LA71076SM

Monolithic Linear IC

For VHS VTR Video Signal Processor
(Y/CIA single-chip)

Overview

The LA71076SM is a video signal processing system IC that handles VHS VCR format. In addition to conventional video signal processing circuits, it integrates normal audio processing and record/playback FM-EQ circuits on a chip. The LA71076SM is combined with a CCD to create a 2-chip-1-package semiconductor device. Chip internal trimming is used to make this IC adjustment free, further the automatically adjustable comb filter makes the IC fully adjustment free. These features significantly reduces the number of external components, thus streamlining the design of the signal processing board and reducing in the production cost.

Functions

- Fully adjustment free.
- Built-in normal audio processing.
- Built-in and record/playback FM-EQ circuits.
- Built-in NTSC delay-line (LC89961 equivalent).

Specifications

Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	$\mathrm{V}_{\mathrm{CC}} \max$		7.0	V
Allowable power dissipation	$\mathrm{Pd} \max$	$\mathrm{Ta} \leq 75^{\circ} \mathrm{C} *$	1040	mW
Operating temperature	Topg		-10 to +75	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-40 to +150	${ }^{\circ} \mathrm{C}$

*: When mounted on a $114.3 \times 76.1 \times 1.6 \mathrm{~mm}^{3}$,glass epoxy board.

Recommended Operating Conditions at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	$V_{C C}$		5.0	V
Allowable operating voltage range	V_{CC} op		4.8 to 5.2	V

Any and all SANYO Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO Semiconductor representative nearest you before using any SANYO Semiconductor products described or contained herein in such applications.
SANYO Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor products described or contained herein.

Electrical Characteristics at $\mathrm{Ta}=25^{\circ} \mathrm{C}$
Recording mode Head Amplifier (T87:5.0V T11:5.0V)

Parameter	Symbol	In	Out	Conditions	T13	T15	Ratings			Unit
							min	typ	max	
Rec AGC Amp output level	$\begin{aligned} & \mathrm{V}_{\mathrm{R}} \mathrm{SP} \\ & \mathrm{v}_{\mathrm{R}} \mathrm{EP} \end{aligned}$	T66A	$\begin{aligned} & \text { T83A } \\ & \text { T89A } \end{aligned}$	Output level when $\mathrm{V}_{\mathrm{IN}}=300 \mathrm{mVp}-\mathrm{p}, \mathrm{f}=4 \mathrm{MHz}$ Enter by applying DC 3.5 V or more to pin 66.		$\begin{array}{r} 0 \\ 5.0 \end{array}$	$\begin{aligned} & 127 \\ & 104 \end{aligned}$	$\begin{aligned} & 135 \\ & 111 \end{aligned}$	$\begin{aligned} & 143 \\ & 119 \end{aligned}$	mVp-p
Difference of gain between mode	$\Delta \mathrm{GVR}$			$\mathrm{V}_{\mathrm{R}} \mathrm{SP} / \mathrm{V}_{\mathrm{R}} \mathrm{EP}$			1.40	1.7	2.00	dB
REC AGC AMP control characteristics 1	$\begin{aligned} & \Delta \mathrm{V}_{\mathrm{AGC}} 1-\mathrm{SP} \\ & \Delta \mathrm{~V}_{\mathrm{AGC}}{ }^{1-\mathrm{EP}} \end{aligned}$	T66A	$\begin{aligned} & \text { T83A } \\ & \text { T89A } \end{aligned}$	Output level/ $\mathrm{V}_{\mathrm{R}} \mathrm{SP}$, EP with $\mathrm{f}=4 \mathrm{MHz}$ and $\mathrm{V}_{\mathrm{IN}}=700 \mathrm{mVp}-\mathrm{p}$		$\begin{array}{r} 0 \\ 5.0 \end{array}$		0.5	1.0	dB
REC AGC AMP control characteristics 2	$\begin{aligned} & \Delta \mathrm{V}_{\mathrm{AGC}}{ }^{2-S P} \\ & \Delta \mathrm{~V}_{\mathrm{AGC}}{ }^{2-E P} \end{aligned}$	T66A	$\begin{aligned} & \text { T83A } \\ & \text { T89A } \end{aligned}$	Output level/VRSP, EP with $\mathrm{f}=4 \mathrm{MHz}$ and $\mathrm{V}_{\mathrm{IN}}=100 \mathrm{mVp}$-p.		$\begin{array}{r} 0 \\ 5.0 \end{array}$	-1.0	-0.5		dB
REC AGC AMP frequency characteristics	$\begin{aligned} & \Delta V_{F} R S \\ & \Delta V_{F} R E \end{aligned}$	T66A	$\begin{aligned} & \text { T83A } \\ & \text { T89A } \end{aligned}$	The output ratio when f is $1 \mathrm{M}, 7 \mathrm{MHz}$ as $\mathrm{V}_{\mathrm{IN}}=300 \mathrm{mVp}$-p. $7 \mathrm{MHz} / 1 \mathrm{MHz}$ (Note 1)		$\begin{array}{r} 0 \\ 5.0 \end{array}$	-1.0	0.0	+1.0	dB
REC AGC AMP second harmonic distortion	$\Delta \mathrm{V}_{\mathrm{HD}} \mathrm{RS}$ $\Delta \mathrm{V}_{\mathrm{HD}} \mathrm{RE}$	T13A	$\begin{aligned} & \text { T83A } \\ & \text { T89A } \end{aligned}$	The ratio of the 8 Mz (second component) and 4 Mz (first component) of the output with $V_{I N}=300 \mathrm{mVp}-\mathrm{p}$ and $\mathrm{f}=4 \mathrm{MHz}$		$\begin{array}{r} 0 \\ 5.0 \end{array}$		-45	-40	dB
REC AGC AMP maximum output level	$\Delta \mathrm{V}_{\mathrm{HD}} \mathrm{RS}$ $\Delta V_{\text {HD }}$ RE	T66A	$\begin{aligned} & \text { T83A } \\ & \text { T89A } \end{aligned}$	The output level at which the second distortion with $f=4 \mathrm{MHz}$ is -35 dB .		$\begin{array}{r} 0 \\ 5.0 \end{array}$	20	22		mVp-p
REC AGC AMP attenuate volume of mute	$\Delta \mathrm{V}_{\mathrm{M}} \mathrm{RS}$ $\Delta \mathrm{V}_{\mathrm{M}} \mathrm{RE}$	T66A	$\begin{aligned} & \text { T83A } \\ & \text { T89A } \end{aligned}$	Output level/VRSP, EP with $\mathrm{V}_{\mathrm{IN}}=300 \mathrm{mVp}-\mathrm{p}$ and $\mathrm{f}=4 \mathrm{MHz}$		$\begin{array}{r} 0 \\ 5.0 \end{array}$		-45	-40	dB
REC AGC AMP mixed modulation relative level	$\Delta \mathrm{VCYS}$ \triangle VCYE	T66A	$\begin{aligned} & \text { T83A } \\ & \text { T89A } \end{aligned}$	$\begin{aligned} & \text { Vin1 }=300 \mathrm{mVp}-\mathrm{p}, \mathrm{f}=4 \mathrm{MHz} \\ & \text { Vin2 }=300 \mathrm{Vp}-\mathrm{p}, \mathrm{f}=629 \mathrm{kHz}(4 \mathrm{M} \pm 629 \mathrm{k}) / 4 \mathrm{M} \end{aligned}$ ratio of output		$\begin{array}{r} 0 \\ 5.0 \end{array}$		-45	-40	dB

