

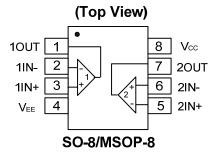
GENERAL PURPOSE LOW VOLTAGE COMPARATOR

Description

The LMV331/LMV393 series are low voltage (2.7V to 5.5V) single and dual comparators, which are designed to effectively reduce cost and space at low voltage levels.

These devices offer specifications that meet or exceed the familiar LM331/LM393 devices operating with a lower supply voltage and consuming a far lower supply current.

The LMV331 is available in 5-Pin SOT353/SOT25 packages that reduce space on PC boards and portable electronic devices. LMV393 is available in industry standard SOP-8 and MSOP-8 packages.

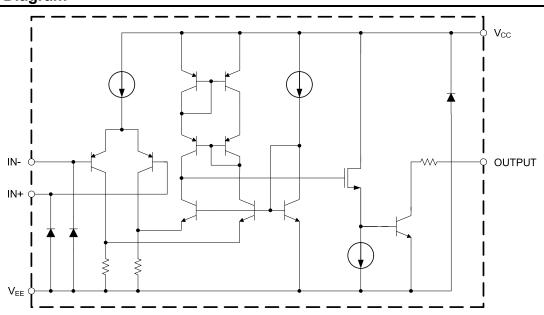

Features

- Guaranteed 2.7V and 5.5V performance
- Operating temperature range (-40°C to +125°C)
- Low supply current 40 μA/comparator Typ
- Input Common Mode Voltage Range includes ground
- Open Collector Output for Maximums Flexibility
- SOT353, SOT25, MSOP-8, SO-8: Available in "Green" Molding Compound (No Br, Sb)
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)

Pin Assignments

(Top View) IN+ 1 VEE 2 IN- 3 OUT

SOT25/SOT353


Applications

- Mobile communications
- Battery powered devices
- Notebooks and PDA's
- General purpose low voltage applications
- General purpose portable devices

Notes:

- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS) & 2011/65/EU (RoHS 2) compliant.
- 2. See http://www.diodes.com/quality/lead_free.html for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

Schematic Diagram

Pin Descriptions

LMV331	LMV331				
Pin Name	Pin#	Function			
IN+	1	Non-inverting Input			
V_{EE}	2	Chip Supply Voltage(Negative)/GND			
IN-	3	Inverting Input			
OUT	4	Output			
V _{CC}	5	Chip Supply Voltage(Positive)			
LMV393					
1OUT	1	Channel 1 Output			
1IN-	2	Channel 1 Inverting Input			
1IN+	3	Channel 1 Non-inverting Input			
V_{EE}	4	Chip Supply Voltage(Negative)/GND			
2IN+	5	Channel 2 Non-inverting Input			
2IN-	6	Channel 2 Inverting Input			
2OUT	7	Channel 2 Output			
Vcc	8	Chip Supply Voltage(Positive)			

Absolute Maximum Ratings (Note 4) (@T_A = +25°C, unless otherwise specified.)

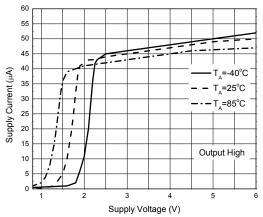
Symbol	Description		Rating	Unit	
ESD HBM	Human Body Model ESD Protection	ı	4.0	KV	
ESD MM	Machine Model ESD Protection		300	V	
	Differential Input Voltage		±Supply Voltage	V	
V _{CC} -V _{EE}	Supply Voltage		5.5	V	
		SOT353 (Note 5)	TBD		
	Thermal Resistance Junction-to-	Thermal Resistance Junction-to-SOT2	SOT25 (Note 5)	TBD	°C/W
θ_{JA}	Ambient	SO-8 (Note 5)	TBD	C/vv	
		MSOP-8 (Note 5)	TBD		
T _{ST}	Storage Temperature		-65 to 150	°C	
TJ	Maximum Junction Temperature		150	°C	

Notes: 4. Stresses greater than the 'Absolute Maximum Ratings' specified above, may cause permanent damage to the device. These are stress ratings only; functional operation of the device at these or any other conditions exceeding those indicated in this specification is not implied. Device reliability may be affected by exposure to absolute maximum rating conditions for extended periods of time.

