Description	Reset
0x2D5	7 - 0	R/W	MPIP window write height[7:0]. These bits indicate the height of the single MPIP sub-window.	70h
Address	Bit	R/W	Description	Reset
	7	R/W	1: MPIP window write enable. When disabled read-out image will freeze	0
	6	R/W	Write Data Color Phase control.	0
	5	R/W	Reserved	0
0x2D6	4	R/W	Reserved	0
	3	R/W	MPIP window write height[8].	0
	2 - 0	R/W	MPIP window write width[10:8]. These bits indicate the width of the MPIP window written into the memory. Maximum width is 400h.	00

0x2CA to 0x2EC – MPIP Control Registers

Address	Bit	R/W	Description	Reset
	7	R/W	MPIP window read enable.	0
0x2D7	6	R/W	1: MPIP write power down (Live window will freeze), 0: Normal	0
	5	R/W	MPIP mode enable.	0
	4	R/W	Reserved.	0
	3	R/W	MPIP read buffer field polarity.	0
	2	R/W	1: Pixel doubling when up scaling, 0: Normal.	0
	1	R/W	Reserved.	0
	0	R/W	1: Force Black, 0: Normal.	0
Address	Bit	R/W	Description	Reset
0x2D8	7 - 0	R/W	MPIP horizontal Up scaling ratio [7:0]. 800h for no up scaling. Should not be changed.	00h
Address	Bit	R/W	Description	Reset
0x2D9	7-0	R/W	MPIP vertical Up scaling ratio [7:0]. 800h for no up scaling. Should not be changed.	00h
Address	Bit	R/W	Description	Reset
	7 - 4	R/W	MPIP vertical Up scaling ratio [11:8]. Should not be changed.	1000
0x2DA	3 - 0	R/W	MPIP horizontal Up scaling ratio [11:8]. Should not be changed.	1000
Address	Bit	R/W	Description	Reset
0x2DB	7-0	R/W	MPIP image position base x start[7:0]. These bits indicate the origin of the MPIP Window.	20h
Address	Rit	R/M	Description	Reset
	7-0		MPIP image position base v start[7:0]. These bits indicate the origin of the MPIP Window	2Ch
Addross	Dit.			Posot
	7 - 0		PIP vertical scaling offset	80h
0X2DD	л U			Deast
Address	DIL	FK/VV	MPIP Window position base v start offset. These bits indicate the base position of the MPIP	Resel
	7-4	R/W	Window.	Un
	3 - 0	R/W	MPIP Window position base x start offset. These bits indicate the base position of the MPIP Window.	0h
Address	Bit	R/W	Description	Reset
0x2DF	7 – 0	R/W	MPIP Window width[7:0]. These bits indicate the display width of the combined MPIP Windows.	00h
Address	Bit	R/W	Description	Reset
0x2E0	7-0	R/W	MPIP Window height[7:0]. These bits indicate the display height of the combined MPIP Windows.	00h
Address	Bit	R/W	Description	Reset
	7	R/W	1: MPIP clock inverse, 0: Normal	0
0x2E1	6-4	R/W	MPIP Window height[10:8]. These bits indicate the display height of the combined MPIP Windows.	0h
	3-0	R/W	MPIP Window width[11:8]. These bits indicate the display width of the combined MPIP Windows.	0h
Address	Bit	R/W	Description	Reset
	7	R/W	MPIP Window Color Phase Control for 16 to 24 Conversion.	0
0v2E2	6 - 1	R/W	Reserved	00h
UXZEZ	0	R/W	1 : MPIP Image memory initialization enable. (Color is defined by 0x2E5). After initialization, should be return to 0 for normal operation.	0
Address	Bit	R/W	Description	Reset
0x2E3	7 - 0	R/W	MPIP window origin X [7:0]	00h
Address	Bit	R/W	Description	Reset
0x2E4	7 - 0	R/W	MPIP window origin Y [7:0]	00h
Address	Bit	R/W	Description	Reset
0x2E5	7 - 0	R/W	MPIP Image memory initialization color	24h
TW8811 – TFT FLAT PANEL CONTROLLER