Note1: Apply DC of about 1.6 V to AGC detection filter terminal (Pin92), and fix the AGC amplifier gain.
Use a resistor with a tolerance of $\pm 1.0 \%$ between Pin 93and GND.
PB mode Head Amplifier ($\mathrm{T} 87=5.0 \mathrm{~V}$ T11 = 0V)

Parameter		Symbol	In	Out	Conditions	T13	T15	Ratings			Unit	
		min						typ	max			
Voltage SP-H	CH1		Gvp1	T82A	T74	$\mathrm{V}_{\mathrm{IN}}=38 \mathrm{mVp}-\mathrm{p}, \mathrm{f}=1 \mathrm{MHz}$	0	0	56.0	59.0	62.0	dB
gain SP-H	CH 2	Gvp2	T85A	5.0			0	56.0	59.0	62.0		
EP-L	CH3	Gvp3	T88A	0			5.0	56.0	59.0	62.0		
EP-H	CH4	Gvp4	T91A	5.0			5.0	56.0	59.0	62.0		
Difference of voltage gain 1		$\Delta \mathrm{Gvp1}$			Gvp1 - Gvp2			-1	0	+1	dB	
Difference of voltage gain 2		$\Delta \mathrm{Gvp} 2$			Gvp3 - Gvp4			-1	0	+1	dB	
Difference of gain between mode		$\Delta \mathrm{Gvp} 3$			Gvp3 - Gvp1			-1	0	+1	dB	
Input calculation noise voltage	$\begin{aligned} & \mathrm{CH} 1 \\ & \mathrm{CH} 2 \\ & \mathrm{CH} 3 \\ & \mathrm{CH} 4 \end{aligned}$	V_{N} IN1 $\mathrm{V}_{\mathrm{N}} \mathrm{IN} 2$ $\mathrm{V}_{\mathrm{N}} \mathrm{IN} 3$ V_{N} IN4	$\begin{aligned} & \text { T82A } \\ & \text { T85A } \\ & \text { T88A } \\ & \text { T91A } \end{aligned}$	T74	The ratio of the output which has passed the 1.1 MHz LPF and the output without input under the same input conditions as the voltage gain.	$\begin{array}{r} 0 \\ 5.0 \\ 0 \\ 5.0 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 5.0 \\ 5.0 \end{array}$		0.7	1.0	$\mu \mathrm{Vrms}$	
Frequency characteristics	$\begin{aligned} & \mathrm{CH} 1 \\ & \mathrm{CH} 2 \\ & \mathrm{CH} 3 \\ & \mathrm{CH} 4 \end{aligned}$	$\Delta \mathrm{Vfp} 1$ $\Delta \mathrm{Vfp} 2$ $\Delta \mathrm{Vfp} 3$ $\Delta \mathrm{Vfp} 4$	$\begin{aligned} & \text { T82A } \\ & \text { T85A } \\ & \text { T88A } \\ & \text { T91A } \end{aligned}$	T74	The ratio of the $V_{I N}=38 \mathrm{mVp}-\mathrm{p}$, $\mathrm{f}=7 \mathrm{MHz}$ output and Gvp1, 2, 3, 4.	$\begin{array}{r} 0 \\ 5.0 \\ 0 \\ 5.0 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 5.0 \\ 5.0 \end{array}$	-2.5	0		dB	
Secondary harmonic distortion	$\begin{aligned} & \mathrm{CH} 1 \\ & \mathrm{CH} 2 \\ & \mathrm{CH} 3 \\ & \mathrm{CH} 4 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{H}} \mathrm{DP} 1 \\ & \mathrm{v}_{\mathrm{H}} \mathrm{DP} 2 \\ & \mathrm{v}_{\mathrm{H}} \mathrm{DP} 3 \\ & \mathrm{v}_{\mathrm{H}} \mathrm{DP} 4 \end{aligned}$	$\begin{aligned} & \text { T82A } \\ & \text { T85A } \\ & \text { T88A } \\ & \text { T91A } \end{aligned}$	T74	The ratio of 8 MHz (second component) and 4 MHz (first component) of output with $\mathrm{V}_{\mathrm{IN}}=38 \mathrm{mVp}-\mathrm{p}$ and $\mathrm{f}=4 \mathrm{MHz}$.	$\begin{array}{r} 0 \\ 5.0 \\ 0 \\ 5.0 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 5.0 \\ 5.0 \end{array}$		-40	-35	dB	
Maximum output level	$\begin{aligned} & \mathrm{CH} 1 \\ & \mathrm{CH} 2 \\ & \mathrm{CH} 3 \\ & \mathrm{CH} 4 \end{aligned}$	VOMP1 $V_{\mathrm{O}} \mathrm{MP} 2$ V_{0} MP3 V_{0} MP4	$\begin{aligned} & \text { T82A } \\ & \text { T85A } \\ & \text { T88A } \\ & \text { T91A } \end{aligned}$	T74	The output level at which the ratio of 3 MHz (third component) and 1MHz (first component) of the output with $f=1 \mathrm{MHz}$.	$\begin{array}{r} 0 \\ 5.0 \\ 0 \\ 5.0 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 5.0 \\ 5.0 \end{array}$	1.0	1.2		Vp-p	

LA71076SM
Continued from preceding page.