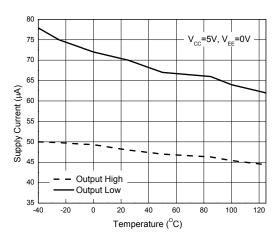
Recommended Operating Conditions (@TA = +25°C, unless otherwise specified.)

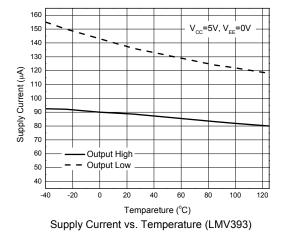
Symbol	Description	Rating	Unit
V _{CC} -V _{EE}	Supply Voltage	2.7 to 5.5	V
T _A	Operating Ambient Temperature Range	-40 to +125	°C

^{5.} All numbers are typical, and apply for packages soldered directly onto a PC board in still air.

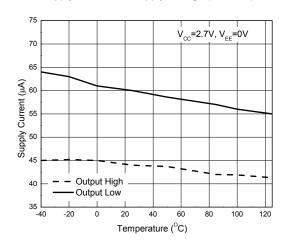

Symbol	Parameter		Test Conditions	Min	Тур	Max	Unit	
2.7V DC Electric	cal Characteristics	3	<u>. </u>					
Vos	Input Offset Voltage				1.7	7	mV	
TCVos	Input Offset Voltage Average Drift		T _A = full range		5		μV/°C	
		-			10	250	·	
lΒ	Input Bias Curren	t	T _A = full range			400	nA nA	
			, , , , , , , , , , , , , , , , , , ,		5	50		
Ios	Input Offset Curre	nt	T _A = full range			150	nA	
V _{CM}	Common-Mode In	put Voltage Range		-0.1		+2.0	V	
V _{SAT}	Saturation Voltage		I _{SINK} ≤ 1mA		120		mV	
I ₀	Output Sink Curre		V _O ≤ 1.5V	5	23		mA	
	Catput Clint Carre		VO= 1.0V		0.003		110.5	
I_{OL}	Output Leakage C	Current	T _A = full range		0.000	1	μΑ	
		LMV331	TA - Idil Talige		40	100	μA	
Is	II I	LMV393			40	100	μΛ	
13		(Both Comparators)			70	150	uA	
2.7V AC Electric	cal Characteristics							
			Input overdrive= 10mV		1000		ns	
t_{PHL}	Propagation delay	/ high to low	Input overdrive= 100mV		350		ns	
	D	. I A In Code	Input overdrive= 10mV		500		ns	
^t PLH	t _{PLH} Propagation delay low to high		Input overdrive= 100mV		400		ns	
5V DC Electrica	I Characteristics		<u>. </u>					
	Innut Officet Volta				1.7	7		
V_{OS}	Input Offset Volta	ge	T _A = full range			9	mV	
TCV _{OS}	Input Offset Voltage Average Drift		T _A = full range		5		μV/°C	
					25	250	_	
lΒ	Input Bias Curren	t	T _A = full range			400	nA nA	
_			J. J		2	50	nA	
los	Input Offset Curre	ent	T _A = full range			150		
V _{CM}	Common-Mode Ir	put Voltage Range		-0.1		4.2	V	
A _V	1	erential Voltage Gain		20	50		V/mV	
,			I _{SINK} ≤ 4mA		200	400	mV	
V _{SAT}	Saturation Voltage	е	$I_{SINK} \le 4mA$, $T_A = full$		200		1117	
· OAT	3		range			700		
Io	Output Sink Curre	ent	V _O ≤ 1.5V	10	84		mA	
			Ů,		0.003			
I_{OL}	Output Leakage (Current	T _A = full range			1	μΑ	
			TAX Tam Tam go		60	120		
		LMV331	T _A = full range			150	μΑ	
Is	Supply Current	LMV393	· A · · · · · · · · · · · · · · · · · ·		100	200		
	(Both Comparators)		T _A =full range			250	uA	
5VAC Electrical	Characteristics	1, 1, 2,	A		1		1	
			Input overdrive = 10mV		600		ns	
t _{PHL}	Propagation delay	/ high to low	Input overdrive = 100mV		200		ns	
	D	. I 4- Islant	Input overdrive = 10mV		450		ns	
t _{PLH} Propagation delay low to hig		iow to nign	Input overdrive = 100mV		300		ns	

Notes: 6. Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration. The typical values are not tested and are not guaranteed on shipped production material.

