

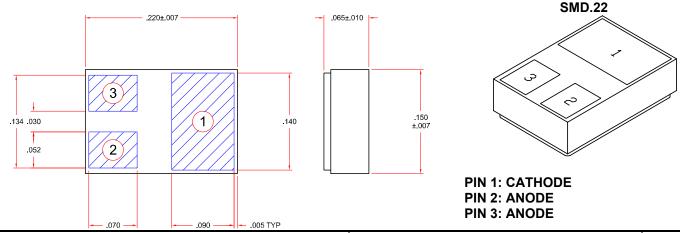
Phone: (562) 404-4474 * Fax: (562) 404-1773 ssdi@ssdi-power.com * www.ssdi-power.com

Designer's Data Sheet Part Number / Ordering Information ^{1/} **SDR 03** Screening^{2/} = Not Screened TX = TX Level TXV = TXV Level = S Level Package S.22 = SMD.22Voltage 40 = 400V 50 = 500V60 = 600VCurrent 03 = 3A

SDR0360 series

3 AMP, 30nsec **SMD HyperFast Rectifier Low Forward Voltage**

400 - 600 VOLTS


FEATURES:

- Hyper Fast Recovery: 30 nsec typical
- **Very Low Reverse Leakage Current**
- **Low Forward Voltage**
- **Low Junction Capacitance**
- **Hermetically Sealed Package**
- **Ultrasonic Aluminum Wire Bonds**
- TX, TXV, and Space Level Screening Available Consult Factory.²

MAXIMUM RATINGS		Symbol	Value	Units
Peak Repetitive Reverse Voltage and DC Blocking Voltage	SDR0340 SDR0350 SDR0360	$egin{array}{c} oldsymbol{V_{RMM}} \ oldsymbol{V_{R}} \end{array}$	400 500 600	Volts
Average Rectified Forward Current (Resistive Load, 60 Hz, Sine Wave, T _A = 100°C)		Io	3	Amps
Peak Surge Current (8.3 ms Pulse, Half Sine Wave, Superimposed on I _O , Allow Junction to Reach Equilibrium between Pulses, T _A = 25°C)		I _{FSM}	60	Amps
Operating and Storage Temperature		T _{OP} & T _{stg}	-55 to +150	°C
Maximum Thermal Resistance Junction to Case		R _{θJC}	15	°C/W

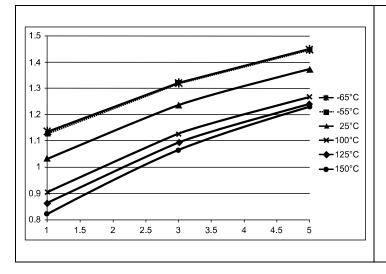
Notes:

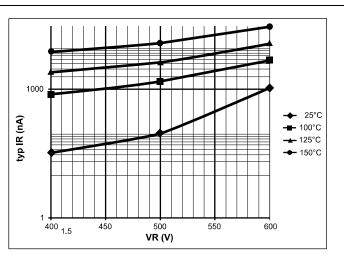
- 1/ For ordering information, price, operating curves and availability contact factory.
- 2/ Screening based on MIL-PRF-19500. Screening flows available on request.

NOTE: All specifications are subject to change without notification. SCD's for these devices should be reviewed by SSDI prior to release.

DATA SHEET #: RC0161A

DOC




Solid State Devices, Inc.

14701 Firestone Blvd * La Mirada, Ca 90638 Phone: (562) 404-4474 * Fax: (562) 404-1773 ssdi@ssdi-power.com * www.ssdi-power.com

SDR0360 series

ELECTRICAL CHARACTERISTICS		Symbol	Тур	Max	Unit
Instantaneous Forward Voltage Drop (T _A = 25°C, 300 μsec Pulse)	$I_F = 1 A_{DC}$ $I_F = 3 A_{DC}$	V_{F1} V_{F2}	1.04 1.24	1.2 1.5	V _{DC}
Instantaneous Forward Voltage Drop (T _A = -55°C, 300 μsec Pulse)	$I_F = 1 A_{DC}$ $I_F = 3 A_{DC}$	V _{F3} V _{F4}	1.13 1.32	1.35 1.60	V _{DC}
Instantaneous Forward Voltage Drop (T _A = +100°C, 300 μsec Pulse)	$I_F = 1 A_{DC}$ $I_F = 3 A_{DC}$	V _{F5} V _{F6}	0.91 1.13		V _{DC}
Instantaneous Forward Voltage Drop (T _A = +125°C, 300 μsec Pulse)	$I_F = 1 A_{DC}$ $I_F = 3 A_{DC}$	V _{F7} V _{F8}	0.87 1.10	1.10 1.40	V _{DC}
Instantaneous Forward Voltage Drop (T _A = +150°C, 300 μsec Pulse)	$I_F = 1 A_{DC}$ $I_F = 3 A_{DC}$	$oldsymbol{V_{F9}}{oldsymbol{V_{F10}}}$	0.83 1.07	-	V _{DC}
Reverse Leakage Current (Rated V_R , 300 μsec pulse minimum)	$T_A = 25^{\circ}C$ $T_A = +100^{\circ}C$ $T_A = 125^{\circ}C$ $T_A = +150^{\circ}C$	I _{R1} I _{R2} I _{R3}	0.05 2 5 15	10 - 50 -	uA
Junction Capacitance T _A = 25°C, f = 1 MHz	$V_R = 5V_{DC}$ $V_R = 10V_{DC}$	C _{J1} C _{J2}	10 8	- 20	pF
Reverse Recovery Time I _F =1A _{DC} , I _R =1A _{DC} , I _{rr} =0.1A _{DC}		t _{rr1}	65	-	ns
Reverse Recovery Time $I_F = 0.5A_{DC}$, $I_R = 1A_{DC}$, $I_{rr} = 0.25A_{DC}$		t _{rr2}	30	50	ns