Parameter	Symbol	In	Out	Conditions	T13	T15	Ratings			Unit
							min	typ	max	
Cross talk SP1 CH1	$\mathrm{v}_{\mathrm{C}} \mathrm{R} 1$	$\begin{aligned} & \hline \text { T85A } \\ & \text { T88A } \\ & \text { T91A } \\ & \hline \end{aligned}$	T74	The ratio of output of $\mathrm{V}_{\mathrm{IN}}=38 \mathrm{mVp}-\mathrm{p}, \mathrm{f}=4 \mathrm{MHz}$ and Gvp1.	0	0		-40	-35	dB
Cross talk SP2 CH2	$\mathrm{V}_{\mathrm{C}} \mathrm{R} 2$	$\begin{aligned} & \text { T82A } \\ & \text { T88A } \\ & \text { T91A } \end{aligned}$	T74	The ratio of output of $\mathrm{V}_{\mathrm{IN}}=38 \mathrm{mVp}-\mathrm{p}, \mathrm{f}=4 \mathrm{MHz}$ and Gvp2.	5.0	0		-40	-35	dB
Cross talk EP1 CH3	$\mathrm{V}_{\mathrm{C}} \mathrm{R} 3$	$\begin{aligned} & \hline \text { T82A } \\ & \text { T85A } \\ & \text { T88A } \\ & \hline \end{aligned}$	T74	The ratio of output of $\mathrm{V}_{\mathrm{IN}}=38 \mathrm{mVp}-\mathrm{p}, \mathrm{f}=4 \mathrm{MHz}$ and Gvp3.	0	5.0		-40	-35	dB
Cross talk EP2 CH4	$\mathrm{V}_{\mathrm{C}} \mathrm{R} 4$	$\begin{aligned} & \text { T82A } \\ & \text { T85A } \\ & \text { T91A } \end{aligned}$	T74	The ratio of output of $\mathrm{V}_{\mathrm{IN}}=38 \mathrm{mVp}-\mathrm{p}, \mathrm{f}=4 \mathrm{MHz}$ and Gvp4.	5.0	5.0		-40	-35	dB
Output DC offset	$\begin{aligned} & \Delta \mathrm{v}_{\mathrm{O}} \mathrm{DC1} \\ & \Delta \mathrm{v}_{\mathrm{O}} \mathrm{DC} 2 \\ & \Delta \mathrm{v}_{\mathrm{O}} \mathrm{DC} 3 \\ & \Delta \mathrm{v}_{\mathrm{O}} \mathrm{DC4} \\ & \Delta \mathrm{v}_{\mathrm{O}} \mathrm{DC5} \\ & \Delta \mathrm{v}_{\mathrm{O}} \mathrm{DC6} \end{aligned}$		T74	$\begin{gathered} \mathrm{CH}-\mathrm{CH}_{2} \\ \mathrm{CH}-\mathrm{CH}_{4} \\ \mathrm{CH} 1- \\ \mathrm{CH} 3 \\ \mathrm{CH} 2- \\ \mathrm{CH} 4 \\ \mathrm{CH}- \\ \mathrm{CH} 4 \\ \mathrm{CH} 2- \\ \mathrm{CH} 3 \end{gathered}$	$\begin{array}{r} 0 \\ 5.0 \\ 0 \\ 5.0 \\ 0 \\ 0 \\ 0.0 \\ 5.0 \\ 5.0 \\ 0 \\ 5.0 \\ 0 \\ 5.0 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 0.0 \\ 5.0 \\ 0 \\ 5.0 \\ 0 \\ 5.0 \\ 0 \\ 5.0 \\ 0 \\ 5.0 \end{array}$	-150	0	+150	mV
Envelope detection output terminal voltage	$\mathrm{V}_{\text {ENV }}$		T93	T93DC when no input is provided.	$\begin{array}{r} 0 \\ 5.0 \\ 0 \\ 5.0 \end{array}$	$\begin{array}{r} 0 \\ 0 \\ 5.0 \\ 5.0 \end{array}$	0	0.8	1.3	V
Envelope detection output terminal voltage SP1	$\mathrm{V}_{\text {ENV }} \mathrm{SP} 1$	T82A	T93	When input $\mathrm{f}=4 \mathrm{MHz}$, T93 DC as becomes 175mVp-p, for T74 output level.	0	0	2.0	2.5	3.0	V
Envelope detection output terminal voltage SP2	$\mathrm{V}_{\mathrm{ENV}} \mathrm{SP} 2$	T82A	T93	When input $\mathrm{f}=4 \mathrm{MHz}$, T 93 DC as becomes 400 mVp -p, for T74 output level.	0	0	4.0	4.5	5.0	V
Envelope detection output terminal voltage EP1	VENVEP1	T89A	T93	When input $\mathrm{f}=4 \mathrm{MHz}$, T93 DC as becomes 125 mV p-p, for T 74 output level.	0	5.0	2.0	2.5	3.0	V
Envelope detection output terminal voltage EP2	$\mathrm{V}_{\text {ENV }}$ EP2	T89A	T93	When input $\mathrm{f}=4 \mathrm{MHz}$, T93 DC as becomes 300 mV p-p, for T74 output level.	0	5.0	4.0	4.5	5.0	V
Comparator output voltage 1	$\mathrm{V}_{\text {COMP }}{ }^{1}$	T82A	T94	T94 DC voltage when $V_{I N}=38 \mathrm{mVp}-\mathrm{p}, \mathrm{f}=4 \mathrm{MHz}$.	0	0		0.4	0.7	V
Comparator output voltage 2	$\mathrm{V}_{\text {COMP }}{ }^{2}$	T89A	T94	T94 DC voltage when $V_{I N}=38 \mathrm{mVp}-\mathrm{p}, \mathrm{f}=4 \mathrm{MHz}$.	5.0	0	4.5	4.8		V

LA71076SM

REC Mode Y

Parameter	Symbol	In	Out	Conditions	Ratings			Unit
					min	typ	max	
Current dissipation (REC)	${ }^{1} \mathrm{CCR}$			Measure the sum of currents flowing into pins $21,54,56,57$, 75, 87.	135	160	185	mA
EE output level 2	$V_{E E}{ }^{2}$	T42A	T35	With V_{IN} being a 1 V p-p video signal (PAL), measure the output level on T35.	2.00	2.10	2.20	Vp-p
AGC characteristics 1	AGC1	T42A	T35	With $\mathrm{V}_{\text {IN }}$ being a 2.0 Vp -p video signal, measure the ratio of the output level on T 35 and $\mathrm{V}_{\mathrm{EE}}{ }^{1}$.	0	0.6	1.2	dB
AGC characteristics 2	AGC2	T42A	T35	With V_{IN} being a 0.5 Vp -p video signal, measure the ratio of the output level on T 35 and $\mathrm{V}_{\mathrm{EE}} 1$.	-1.2	-0.2	0.0	dB
AGC characteristics 3	AGC3	T42A	T35	With V_{IN} being a 700 mVp -p luminance, 600 mVp -p sync, measure the sync level on T35.	550	650	750	mVp-p
AGC characteristics 4	AGC4	T42A	T35	With V_{IN} being a 700 mVp -p luminance, 150 mVp -p sync, measure the sync level on T35.	330	380	430	mVp-p
Sync separator output level	$\mathrm{V}_{\text {SYR }}$	T42A	T34	With V_{IN} being a 1.0 V p-p video signal, measure the output pulse wave height on T34.	4.0	4.2	4.4	Vp-p
Sync separator output pulse width	PWSYR	T42A	T34	With $\mathrm{V}_{\text {IN }}$ being a 1.0 Vp -p video signal, measure the output pulse width on T34.	4.1	4.4	4.7	$\mu \mathrm{S}$
Sync separator threshold level	THSYR	T42A	T34	Gradually reduce the input level, and measure the input level at which the output pulse width is 1μ s or more wider than PWSYR.		-20	-15	dB
H-Sync output level	VHSYR	T42A	T33	With V_{IN} being a 1.0 V p-p video signal, measure the output pulse wave height on T33.	4.0	4.2	4.4	Vp-p
H-Sync output pulse width	$\mathrm{PWH}_{\text {SYR }}$	T42A	T33	$\mathrm{V}_{\text {IN }}=1.0 \mathrm{Vp}$-p video signal, Measure the output pulse on T33.	4.4	4.7	5.0	$\mu \mathrm{s}$
Sync tip level Pedestal level White level	LVOR	T42A	T35	With V_{IN} being a 1.0 Vp -p video signal, measure the sync tip and pedestal and white level on T35 video output, and take these as LSYN LPED LWHT, respectively.				
Quasi-V insertion level	$\Delta \mathrm{VDR}$	T42A	T35	Measure the T35 DC voltage with 4.0V applied to T31, and take this as LVDR, and calculate the difference from LSYN measured above. $\Delta \mathrm{WHR}=\mathrm{LSYN}-\mathrm{LVDR}$	-100	0	100	mV
Quasi-V insertion level	$\Delta \mathrm{HDR}$	T42A	T35	Measure the T35 DC voltage with 3.0 V applied T31, and takes this as LHDP, and calculates the difference from LSYN measured above. $\Delta H D R=\text { LPED-LHDR }$	-500	-400	-300	mV
White insertion level	$\Delta \mathrm{WHR}$	T42A	T35	Measure the T35 DC voltage with 2.0 V applied to T31. and take this as LWHP, and calculate the difference from LWHT measured above. $\Delta \mathrm{WHR}=\mathrm{LWHT}-\mathrm{LWHR}$	500	600	700	mV
Edge insertion level	$\Delta \mathrm{EGR}$	T42A	T35	Measure the T35 DC voltage with 1.2 V applied toT31.and take this as LWHP, and calculate the difference from LPED measured above. $\Delta \mathrm{WHR}=\text { LPED-LEGR }$	-500	-400	-300	mV
Y LPF frequency characteristics (1)	Y ${ }_{\text {LPF }}{ }^{1}$	T42A	T26	With V_{IN} being a standard multi-burst signal (1 Vp -p), measure the 1 MHz response to a 500 kHz signal on T26.	-0.6	-0.1	0.4	dB
Y LPF frequency characteristics (2)	Y LPF 2	T42A	T26	With V_{IN} being a standard multi-burst signal (1 Vp -p), measure the 2 MHz response to a 500 kHz signal on T26.	-1.3	-0.3	0.7	dB
Y LPF frequency characteristics (3)	Y ${ }_{\text {LPF }}{ }^{3}$	T42A	T26	With V_{IN} being a standard multi-burst signal ($1 \mathrm{Vp}-\mathrm{p}$), measure the 3 MHz response to a 500 kHz signal on T 26 .	-8.0	-6.0	-4.0	dB
Y LPF frequency characteristics (5)	YLPF5	T42A	T26	With V_{IN} being a standard multi-burst signal (1 Vp -p), measure the 3.58 MHz response to a 500 kHz signal on T 26			-25	dB