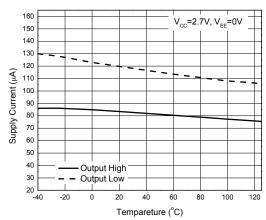

7. All limits are guaranteed by testing or statistical analysis.


Typical Performance Characteristics (@TA = +25°C, unless otherwise specified.)

Supply Current vs. Supply Voltage (LMV331)

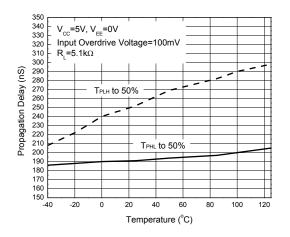


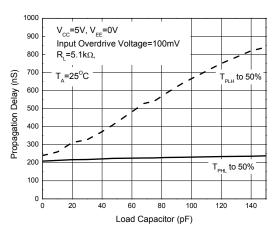
Supply Current vs. Temperature (LMV331)

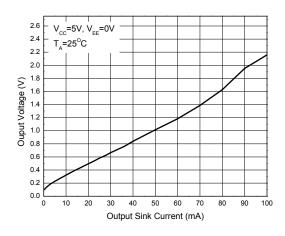


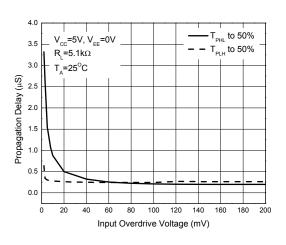
100 90 T_A=-40°C --- T_A=25°C 70 60 50 40 30 20 10 0 1 2 3 4 5 6 Supply Voltage (V)

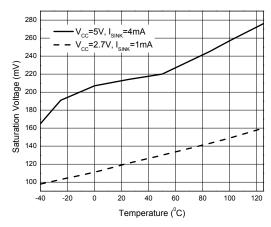
Supply Current vs. Supply Voltage (LMV331)

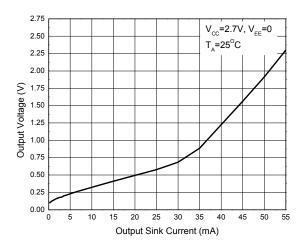

Supply Current vs. Temperature (LMV331)


Supply Current vs. Temperature (LMV393)

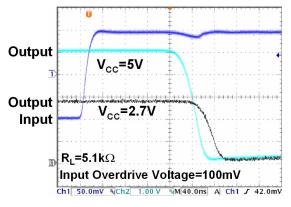

Typical Performance Characteristics (cont.) (@ T_A = +25°C, unless otherwise specified.)

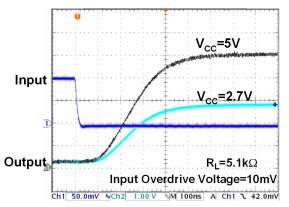

Propagation Delay vs. Temperature

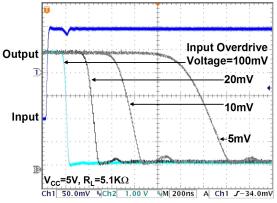

Propagation Delay vs. Load Capacitors

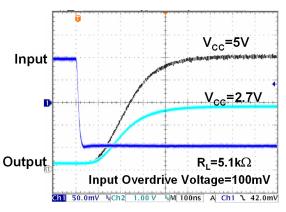

Output Voltage vs. Output Sink Current

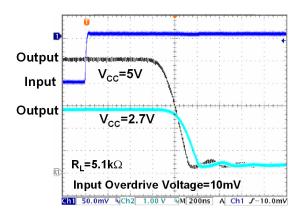
Propagation Delay vs. Input Overdrive Voltage

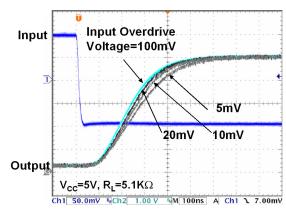

Saturation Voltage vs. Temperature


Output Voltage vs. Output Sink Current

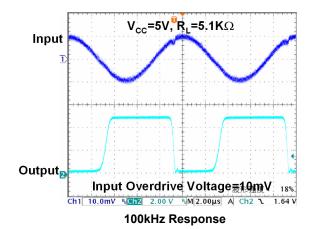

Typical Performance Characteristics (cont.) (@ T_A = +25°C, unless otherwise specified.)