PREI	IMIN	JARY

Address	Bit	R/W	Description	Reset
	7	R/W	PIP overlay key color position for Test.	0
0x2E6	6-5	R/W	Reserved	00
	4 - 0	R/W	Alpha2 of PIP alpha blending (Main dimming) 10h : Full Main – 00h : Black	10h
Address	Bit	R/W	Description	Reset
	7	R/W	Reserved	0
0x2E7	6 - 4	R/W	PIP/MPIP horizontal border width (0 dot – 7 dots)	0h
	3	R/W	MPIP window origin Y [8]	0
	1 - 0	R/W	MPIP window origin X [9:8]	0h
Address	Bit	R/W	Description	Reset
0.050	7 - 4	R/W	MPIP window vertical spacing [3:0]	0h
0x2E8	3 - 0	R/W	MPIP window horizontal spacing [3:0]	0h
Address	Bit	R/W	Description	Reset
	7 - 6	R/W	MPIP maximum window number Y [1:0]. It's value plus 1 defines the column number of window array.	0h
	5-4	R/W	MPIP maximum window number X [1:0]. It's value plus 1 defines the row number of window array.	0h
0x2E9	3 - 2	R/W	MPIP active window number Y [1:0]. It's value plus 1 defines the column number of the sub- window which receives write image.	0h
	1 - 0	R/W	MPIP active window number X [1:0]. It's value plus 1 defines the row number of the sub-window which receives write image.	0h
Address	Bit	Bit R/W Description		Reset
	7	R/W	Reserved	0
	6 - 4	R/W	PIP/MPIP vertical border width [2:0] (0 line – 7 lines)	0h
0x2EA	3 - 2	R/W	MPIP highlight window number Y [1:0]. It's value plus 1 defines the column number of the sub- window which has highlight frame color defined by 0x2EC.	0h
	1 - 0	R/W	MPIP highlight window number X [1:0]. It's value plus 1 defines the row number of the sub-window which has highlight frame color defined by 0x2EC.	0h
Address	Bit	R/W	Description	Reset
0x2EB	7 - 0	R/W	PIP/MPIP standard window frame color	1Ch
Address	Bit	R/W	Description	Reset
0x2EC	7 - 0	R/W	MPIP highlight window frame color	E0h
Address	Bit	R/W	Description	Reset
	7	R/W	PIP data sampling control 1: Ignore DE	1
0x2EE	6	R/W	PIP data cropping 1: Base on H/V Sync 0: Base on DE	1
Address	Bit	R/W	Description	Reset
	7	R/W	1: PIP alpha blending enable, 0: Disable	0
	6	R/W	1: 565 mode (4:4:4 color space) for PIP, 0: 888 mode (4:2:2 color space) Default	0
0x2EF	5	R/W	1: PIP alpha blending key detection reverse	0
	4 - 0	R/W	Alpha1 of PIP alpha blending (Main/Sub mixing ratio), 10h : Full PIP – 00h : Full Main	10h
Address	Bit	R/W	Description	Reset
0x2F0	7 - 0	R/W	Red key color level for PIP alpha blending	00h
Address	Bit	R/W	Description	Reset
0x2F1	7 - 0	R/W	Green key color level for PIP alpha blending	00h
Address	Bit	R/W	Description	Reset
0x2F2	7 - 0	R/W	Blue key color level for PIP alpha blending	00h
Address	Bit	R/W	Description	Reset
0x2F3	7 - 0	R/W	Key color range	00h

Address	Bit	R/W	Description	Reset			
	7	R/W	Reserved	00			
	6	R/W	Reserved	0			
0.055	5	R/W	Reserved	0			
0X2ED	3-2	R/W	Reserved	00			
	1	R/W	Reserved	0			
	0	R/W	Reserved	0			
Address	Bit	R/W	escription				
	7	R/W	Reserved	0			
0x2EE	6	R/W	1: Use DTV input DE, 0: Do not use input DE, use input HS/VS instead	0			
	5 - 4	R/W	Reserved	0h			
	3 - 2	R/W	PIP input selection. 0 : Decoder, 1 : Analog RGB/YUV, 2 : DTV	0h			
	1 - 0	R/W	MPIP input selection. 0 : Decoder, 1 : Analog RGB/YUV, 2 : DTV	0h			