Continued on next page

LA71076SM

Parameter	Symbol	In	Out	Conditions	Ratings			Unit
					min	typ	max	
REC-FM modulator output level	V_{FM}		T66	Measure the T66 output level with no input.	220	300	360	mVp-p
Carrier frequency	FFM^{2}		T66	Measure the output frequency on T66 with no input.	3.36	3.46	3.56	MHz
REC-FM output second distortion	HMOD		T66	Measure the second distortion with the above state.		-40	-35	dB
Deviation 2	DEV2	T42A	T66	With V_{IN} being a 100% white 1 Vp -p signal, measure the deviation on $T 66$.	0.95	1.00	1.05	MHz
FM modulator linearity	LMOD	T25	T66	Assume that f 2.85 is the output frequency when 3.85 VDC is applied to T25. $L M O D=\frac{f 2.85-(f 3.1+f 2.6) / 2}{f 3.1-f 2.6} \times 100$	-2	0	2	\%
1/2 fH carrier shift	CS	T13	T66	The output frequency change	6.5	8.2	9.5	kHz
Emphasis gain	GEMP	T25A	T23	With V_{IN} being a 500 mVp -p 10 kHz sine wave, measure the ratio of the levels on T25A and T23.	-0.75	-0.25	0.25	dB
Detail enhancer characteristics (1)	GENH^{1}	T25A	T23	With V_{IN} being a 158 mVp -p 2 MHz sine wave, measure the ratio of the levels on T25A and T23, and calculate the difference from GEMP.	1.5	2.0	2.5	dB
Detail enhancer characteristics (2)	GENH^{2}	T25A	T23	With V_{IN} being a $50 \mathrm{mVp}-\mathrm{p} 2 \mathrm{MHz}$ sine wave, measure the ratio of the levels on T25A and T23, and calculate the difference from GEMP.	3.5	4.5	5.5	dB
Detail enhancer characteristics (3)	GENH^{3}	T25A	T23	With V_{IN} being a $15.8 \mathrm{mVp}-\mathrm{p} 2 \mathrm{MHz}$ sine wave, measure the ratio of the levels on T25A and T23, and calculate the difference from GEMP.	4.3	5.8	7.3	dB
Nonlinear emphasis characteristics (1)	$\mathrm{G}_{\mathrm{NL}} \mathrm{EMP1}$	T25A	T23	With $\mathrm{V}_{\text {IN }}$ being a $500 \mathrm{mVp}-\mathrm{p} 2 \mathrm{MHz}$ signal measure the ratio of the levels on T25A and T23, and calculate the difference from GEMP.	-3.0	-2.0	-1.0	dB
Nonlinear emphasis characteristics (2)	$\mathrm{G}_{\mathrm{NL}} \mathrm{EMP} 2$	T25A	T23	With V_{IN} being a 158 mVp -p 2 MHz signal measure the ratio of the levels on T25A and T23, and calculate the difference from GEMP.	2.5	4.0	5.5	dB
Nonlinear emphasis characteristics (3)	$\mathrm{G}_{\mathrm{NL}} \mathrm{EMP3}$	T25A	T23	With V_{IN} being a $50 \mathrm{mVp}-\mathrm{p} 2 \mathrm{MHz}$ signal measure the ratio of the levels on T25A and T23, and calculate the difference from GEMP.	5.0	6.5	8.0	dB
Main linear emphasis characteristics (1)	$\mathrm{G}_{\mathrm{M}} \mathrm{E}^{1}$	T25A	T23	With V_{IN} being a $50 \mathrm{mVp}-\mathrm{p} 500 \mathrm{kHz}$ sine wave, measure the ratio of the levels on T25 and T23, and calculate the difference from GEMP.	10.0	11.5	12.0	dB
Main linear emphasis characteristics (2)	$\mathrm{G}_{\mathrm{M}} \mathrm{E}^{2}$	T25A	T23	With $\mathrm{V}_{\text {IN }}$ being a $50 \mathrm{mVp}-\mathrm{p} 2 \mathrm{MHz}$ signal measure the ratio of the levels on T25A and T23, and calculate the difference from GEMP.	17.0	18.5	20.0	dB
White clipping level	${ }^{\text {L W }}$	T42A	T23	With V_{IN} being a $1.0 \mathrm{Vp}-\mathrm{p} 100 \%$ white video signal, measure the white clipping level on T23.	180	190	200	\%
Dark clipping level	${ }^{\text {DC }}$	T42A	T23	With V_{IN} being a $1.0 \mathrm{Vp}-\mathrm{p} 100 \%$ white video signal, measure the dark clipping level on T23.	-52	-50	-47	\%

REC Mode EQ

Parameter	Symbol	In	Out	Conditions	Ratings			Unit
					min	typ	max	
REC EQ characteristics 1	GREQ^{1}	T36A	T66	With V_{IN} being a CW $2 \mathrm{MHz}, 400 \mathrm{mVp}$-p signal, measure the input/output response.	-5.7	-4.5	-3.3	dB
REC EQ characteristics 2	GREQ^{2}	T36A	T66	With V_{IN} being a $\mathrm{CW} 4 \mathrm{MHz}, 400 \mathrm{mVp}$-p signal, measure the input/output response.	-4.0	-2.7	-1.4	dB
REC EQ characteristics 3	GREQ^{3}	T36A	T66	With V_{IN} being a $\mathrm{CW} 750 \mathrm{kHz}, 400 \mathrm{mVp}$-p signal, measure the input/output response.			-20	dB
REC EQ 2'nd distortion	$\mathrm{H}_{\text {REQ }}$	T36A	T66	Measure the second harmonic in the above conditions.		-40	-15	dB