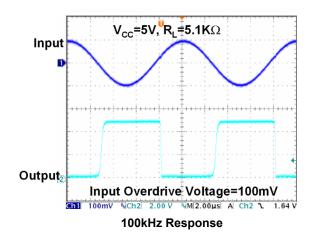

Response Time for Positive Transition

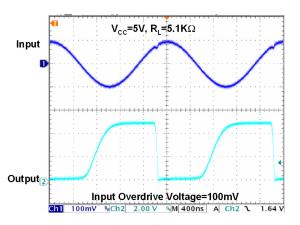

Response Time for Negative Transition


Response Time for Positive Transition

Response Time for Negative Transition


Response Time for Positive Transition



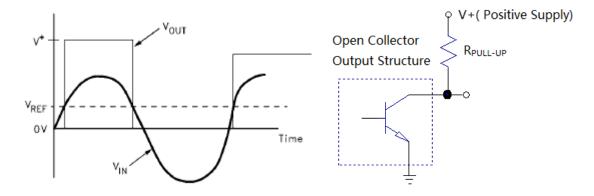

Response Time for Negative Transition

Typical Performance Characteristics (cont.) (@ T_A = +25°C, unless otherwise specified.)

500kHz Response

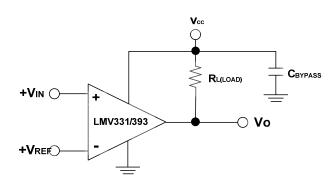
Application Information

Detailed Description

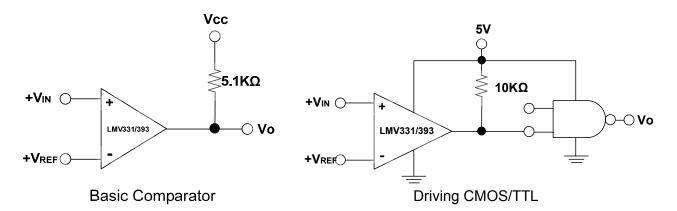

LMV331/LMV393 are low voltage single/dual general- purpose comparators. They have a single supply operating voltage range from 2.7V to 5.5V, the common -mode input voltage range extends from -0.1V below the negative supply to within 0.8V of the positive supply.

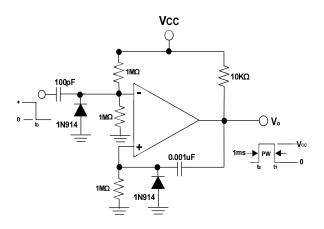
The LMV331/393 series are built with BiCMOS process with bipolar input and output stages for improved noise performance. It is a cost-effective solution for portable consumer products where space, low voltage, low power and price are the primary specification in circuit design.

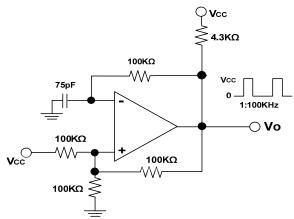
Basic Comparator


A basic comparator circuit is used for converting analog signal to digital output. The LMV331/393 has open collect output structure, which required a pull-high resistor to positive supply voltage for the output to switch properly. When the internal output transistor is off, the output voltage will be pulled up to the external positive voltage.

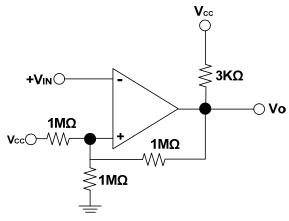
The output pull- up resistor should be chosen high enough so as to avoid excessive power dissipation yet low enough to supply enough drive to switch whatever load circuitry is used on the comparator output. On the LMV331/393 the pull-up resistor should range between $1K\Omega$ to $10K\Omega$.

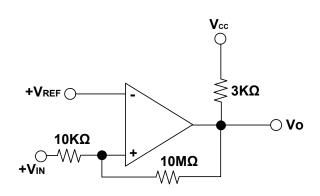

Power Supply Bypassing


For better performance, power supply bypass capacitor is necessary. For single-supply operation system, a Min. $0.1\mu F$ bypass capacitor should be recommended to place as close as possible between V_{CC} pin and GND.