0x2ED – PIP/MPIP Control Registers

Address	Bit	R/W	Description	Reset		
0x2F4	7-0	R/W	MSB of an internal 23 bit divide down counter. The 27 MHz clock from pin#33 XTAL27I is divided by this counter to serve as the clock for the Power State Transition timer.	0000 0000		
Address	Bit	R/W	Description	Reset		
0x2F5	7	R/W	Force the internal PCLK to "0".	0		
	6	R/W	clksel_fppwr	0		
	5-4	R	Show current power management state. These power states determine the states of pins #40 FPPWC, #39 FPBIAS & FP interface signals which includes #55 FPVS, #56 FPHS, #57 FPDE, #53 FPCLK and all data signals.			
			FPPWC FPBIAS FP Interface Signals			
			00: Off "0" "0" "0"	00		
			01: Standby "1" "0" "0"	00		
			10: Suspend "1" "0" "1" or "0"			
			11: On "1" "1" "1" or "0"			
			The transition between the power states does not occur right away. It takes place after the timer expiration by the corresponding timer counts defined in 0x275-0x277			
	3	R/W	Manual power sequencing control. When this bit is set, bits [2:0] control #39 FPBIAS, FP Interface Signals, and #40 FPPWC directly.	0		
	2	R/W	If bit 3 is "0" and this bit is "1", this enable auto power sequencing.			
			VSYNC loss & HSYNC loss> Off			
			VSYNC loss & HSYNC active> Standby	0		
			VSYNC active & HSYNC loss> Suspend			
			VSYNC active & HSYNC active> On			
	1-0	R/W	Power state steering. When these 2 bits are written, assuming both bit 3 and bit 2 are 0's, and the current power state is different from the value written, the power state will be sequencing to the state that matches the value written. For example, current power state is 11. A 01 value is written. The power state will be steered to "01" and stay in "01.	00		
			00: Off State, 01: Standby, 10: Suspend, 11: ON state	-		
Address	Bit	R/W		Reset		
0x2F6	7-4	R/W	Timer Counts for Suspend State to Standby State Transition	0000		
	3-0	R/W	Timer Counts for On State to Suspend State Transition	0000		
Address	Bit	R/W	Description	Reset		
0x2F7	7-4	R/W	Timer Counts for Power Off State to Standby State Transition	0000		
	3-0	R/W	imer Counts for Standby State to Power Off State Transition			
Address	Bit	R/W	Description	Reset		
0x2F8	7-4	R/W	Timer Counts for Standby State to Suspend Sate Transition	0000		
	3-0	R/W	Timer Counts for Suspend to On State Transition	0000		

0x2F4 to 0x2F8 – Power Management Registers

Timing Controller Configuration Registers

Bit	Function	R/W	Description	Reset
	SIG_OFF	R/W	LCD Panel signals off control during power off	0
			0 : Disable	
7			1 : All signals and data keep zero after GPIO[0] was zero.	
			(Between Back light off and LCD power OFF)	
	TCCK_PH	R/W	TCCLK phase control if reg0x300[0] set is high. (Divide Clock Mode)	0
			0 : No clock phase shift	
6			1 : Clock phase 90 degree shift	
			*** It's set reg0x270[3] (invert clock polarity) high and this bit	
			set high also then TCCLK is 270 degree shift.	
	ROE_EN	R/W	ROE (Row Driver) Output Enable	1
5			0 : Disable	
			1 : Enable	
4 -1		R/W	Reserved	
	DIV_CK	R/W	Output mode selection	0
0			0 : One pixel data out per TCCLK	
			1 : Two pixel data out per TCCLK (Rising and Falling both)	

0x300 – Output Mode Control Register

0x301 – Display Control Register

	-					
Bit	Function	R/W	Description			
7-4		R/W	Reserved			
	REV_EN	R/W	xel data reverse control			
3			0 : Data no reverse (Don't case TCREV signal)			
			1 : Data reverse if TCREV signal is high period			
2		R/W	leserved			
	INV	R/W	Inversion mode selection			
1-0			2'b00 : Disable 2'b01 : Disable			
			2'b10 : Line Inversion 2'b11 : Frame Inversion			

0x302 – Display Direction Control Register

Bit	Function	R/W	Description	Reset
7-4		R/W	Reserved	
	TOP_BTM	R/W	Top/Bottom display direction select	01
			2'b00 : Top low active (Normal)	
			2'b01 : Top high active (Normal)	
3-2			2'b10 : Bottom low active (Flip)	
			2'b11 : Bottom high active (Flip)	
	LFT_RHT	R/W	Left/Right display direction select	01
			2'b00 : Left low active (Normal)	
1-0			2'b01 : Left high active (Normal)	
			2'b10 : Right low active (Mirror)	
			2'b11 : Right high active (Mirror)	