LA71076SM
PB Mode Y

Parameter	Symbol	In	Out	Conditions	Ratings			Unit
					min	typ	max	
Current dissipation (PB)	${ }^{1} \mathrm{CCP}$			Measure the sum of the currents flowing into pins $21,54,56$, 57, 75, and 87.	160	170	180	mA
Dropout compensation Period 1H for one horizontal synchronization period	TDOC	$\begin{aligned} & \text { T74A } \\ & \text { T25A } \end{aligned}$	T35	T74A: 4MHz $300 \mathrm{mVp}-\mathrm{p}$ sine wave +3VDC T25A: 0.5Vp-p video signal The I/O response 5 H after the T74A input is set to 0 .	10.0	13.0	15.0	H
DOC characteristics	GDOC	$\begin{aligned} & \text { T74A } \\ & \text { T25A } \end{aligned}$	T35	T74A: 4MHz 300mVp-p sine wave +3VDC T25A: 0.5Vp-p video signal The time from the instant when the T74A input level is set to 0 to the time point when the T35 output is restored.	-1.5	0	1.5	dB
PB Y level	V-YOUT	T74A	T35	DEV $=1.0 \mathrm{MHz}$ PB Y level when input FM signal is input.	2.00	2.10	2.20	Vp-p
Self R/P, PB-Y level	R/P-OUT	T74A	T35	Self R/P-Y, PB-Y level	1.93	2.10	2.27	Vp-p
FM demodulator linearity	LDEM	T74A	T26	$\begin{aligned} L E D M & =\frac{V D E M 4-(\text { VDEM } 3+V D E M 5) / 2}{V D E M 5-V D E M 3} \times 100 \\ * V D E M 4 & =\text { DC: } \mathrm{T} 26(\text { Input } 4 \mathrm{MHz}, 300 \mathrm{mVp}-\mathrm{p}) \end{aligned}$	-3.5	0	+3.5	\%
Carrier leakage	CL	T74	T26	Measure the ratio of the 4MHz component on T26 and SDEM.			-35	dB
PB YNR characteristics	PYNR	T25A	T35	Measure the ratio of 32 fH component and 32.5 fH .	-8.5	-7.5	-6.5	dB
Nonlinear de-emphasis characteristics (1) *Serial-control	G_{NL} DE1	T25A	T35	With V_{IN} being a 50% white video $\mathrm{f}=2 \mathrm{MHz}, 158 \mathrm{mVp}$-p sine wave, measure the I/O response.	-3.5	-2.5	-1.5	dB
Nonlinear de-emphasis characteristics (2)	$\mathrm{G}_{\text {NL }} \mathrm{DE} 2$	T25A	T35	$\mathrm{f}=2 \mathrm{MHz}, 50 \mathrm{mVp}-\mathrm{p}$	-6.0	-4.5	-3.0	dB
Double noisecanceller characteristics (1)	GWNC^{1}	T25A	T35	$\mathrm{f}=1.4 \mathrm{MHz}, 158 \mathrm{mVp}-\mathrm{p}$	3.5	-2.5	-1.5	dB
Double noisecanceller characteristics (2)	$\mathrm{G}_{W N}{ }^{2}$	T25A	T35	$\mathrm{f}=1.4 \mathrm{MHz}, 50 \mathrm{mVp}-\mathrm{p}$	-12	-10	-8	dB
Double noisecanceller characteristics (3)	$\mathrm{G}_{\mathrm{WNC}}{ }^{3}$	T25A	T35	$\mathrm{f}=1.4 \mathrm{MHz}, 15.8 \mathrm{mVp}-\mathrm{p}$	-15	-13	-11	dB
Sync separator output level	VSYP	T25A	T34	With $\mathrm{V}_{\text {IN }}$ being a 0.5 Vp -p video signal, measure the output pulse wave height on $T 34$.	4.0	4.2	4.4	Vp-p
Sync separator output pulse width	PWSYP	T25A	T34	With V_{IN} being a $0.5 \mathrm{~V} \mathrm{p}-\mathrm{p}$ video signal, measure the output pulse width on T34.	4.1	4.4	4.7	$\mu \mathrm{s}$
H-Sync output level	$\mathrm{VH}_{\text {SYP }}$	T25A	T33	With $\mathrm{V}_{\text {IN }}$ being a 0.5 V p-p video signal, measure the output pulse wave height on T33.	4.0	4.2	4.4	Vp-p
H-Sync output pulse width	$\mathrm{PWH}_{\text {SYP }}$	T41	T33	With $\mathrm{V}_{\text {IN }}$ being a 0.5 V p-p video signal, measure the output pulse width on T33.	4.4	4.7	5.0	$\mu \mathrm{s}$
Sync tip level Pedestal level White level	LVOR	T25A	T35	With $\mathrm{V}_{\text {IN }}$ being a 100% white $0.5 \mathrm{Vp}-\mathrm{p}$ signal, measure the sync tip and pedestal and white levels on T35 video output, and take these as LSYN, LPED, and LWHT, respectively.				
Quasi-V insertion level	$\Delta \mathrm{VDP}$	T25A	T35	Measure the T35 DC voltage with 4.0 V applied to T31, and take this as LVDP, and calculate the difference from LSYN measured above. $\triangle \mathrm{VDP}=\mathrm{LSYN}-\mathrm{LVDP}$	-100	0	100	mV
Quasi-H insertion level	$\Delta \mathrm{HDP}$	T25A	T35	Measure the T35 DC voltage with 3.0 V applied to T31, and take this as LHDP, and calculate the difference from LPED measured above. $\triangle H D P=\text { LPED-LHDP }$	-500	-400	-300	mV
White insertion level	$\Delta \mathrm{WHP}$	T25A	T35	Measure the T35 DC voltage with 2.0 V applied to T31, and take this as LWHP, and calculate the difference from LWHT measured above. Δ WHP = LWHT-LWHP	500	600	700	mV
Edge insertion level	$\Delta \mathrm{EGP}$	T25A	T35	Measure the T35 DC voltage with 1.2 V applied to T31, and take this as LEGP, and calculate the difference from LPED measured above. Δ WHP = LPED-LEGP	-500	-400	-300	mV
4V regulator	$V_{\text {REG }}$		T65	Measure the T65 DC level.	3.9	4.0	4.3	V

LA71076SM

PB mode EQ T72 = 5V

Parameter	Symbol	In	Out	Conditions	Ratings			Unit
					min	typ	max	
PB EQ characteristics 1 *Serial-control	GpEQ1	T28A	T23	With V_{IN} being a $\mathrm{CW} 4 \mathrm{MHz}, 300 \mathrm{mVp}$-p signal, measure the input / output response.	1.5	3.0	4.5	dB
PB EQ 2'nd distortion	HpEQ	T28A	T23	Measure the second harmonic in the above condition.		-40	-30	dB
PB EQ characteristics 2	GpEQ2	T28A	T23	With V_{IN} being a $\mathrm{CW} 4 \mathrm{MHz}, 300 \mathrm{mVp}$-p signal, measure the input / output response			-30	Vp-p
PB EQ Trap characteristics	$f_{p} E Q$	T28A	T23	With V_{IN} being a 300 mVp -p signal, measure high-band trap frequency and gain. (Using network analyzer)			-25	dB