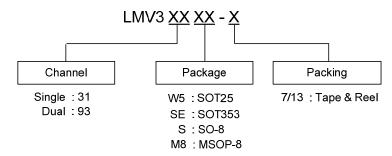


Typical Application Circuit




One-Shot Multivibrator

Squarewave Oscillator


Inverting Comparator with Hysteresis

Non-Inverting Comparator with Hysteresis

Ordering Information

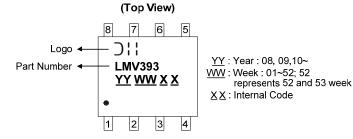
Boot Neurobon Bookson	Bookene Code	ackage Code Packaging -	7"/13" Tape and Reel	
Part Number	Package Code		Quantity	Part Number Suffix
LMV331W5-7	W5	SOT25	3000/Tape & Reel	-7
LMV331SE-7	SE	SOT353	3000/Tape & Reel	-7
LMV393S-13	S	SO-8	2500/Tape & Reel	-13
LMV393M8-13	M8	MSOP-8	2500/Tape & Reel	-13

Marking Information

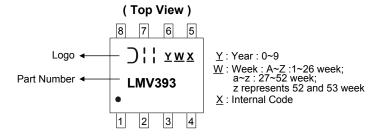
(1) SOT25 and SOT353

(Top View)

5 4 <u>XX Y W X</u> <u>W</u>


 $\frac{XX}{Y}$: Identification Code \underline{Y} : Year: 0~9

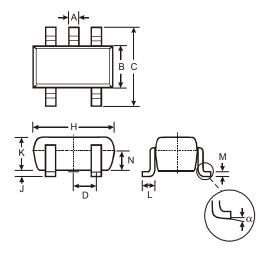
<u>W</u>: Week: A~Z: 1~26 week; a~z: 27~52 week; z represents 52 and 53 week <u>X</u>: Internal Code


<u>Z</u> : Internal Cod

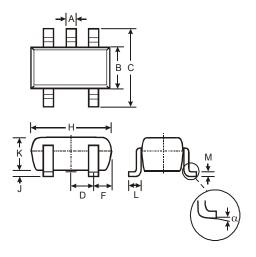
Device	Package type	Identification Code
LMV331W5	SOT25	CX
LMV331SE	SOT353	CY

(2) SO-8

(3) MSOP-8



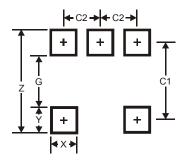
Package Outline Dimensions (All dimensions in mm.)


 $Please see AP02002 \ at \ http://www.diodes.com/datasheets/ap02002.pdf \ for \ latest \ version.$

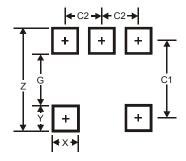
(1) Package Type: SOT25

SOT25				
Dim	Min	Max	Тур	
A	0.35	0.50	0.38	
В	1.50	1.70	1.60	
С	2.70	3.00	2.80	
D		-	0.95	
Н	2.90	3.10	3.00	
J	0.013	0.10	0.05	
K	1.00	1.30	1.10	
L	0.35	0.55	0.40	
М	0.10	0.20	0.15	
Z	0.70	0.80	0.75	
α	0°	8°	_	
All Dimensions in mm				

(2) Package Type: SOT353


	SOT353				
Dim	Min	Max	Тур		
Α	0.10	0.30	0.25		
В	1.15	1.35	1.30		
U	2.00	2.20	2.10		
D	0	0.65 Typ			
F	0.40	0.45	0.425		
Н	1.80	2.20	2.15		
7	0	0.10	0.05		
K	0.90	1.00	1.00		
L	0.25	0.40	0.30		
М	0.10	0.22	0.11		
α	0°	8°	-		
All Dimensions in mm					

Suggested Pad Layout


Please see AP02001 at http://www.diodes.com/datasheets/ap02001.pdf for the latest version.

(1) Package Type: SOT25

Dimensions	Value (in mm)
Z	3.20
G	1.60
Х	0.55
Y	0.80
C1	2.40
C2	0.95

(2) Package Type: SOT353

Dimensions	Value (in mm)
Z	2.5
G	1.3
Х	0.42
Y	0.6
C1	1.9
C2	0.65

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2014, Diodes Incorporated

www.diodes.com