Bit	Function	R/W	Description	Reset
7-4			Reserved	
3	ROE_P	R/W	Row Driver Output Enable signal 0 : Active low 1 : Active high	1
2	RSP_P	R/W	Row Driver Start Pulse signal 0 : Active low 1 : Active high	1
1	CLP_P	R/W	Column Driver Latch Pulse signal 0 : Active low 1 : Active high	1
0	CSP_P	R/W	Column Driver Start Pulse signal 0 : Active low 1 : Active high	1

0x303 – Control Signal Polarity Selection Register

0x304 – Control Signal Generation Method Register

Bit	Function	R/W	Description	Reset
7	PGM_SHARP		0 : Sharp same polarity start point follow TRSP pulse	
1			1 : Sharp same polarity start point follow SHARP_STR register	
6	SP_CTRL		Unused Output Start Pulse Pin Control	
0			0 : Zero 1: Hi-Z	
5	PGM_RCK	R/W	Row Driver Clock signal	0
	PGM_ROE		Row Driver Output Enable signal	0
4			0 : This is generate during horizontal display enable.	
4		R/W	1 : It's generated that set TCON register address 0x32C though 0x32F.	
			Also, this is relative to vertical active register 0x30C though 0x30F.	
	PGM_RSP		Row Driver Start Pulse signal	0
			0 : This signal immediately generate and then keep one horizontal	
3		R/W	period activation received from vertical active signal.	
			1 : It's generated that set TCON register address 0x324 though 0x327.	
			Also, this is relative to vertical back porch register 0x279.	
2	PGM_POL		0 : This Signal toggles when hsync toggle.	1
2		R/W	1: It's generated that set TCON register 0x310 through 0x311	
	PGM_CLP		Column Driver Latch Pulse signal	0
1		R/W	0 : This signal generate after horizontal display enable done a every scan line.	
			1 : It's generated that set TCON register address 0x312 though 0x315.	
	PGM_CSP		Column Driver Start Pulse signal	0
0	_		0 : This signal generate after horizontal display enable.	
U		F(/V)	1 : It's generated that set TCON register address 0x31A though 0x31D.	
			Also, this is relative to horizontal back porch register 0x274.	

0x305 - Inversion signal operating period register

Bit	Function	R/W	Description	Reset
7-1		R/W	Reserved	
	INV_SW		Inversion signal (Column Driver) working period selection	0
0		R/W	0 : Inversion signal working within display enable period	
			1 : Inversion signal working whole(display enable and blanking time) period	

PRE	T IN	1INA	RY
FNL			

Bit	Function	R/W	Description	Reset
7-2		R/W	Reserved	
	REV_INV		Signal output selection	1
1			0 : TCINV signal output select	
		R/W	1 : TCREV output select	
	LINE_INV	R/W	Analog panel data swapping	0
0			0 : No data inversion	
-			1 : Every line data inversion	

0x306 - Panel type Select Register

0x30A – Special LCD Module Control Register

Bit	Function	R/W	Description	Reset
7-6		R/W	Reserved	
	RSP_WIDTH		Row Driver Start Pulse width (period) selection	00
			0 : One horizontal period	
5-4		R/W	1 : Two horizontal period	
			2 : Three horizontal period	
			3 : Four horizontal period	
3-2		R/W	Reserved	
	COMPANY		LCD module company selection	10
			2'b00 : LG-Philips LCD module	
1-0		R/W	2'b01 : Sharp LCD module	
			2'b10, 2'b11 : Other companies LCD module	

0x30B - REVV(TCPOLP) / REVC(TCPOLN) Control Registers

Bit	Function	R/W	Description	Reset
7-0	REVV_REVC	R/W	REVV_REVC[7 :0] for Sharp	4Dh

0x30C – Vertical Active Start High Register

Bit	Function	R/W	Description	Reset
7-4		R/W	Reserved	
3-0	V_ST[11:8]	R/W	VER_ASH[11:8]	0h

0x30D - Vertical Active Start Low Register

Bit	Function	R/W	Description	Reset
7-0	V_ST[7:0]	R/W	VER_ASL[7:0]	06h

0x30E – Vertical Active End High Register

Bi	it	Function	R/W	Description	Reset
7-	4		R/W	Reserved	
3-	0	V_ED[11:8]	R/W	VER_AEH[11:8]	1h