PB mode S discrimination

Parameter	Symbol	In	Out	Conditions	Ratings			Unit
					min	typ	max	
Output voltage when normal VHS	$\mathrm{VN}_{\text {DET }} \mathrm{N}$	T74	T32	$\mathrm{V}_{\mathrm{IN}}=300 \mathrm{mVp}-\mathrm{pf}: 4 \mathrm{MHz}+3 \mathrm{VDC}$	0	0.2	0.5	V
Output voltage when S-VHS	$V S_{\text {DET }} \mathrm{S}$	T74	T32	$\mathrm{V}_{\text {IN }}=300 \mathrm{mVp}-\mathrm{p} \mathrm{f:} 6 \mathrm{MHz}+3 \mathrm{VDC}$	4.4	4.7	5.0	V
S-discrimination input level	$\mathrm{VS}_{\text {DET }}$	T74	T32	Input level at which no mis-discrmination occurs while changing T74 input level.	50			mVp-p
Normal-discrimination input level	VN ${ }_{\text {DET }}$	T74	T32	Input level at which no mis-discrmination occurs while changing T74 input level.	50			mVp-p
Normal \rightarrow S-discrimination threshold level	$\mathrm{FS}_{\text {DET }} \mathrm{NS}$	T74	T32	The frequency at which T 32 becomes H when the sine wave input to T 74 is increased from $\mathrm{f}=4 \mathrm{MHz}$.	5.5	6.0	6.5	MHz
$\mathrm{S} \rightarrow$ normal discrimination threshold level	$\mathrm{FS}_{\text {DET }} \mathrm{SN}$	T74	T32	The frequency at which T 32 becomes L when the sine wave input to T 74 is increased from $\mathrm{f}=5 \mathrm{MHz}$.	5.0	5.5	6.0	MHz

LA71076SM
REC mode chroma T16 $=5 \mathrm{~V}, \mathrm{~T} 11=5 \mathrm{~V}, \mathrm{~T} 55=0 \mathrm{~V}, \mathrm{~T} 59=0 \mathrm{~V}, \mathrm{~T} 72=5 \mathrm{~V}$

Parameter	Symbol	In	Out	Conditions		Ratings			Unit
						min	typ	max	
REC chroma low frequency conversion output level	VOR-66	T42A	T66	With $\mathrm{V}_{\text {IN }}$ being the standard color bar signal (1Vp-p), measure the burst level on T66.		600	750	900	mVp-p
Burst emphasis	GBE	T42A	T66	With $\mathrm{V}_{\text {IN }}$ being the standard color bar signal ($1 \mathrm{Vp}-\mathrm{p}$) calculate the ratio of the T 66 burst levels for $\mathrm{SP} / E \mathrm{P}(\mathrm{T} 59=0 \mathrm{~V} / 5 \mathrm{~V})$ and $\mathrm{LP}(\mathrm{T} 59=2.5 \mathrm{~V})$ modes.		5.5	6.0	6.5	dB
VXO oscillation level	$\mathrm{V}_{\mathrm{VXO}}$-RN	T42A	T62	With $\mathrm{V}_{\text {IN }}$ being the standard color bar signal (1Vp-p), measure the T62 output amplitude with an FET probe.		290	430	690	mVp-p
REC ACC characteristics (1)	$\mathrm{ACC}_{\mathrm{R}}{ }^{1}$	T42A	T66	With $\mathrm{V}_{\text {IN }}$ being the standard color bar signal (1Vp-p), increase only the chroma signal level by +6 dB , measure the T66 burst level, and calculate its ratio with VOR-66.			+0.2	+0.5	dB
REC ACC characteristics (2)	$\mathrm{ACC}_{\mathrm{R}}{ }^{2}$	T42A	T66	With $\mathrm{V}_{\text {IN }}$ being the standard color bar signal (1Vp-p), decrease only the chroma signal level by -6dB, measure the T66 burst level, and calculate its ratio with VOR-66.		-0.5	-0.1		dB
REC ACC killer-on input level	$\mathrm{V}_{\text {ACCK }}{ }^{-O N}$	T42A	T66	With $\mathrm{V}_{\text {IN }}$ being the standard color bar signal (1Vp-p), decrease the chroma signal and measure the input burst level at which T66 output ceases. Calculate the ratio of this value with the standard input level.			-26		dB
REC ACC killer-on output level	$\mathrm{V}_{0} \mathrm{ACCK}$	T42A	T66	Measure the T66 output level with a spectrum analyzer in the killer state of the above item and calculate its ratio with VOR-66.			-60	-50	dB
REC ACC killer restored input level	$\mathrm{V}_{\text {ACCK }}{ }^{-O F F}$	T42A	T66	From the killer state of the above item gradually increase the input chroma level and measure the input burst level at which T66 output reappears. Calculate its ratio with the standard input level.			-20		dB
REC APC pull-in range (1)	$\Delta^{\text {f }} \mathrm{APC}^{1}$	T42A	T66	Input a signal consisting of a 3.5795 MHz 300 mVp -p CW added to a 50% white signal. After confirming that a signal is output from T66, increase the CW frequency until T66 output ceases. Now slowly reduce the CW frequency, and determine f1 frequency at which T66 output reappears.$\Delta f^{A P C}{ }^{1}=\mathrm{f} 1-3579545(\mathrm{~Hz})$		350			Hz
REC APC pull-in range (2)	${ }^{\text {f }} \mathrm{APC}^{2}$	T42A	T66	As in the previous item, decrease the CW frequency until T66 output ceases. Now slowly increase the CW frequency and determine f2 frequency at which T66 output reappears. $\Delta \mathrm{f}_{\mathrm{APC}}{ }^{2}=\mathrm{f} 2-3579545(\mathrm{~Hz})$				-350	Hz
REC AFC pull-in range (1)	$\Delta^{\text {AFC }}{ }^{1}$	T42A	T60	Input a $300 \mathrm{mVp}-\mathrm{p}, 15.7 \mathrm{kHz}$, $5 \mu \mathrm{~s}$ width pulse train (negative polarity). After increasing the pulse train frequency until the T60 wave form is disrupted, decrease the frequency to determine the f1 pulse train frequency at which the T 60 wave form returns to normal. $\Delta \mathrm{f} \text { AFC1 }=\mathrm{f} 1-15.734(\mathrm{kHz})$		1.0			kHz
REC AFC pull-in range (2)	${ }^{\text {f }} \mathrm{AFC}^{2}$	T42A	T60	As in the previous item, decrease the pulse train frequency until the T60 wave form is disrupted, then increase the frequency to determine the f 2 pulse train frequency at which the T60 wave form returns to normal.$\Delta \mathrm{f}_{\mathrm{AFC}}{ }^{2}=\mathrm{f} 2-15.734(\mathrm{kHz})$				-1.0	kHz
The ratio of the REC chroma level and FM modulator output level	C/FM2	T42	T66	The ratio of 100% chroma's level which was converted to low band and FM modulator output level. $\mathrm{T} 72=0 \mathrm{~V}$	$\mathrm{T} 68=0 \mathrm{~V}$		8.0		dB
					$\mathrm{T} 68=2.5 \mathrm{~V}$		6.7		dB
					$\mathrm{T} 68=5 \mathrm{~V}$		5.3		dB

PB mode chroma T16 $=0 \mathrm{~V}, \mathrm{~T} 11=0 \mathrm{~V}, \mathrm{~T} 55=0 \mathrm{~V}, \mathrm{~T} 59=0 \mathrm{~V}, \mathrm{SW} 25=2$

Parameter	Symbol	In	Out	Conditions	Ratings			Unit
					min	typ	max	
PB chroma video output level	NVop-35	$\begin{aligned} & \text { T74A } \\ & \text { T25A } \end{aligned}$	T35	Apply a mixture of the SP mode chroma signal (SP mode, burst $100 \mathrm{mVp}-\mathrm{p}$) that was obtained by converting the T74A NTSC chroma noise test signal to the low band and the $4 \mathrm{MHz}, 300 \mathrm{mVp}-\mathrm{p}$ sine wave to T 74 through 3 V bias. Apply the 50% white signal ($321.5 \mathrm{mVp}-\mathrm{p}$) from T25A. Measure the T35A burst level.	510	600	690	mVp-p
PB chroma pin 72 output level	Vop-72	$\begin{aligned} & \text { T74A } \\ & \text { T25A } \end{aligned}$	T72	Measure the burst level with the same conditions as those for NVop-35.		200		mVp-p
PB ACC characteristics (1)	${ }^{\text {ACC }}{ }^{1} 1$	$\begin{aligned} & \text { T74A } \\ & \text { T41A } \end{aligned}$	T72	With the conditions used for NVop-35, increase the input chroma level by +6 dB , measure the burst level on T72, and calculate the ratio with Vop-72.		+0.5	+0.8	dB
PB ACC characteristics (2)	$A^{\prime} C_{P}{ }^{2}$	$\begin{aligned} & \text { T74A } \\ & \text { T25A } \end{aligned}$	T72	With the conditions used for NVop-35, decrease the input chroma level by -6dB, measure the burst level on T72, and calculate the ratio with Vop-72.	-0.5	-0.2		dB
PB killer-on input level	$\mathrm{V}_{\mathrm{ACK}^{-}}{ }^{\text {P }}$	$\begin{aligned} & \text { T74A } \\ & \text { T25A } \end{aligned}$	T72	With the conditions used for NVop-35, the input chroma level until output from T72 cease and measure the input burst level at that point. (Calculate the ratio with the standard input $100 \mathrm{mVp}-\mathrm{p}$ signal)			-25	dB
PB killer-on chroma output level	V ${ }_{\text {OACK-P }}$	$\begin{aligned} & \text { T74A } \\ & \text { T25A } \end{aligned}$	T35	Measure the T35A chroma output with a spectrum analyzer in the killer state of the previous item. Calculate its ratio with NVop-35.		-44	-40	dB
PB main converter carrier leakage	CLP	$\begin{aligned} & \text { T74A } \\ & \text { T25A } \end{aligned}$	T35	With the conditions used for NVop-35, measure the T58A with a spectrum analyzer, and calculate the ratio of the 3.58 MHz component and the 4.21 MHz carrier leakage component.		-40	-33	dB
Burst de-emphasis	GBD	$\begin{aligned} & \text { T74A } \\ & \text { T25A } \end{aligned}$	T72	Apply the mixture of the low-band chroma signal of 629 kHz , burst $100 \mathrm{mVp}-\mathrm{p}$, and chroma $125 \mathrm{mV} \mathrm{p}-\mathrm{p}$ and the sine wave of 4 MHz and $300 \mathrm{mVp}-\mathrm{p}$. Apply the 50\% white signal from T25A. Measure burst and chroma amplitudes of T72 and accume them as B and C respectively. $\text { GBD }=20 \operatorname{LOG}(125 \times B) /(100 \times C)$	-5.25	-5.00	-4.75	dB
PB XO output level	V_{XO}-PN		T62	Measure the output level on T62 with an FET probe.	230	380	600	mVp-p
PB XO oscillator frequency deviation	\triangle_{XOO}		T62	In PB mode, let f be the measured frequency on T62. $\Delta \mathrm{f}_{\mathrm{XO}} \mathrm{~N}=\mathrm{f}-3579545(\mathrm{~Hz})$	-7	0	+7	Hz
PB Chroma 2'Fsc distortion	$\mathrm{P}_{\text {THD }}{ }^{2}$	$\begin{aligned} & \text { T74A } \\ & \text { T25A } \end{aligned}$	T35	With the conditions used for NVOP-35, measure the T35 with a spectrum analyzer, and calculate the ratio of the 3.58 MHz component and the 7.16 MHz component.			-25	dB

LA71076SM
AUDIO REC mode $\mathrm{T} 55=0 \mathrm{~V}, \mathrm{~T} 59=0 \mathrm{~V}, \mathrm{~T} 17=5 \mathrm{~V}$

Parameter	Symbol	In	Out	Conditions	Ratings			Unit
					min	typ	max	
Voltage gain	V_{GR}	T98	T7	$V_{\text {IN }}=-20 \mathrm{dBV}$	13.5	14.0	14.5	dB
Distortion ratio	THD ${ }_{\text {R }}$	T98	T7	$V_{\text {IN }}=-20 \mathrm{dBV}$	0.01	0.1	0.4	\%
Maximum output voltage	$\mathrm{V}_{\mathrm{O}} \mathrm{MR}$	T98	T7		0.8	1.0	1.1	Vrms
Voltage conversion recording bias current	$\mathrm{V}_{\text {BIAS }}$		T6	SW99 = ON	270	300	330	mVrms
Recording bias current control voltage	$\mathrm{V}_{\text {CTL }}$		T6	SW99 = ON	2.9	3.2	3.5	V

AUDIO PB/EE mode T55 $=0 \mathrm{~V}, \mathrm{~T} 59=0 \mathrm{~V}, \mathrm{~T} 17=2.5 \mathrm{~V}$

Parameter	Symbol	In	Out	Conditions	Ratings			Unit
					min	typ	max	
LINE AMP Voltage gain (PB)	$\mathrm{V}_{\mathrm{GLP}}$	T100A	T96A	$\mathrm{V}_{\mathrm{IN}}=-30 \mathrm{dBV}$ T12 $=0 \mathrm{~V}, \mathrm{~T} 17=0 \mathrm{~V}$	22.5	23.0	23.5	dB
LINE AMP Voltage gain (A1)	$\mathrm{V}_{\mathrm{GLR}}$	T76A	T96A	$\mathrm{V}_{\mathrm{IN}}=-30 \mathrm{dBV}$ T12 $=0 \mathrm{~V}, \mathrm{~T} 17=2.5 \mathrm{~V}$	22.5	23.0	23.5	dB
LINE AMP Distortion ratio (PB)	THD ${ }_{\text {L }}$	T100A	T96A	$\mathrm{V}_{\mathrm{IN}}=-30 \mathrm{dBV}=0 \mathrm{~V}, \mathrm{~T} 17=0 \mathrm{~V}$	0.01	0.1	0.4	\%
LINE AMP Output noise voltage	$\mathrm{V}_{\mathrm{N}} \mathrm{OL}$		T96A	$\mathrm{Rg}=1 \mathrm{~K} \Omega$, DIN Audio filter $\mathrm{T} 12=0 \mathrm{~V}, \mathrm{~T} 17=0 \mathrm{~V}$ SW76 = 2	-80.0	-74.0	-70.5	dBV
LINE AMP Maximum output voltage	$\mathrm{V}_{\mathrm{O}} \mathrm{ML}$	T100A	T96A	$\mathrm{THD}=1 \% \mathrm{~T} 12=0 \mathrm{~V}, \mathrm{~T} 17=0 \mathrm{~V}$	0.8	1.0	1.1	dBV
LINE AMP Output voltage when ALC	$\mathrm{V}_{0} \mathrm{~A}$	T76A	T96A	$\mathrm{T} 76 \mathrm{~A}=-28 \mathrm{dBV}$ T12 $=0 \mathrm{~V}, \mathrm{~T} 17=2.5 \mathrm{~V}$	-7.0	-6.0	-5.0	dBV
LINE AMP Effect of ALC	ALC	T76A	T96A	$\mathrm{T} 76 \mathrm{~A}=-28$ to -8dBV $\mathrm{T} 12=0 \mathrm{~V}, \mathrm{~T} 17=2.5 \mathrm{~V}$	0.0	1.0	3.0	dB
LINE AMP Distortion ratio of when ALC	THDA	T76A	T96A	$\mathrm{T} 76 \mathrm{~A}=-28 \mathrm{dBV}$ T12 $=0 \mathrm{~V}, \mathrm{~T} 17=2.5 \mathrm{~V}$	0.01	0.1	0.5	\%
MUTE attenuation(PB, A1, A2, A3)	MPB $\mathrm{M}_{\mathrm{A} 1}$	T100A	T96A	T100A $=-10 \mathrm{dBV}$ T12 $=5 \mathrm{~V}, \mathrm{~T} 17=0 \mathrm{~V}$	80	90	120	dB
		T76A		T76A $=-10 \mathrm{dBV}$ T12 $=5 \mathrm{~V}, \mathrm{~T} 17=2.5 \mathrm{~V}$	80	90	120	dB
EQ AMP Open loop voltage gain	VGOE	T4A	T1	$\mathrm{V}_{\mathrm{IN}}=-66 \mathrm{dBV}$ T12 $=0 \mathrm{~V}, \mathrm{~T} 17=0 \mathrm{~V}, \mathrm{SW} 3=\mathrm{ON}$	58.0	64.0	70.0	dB
EQ AMP Input conversion noise voltage	$\mathrm{V}_{\text {NIE }}$		T1	$\mathrm{Rg}=620 \Omega$, DIN Audio filter $\mathrm{T} 12=0 \mathrm{~V}, \mathrm{~T} 17=0 \mathrm{~V}$	0.1	1.0	1.8	$\mu \mathrm{Vrms}$