0x30F – Vertical Active End Low Register

Bit	Function	R/W	Description	Reset
7-0	V_ED[7:0]	R/W	VER_AEL[7:0]	E2h

Column Driver Chip Control Signals Relative Registers

0x310 – Polarity Control High Register

Bit	Function	R/W	Description	Reset
7-4		R/W	Reserved	
3-0	CP_SW[11:8]	R/W	Programmable polarity period high[11:8] value.	2h

0x311 – Polarity Control Low Register

Bit	Function	R/W	Description	Reset
7-0	CP_SW[7:0]	R/W	Programmable polarity period low[7:0] value.	D0h

0x312 - Load/Latch Pulse Start High Register

Bit	Function	R/W	Description	Reset
7-4		R/W	Reserved	
3-0	CLP_ST[11:8]	R/W	LP_HSH[11:8]	2h

0x313 – Load/Latch Pulse Start Low Register

Bit	Function	R/W	Description	Reset
7-0	CLP_ST[7:0]	R/W	LP_HSL[7:0]	D0h

0x314 - Load/Latch Pulse Width High Register

Bit	Function	R/W	Description	Reset
7-4		R/W	Reserved	
3-0	CLP_ED[11:8]	R/W	LP_HEH[11:8]	0h

0x315 – Load/Latch Pulse Width Low Register

Bit	Function	R/W	Description	Reset
7-0	CLP_ED[7:0]	R/W	LP_HEL[7:0]	06h

0x31A – Column Driver Start Pulse High Register

Bit	Function	R/W	Description	Reset
7-4		R/W	Reserved	
3-0	CSP_ST[11:8]	R/W	SP_HSH[11:8]	0h

0x31B – Column Driver Start Pulse Low Register

Bit	Function	R/W	Description	Reset
7-0	CSP_ST[7:0]	R/W	SP_HSL[7:0]	C8h

0x31C – Column Driver Start Pulse Width High Register

Bit	Function	R/W	Description	Reset
7-4		R/W	Reserved	
3-0	CSP_ED[11:8]	R/W	SP_HEH[11:8]	0h

0x31D – Column Driver Start Pulse Width Low Register

Bit	Function	R/W	Description	Reset
7-0	CSP_ED[7:0]	R/W	SP_HEL[7:0]	01h

Row Driver Chip Control Signals Relative Registers

0x320 - Clock Start Pulse High Register

Bit	Function	R/W	Description	Reset
7-4		R/W	Reserved	
3-0	RCK_ST[11:8]	R/W	RCK_HSH[11:8]	0

0x321 – Clock Start Pulse Low Register

Bit	Function	R/W	Description	Reset
7-0	RCK_ST[7:0]	R/W	RCK_HSL[7:0]	00h

0x322 – Clock Start Pulse Width High Register

Bit	Function	R/W	Description	Reset
7-4		R/W	Reserved	
3-0	RCK_ED[11:8]	R/W	RCK_HEH[11:8]	2h

0x323 - Clock Start Pulse Width Low Register

В	it	Function	R/W	Description	Reset
7-	0	RCK_ED[7:0]	R/W	RCK_HEL[7 :0]	30h

0x324 – Row Start Pulse High Register

Bit	Function	R/W	Description	Reset
7-4		R/W	Reserved	
3-0	RSP_ST[11:8]	R/W	RSP_VSH[11:8]	0h

0x325 – Row Start Pulse Low Register

Bit	Function	R/W	Description	Reset
7-0	RSP_ST[7:0]	R/W	RSP_VSL[7:0]	06h

0x326 – Row Start Pulse Width High Register

	Bit	Function	R/W	Description	Reset
F	7-4		R/W	Reserved	
Ī	3-0	RSP_ED[11:8]	R/W	RSP_VEH[11:8]	0h

0x327 – Row Start Pulse Width Low Register

Bit	Function	R/W	Description	Reset
7-0	RSP_ED[7:0]	R/W	RSP_VEL[7:0]	01h

0x32C – Row Output Enable High Register

Bit	Function	R/W	Description	Reset
7-4		R/W	Reserved	
3-0	ROE_ST[11:8]	R/W	ROE_HSH[11:8]	0

0x32D - Row Output Enable Low Register

Bit	Function	R/W	Description	Reset
7-0	ROE_ST[7:0]	R/W	ROE_HSL[7:0]	0Ah

0x32E – Row Output Enable Width High Register

Bit	Function	R/W	Description	Reset
7-4		R/W	Reserved	
3-0	ROE_ED[11:8]	R/W	ROE_HEH[11:8]	0

TW8811 – TFT FLAT PANEL CONTROLLER

0x32F – Row Output Enable Width Low Register

Bit	Function	R/W	Description	Reset
7-0	ROE_ED[7:0]	R/W	ROE_HEL[7:0]	36h

0x334 - Register

Bit	Function	R/W	Description			
7-4		R/W	Reserved			
3-0	SHARP_STR_ H	R/W	Sharp same polarity start point high bits	0h		

0x335 -Register

Bit	Function	R/W	Description	Reset	
7-0	SHARP_STR_ L	R/W	Sharp same polarity start point low bits	20h	

0x336 -Register

Bit	Function	R/W	Description	Reset
7-4		R/W	Reserved	
3-0	SHARP_END_ H	R/W	Sharp same polarity end point high bits	1h

0x337 -Register

Bit	Function	R/W	Description	Reset
7-0	SHARP_END_ L	R/W	Sharp same polarity end point low bits	E2h

0x338 - Register

Bit	Function	R/W	Description	Reset
7-6		R/W	Reserved	
5	CLPW	R/W	TCLP direct mode pulse width control. { 1`b0 => 1 clk, 1'b1 => 2 clks }	0
4	CSYNC_MOD E	R/W	Enable csync mode	0
3-2	CLPSEL	R/W	Direct tcsp pulse adjust register	00
1-0	CSPSEL	R/W	Direct tclp pulse adjust register	00

0x339 - Register

Bit	Function	R/W	Description	Reset
7-4		R/W	Reserved	
3-0	POL_STEP	R/W	TCPOL direct mode 16 step control	0h

0x3A0 to 0x3A0 - PLL Control Registers

The frequency of the Flat Panel Clock Output (FPCLK) pin can be controlled by an internal frequency multiplier based on the video decoder clock source (XTAL27I), or by an external oscillator connected to the PCLK pin. When the internal frequency multiplier is being used, the frequency of the Flat Panel Clock Output signal is determined by the following formula.

TW8811 - TFT FLAT PANEL CONTROLLER

Address	Bit	R/W	Description	Reset
0x3A0	7-5	R/W	Charge Pump Current Control for PCLK	40h
	4-0	R/W	PCLK Oscillation frequency calculation FREQ_P[19:15] PCLK PLL Oscillation frequency = 108MHz * FREQ_P / 2 ^ 17 / 2^ POST_P	
Address	Bit	R/W	Description	Reset
0x3A1	7-0	R/W	FREQ_P[14:7]	00h
Address	Bit	R/W	Description	Reset
0x3A2	7-1	R/W	FREQ_P[6:0]	0000000
	0	R/W	Reserved	0
Address	Bit	R/W	Description	Reset
0x3A3	7-0	R/W	It control PCLK spread spectrum modulation frequency. SSFREQ_P[7:0] Spread spectrum modulation frequency = 27MHz * SSFREQ_P / 2^16	00h
Address	Bit	R/W	Description	Reset
0x3A4	7-4	R/W	This bit control PCLK variance of spread spectrum. SSG_P[3:0] Frequency Deviation Control for PCLK : The Max percentage of frequency deviation is given by following equation. DEV = 2^8 * SSG_P / 2^SSD / 2^FREQ_P * 100 %	00h
	3-2	R/W	PCLK VCO[1:0] 00 : 13.5 ~ 27MHz, 01 : 27 ~ 54 MHz 10 : 54 ~ 108MHz, 11 : 108 ~ 133MHz	
	1-0	R/W	POST_P: PCLK POST[1:0]	
Address	Bit	R/W	Description	Reset
0x3A5	7-5	R/W	Charge Pump Current Control for MCLK	40h
	4-0	R/W	MCLK Oscillation frequency calculation FREQ_M[19:15] MCLK PLL Oscillation frequency = 108MHz * FREQ_M / 2 ^ 17 / 2^ POST_P	
Address	Bit	R/W	Description	Reset
0x3A6	7-0	R/W	FREQ_M[14:7]	00h
Address	Bit	R/W	Description	Reset
0x3A7	7-1	R/W	FREQ_M[6:0]	0000000
	0	R/W	Reserved	0
Address	Bit	R/W	Description	Reset
0x3A8	7-0	R/W	It control MCLK spread spectrum modulation frequency. SSFREQ_M[7:0] Spread spectrum modulation frequency = 27MHz * SSEREO_M / 2^16	00h
Address	Bit	R/W		Reset
0x3A9	7	R/W	SS-PLL output clock select. 0 : 27MHz XTAL input 1 : PCLK select	0
	6	R/W	SS-PLL output clock select. 0 : 27MHz XTAL input 1 : MCLK select	0
	5	R/W	Freq. Synthesizer Power down for PCLK 0 : Normal Operation. 1 : Off	0
	4	R/W	Freq. Synthesizer Power down for MCLK 0 : Normal Operation, 1 : Off	0
	3	R/W	PLL input select. 0 · 27MHz XTAI 1 · PCI K	0
	2-0	R/W	SS-PLL gain divider for MCLK, MDGAIN[2:0]	000

TW8811 – TFT FLAT PANEL CONTROLLER

PRE	LIMII	NARY	,

Address	Bit	R/W	Description	Reset
0x3AA	7-4	R/W	This bit control MCLK variance of spread spectrum.	00
			SSG_M[3:0]	
			Frequency Deviation Control for MCLK :	
			The Max percentage of frequency deviation is given by following equation.	
	2.2		DEV = 218 SSG_M721SSD721FREQ_M 100 %	
	3-2	FV/V	$00 : 13.5 \sim 27 \text{MHz},$ $01 : 27 \sim 54 \text{ MHz}$	
			10 : 54 ~ 108MHz, 11 : 108 ~ 133MHz	
	1-0	R/W	POST_M : MCLK POST[1:0]	
Address	Bit	R/W	Description	Reset
0x3AB	7-5	R/W	SS-PLL gain divider for PCLK, PDGAIN[2:0]	
	4-0	R/W	DA_RGAIN	
Address	Bit	R/W	Description	Reset
0x3AC	7-5	R/W	Reserved	
	4-0	R/W	DA_GGAIN	
Address	Bit	R/W	Description	Reset
0x3AD	7-5	R/W	Reserved	
	4-0	R/W	DA_BGAIN	
Address	Bit	R/W	Description	Reset
0x3AE	7	R/W	DAC power down	0
	6-5	R/W	Reserved for internal test.	0
	4	R/W	DAC IREF	0
	3-0	R/W	Reserved	0h
Address	Bit	R/W	Description	Reset
0x3F0	7-6	R/W	Reserved	0
	5-0	R/W	HSWID, Hsync Widith. The unit of HWSID is one clock cycle.	10h
Address	Bit	R/W	Description	Reset
0x3FF	7 - 6	R/W	Page Register	00

Copyright Notice

This manual is copyrighted by Techwell, Inc. Do not reproduce, transform to any other format, or send/transmit any part of this documentation without the express written permission of Techwell, Inc.

Trademark Acknowledgment

Silicon Image, the Silicon Image logo, PanelLink[®] is a registered trademarks of Silicon Image, Inc. VESA_® is a registered trademark of the Video Electronics Standards Association. All other trademarks are the property of their respective holders.

Disclaimer

This document provides technical information for the user. Techwell, Inc. reserves the right to modify the information in this document as necessary. The customer should make sure that they have the most recent data sheet version. Techwell, Inc. holds no responsibility for any errors that may appear in this document. Customers should take appropriate action to ensure their use of the products does not infringe upon any patents. Techwell, Inc. respects valid patent rights of third parties and does not infringe upon or assist others to infringe upon such rights.

Life Support Policy

Techwell, Inc. products are not authorized for use as critical components in life support devices or systems.

Revision History

Date	Revision Note		
10/19/2007	Revision B Datasheet		
01/21/2008	Revision C Datasheet		
	-ADD RoHS Label		
	-Remove Font base teltext OSD feature, VBI Slicer, SCART RGB support		
	-OSD support dual window bitmap		
	-Pin 30, 31, 37 description updated		
	-Register 0x00D, 0x00E, 0x00F, 0x036, 0x037, 0x038[7] 0x1B3[1] remove		
	-Updated register 0x006[6][5], 0x01F, 0x102[4], 0x1B8, 0x1B9, 0x1C0, 0x1CE,		
	0x1F0[3:0],0x21F[2:1], 0x1CC[3:2]		
	-Add register 0x131~0x136, 0x2E6[7], 0x2EE[7][6], 0x13A[5:4], 0x13D[7], 0x3F0[5:0]		
02/07/2008	Updated temperature spec		