LA71076SM
CCD block SW47 = 2, SW49 = 2

Parameter	Symbol	In	Out	Conditions	Ratings			Unit
					min	typ	max	
Voltage Gain	Gv	T49	T49A	T47:200kHz, 500 mVp -p SW49B=ON Ratio of level of T49A relative to T47A.	-1.5	0.5	2.5	dB
Frequency Response	Gf	$\begin{gathered} \mathrm{T} 47 \\ \mathrm{~T} 47 \mathrm{~B} \end{gathered}$	T49A	T47B: Adding 250 mV higher bias than pin 47 clamp level. Ratio of 3.58 MHz component toward to T49A 200 kHz .	-2	-1	0	dB
Deferential Gain	DG	T47	T49B	T47: Stair step signal (500 mVp -p)	0	5	8	\%
Deferential Phase	DP	T47	T49B	T47: Stair step signal (500 mVp -p)	0	5	8	deg
Linearity	LS	T47	T49B	T47: Stair step signal only for Y (500 mVp -p) V/S Ratio of T49B.	37	40	43	\%
Clock leakage	Lck		T49A	SW49B:ON 4fsc component of T49A		10	50	mVrms
Noise	N_{O}		T49A	SW49B:ON Measure T49A using a Video noise meter. Filter condition: HPF $=200 \mathrm{kHz}$, LPF $=4.2 \mathrm{MHz}$, TRAP $=3.58 \mathrm{MHz}$		1	2	mVrms
Output Impedance	Z_{O}	T47	T49A	T47:200kHz,500mVp-p, Assuming that the T49A amplitude under conditions of SW49B = ON/OFF is T49A (ON) and T49A (OFF) respectively, and calculate as follows: $z 0=\{\{\text { T49A(OFF)-T49A(ON) }\} / T 49 A(O N)\} \times 500 .$	80	230	480	Ω
Delay time	TD	T47	T49B	T47:100\% white (500 mVp -p) Calculate T49B delay time toward to T47 input. * Except for reversing Amp and delay time		63.35		$\mu \mathrm{S}$

Package Dimensions

unit: mm
3252A

Block Diagram and Sample Application Circuit

LA71076SM
Pin Functions

Continued on next page.

LA71076SM

\begin{tabular}{|c|c|c|c|c|}
\hline Pin No. \& Pin name \& DC voltage \& Signal wave form \& Input/Output form

\hline 10 \& NC CTL \& REC: 2.5 V

PB: 2.5 V \& DC \&

\hline 11 \& HA R/P CTL \& REC: 1 to 5 V

PB: 0 to 1 V \& $$
\begin{array}{ll}
5 \mathrm{~V}: & \text { REC } \\
2.5 \mathrm{~V}: & \text { R-MUTE } \\
0: & \text { PB }
\end{array}
$$ \&

\hline 12 \& | AUDIO |
| :--- |
| MUTE CTL | \& REC: 0/5V

PB: 0/5V \& MUTE $=5 \mathrm{~V}$ \&

\hline 13 \& RF_SW_IN \& REC: 0/1V

PB: 0/1V \& \&

\hline 14 \& C-ROT IN \& REC: 0/1V

PB: 0/1V \& \&

\hline 15 \& HA SW IN \& | REC: 0/1V |
| :--- |
| PB: 0/1V | \& \&

\hline
\end{tabular}

Continued on next page.

\begin{tabular}{|c|c|c|c|c|}
\hline Pin No. \& Pin name \& DC voltage \& Signal wave form \& Input/Output form \\
\hline 16 \& \begin{tabular}{l}
YC \\
R/P CTL
\end{tabular} \& REC: 5V

PB: 0V \& | 5 V : REC |
| :--- |
| OV: PB | \&

\hline 17 \& | AUDIO |
| :--- |
| R/P CTL | \& | REC: 5V |
| :--- |
| PB: OV | \& \[

$$
\begin{array}{ll}
5 \mathrm{~V}: & \mathrm{REC} \\
2.5 \mathrm{~V}: & \mathrm{EE} \\
\mathrm{VV}: & \mathrm{PB}
\end{array}
$$
\] \&

\hline 18 \& | COMB |
| :--- |
| THROUGH |
| CTL | \& | REC: 1.7 V |
| :--- |
| PB: 1.7V | \& \& | |
| :--- |
| OMP05271 |

\hline 19 \& DOC/XO CTL \& REC: $0 \mathrm{~V} / 5 \mathrm{~V}$

PB: $0 \mathrm{~V} / 5 \mathrm{~V}$ \& | 5V: XO MODE OV: NORMAL |
| :--- |
| 5V: DOC OFF OV: DOC AUTO | \&

\hline 20 \& FM FILT \& | REC: 1.8 V |
| :--- |
| PB: 1.8V | \& DC \&

\hline 21 \& Y-V ${ }_{\text {CC }}$ \& 5 V \& V_{CC} \&

\hline 22 \& \[
$$
\begin{aligned}
& \text { PHASE EQ } \\
& \text { Q-CTL }
\end{aligned}
$$

\] \& | REC: 1.0V |
| :--- |
| PB: 1.0V | \& DC \&

\hline
\end{tabular}

Continued on next page.

LA71076SM

Continued from preceding page.				
Pin No.	Pin name	DC voltage	Signal wave form	Input/Output form
23	CTL-AMP OUT	REC: 2.5 V PB: 2.5V		
24	MAIN- EMPHA FILT	REC: 2.1 V PB: 2.1V		
25	CLAMP-IN	REC: 2.8 V PB: 2.8V		
26	MAIN DEEMPHA -OUT1	REC: 2.1 V PB: 2.1V		
27	Y-GND	OV	GND	
28	MAIN DEEMPHA -OUT2	REC: 2.1V PB: 2.1V		

Continued on next page.

LA71076SM

Continued from preceding page.				
Pin No.	Pin name	DC voltage	Signal wave form	Input/Output form
29	PHASE EQ $\mathrm{F}_{0} \mathrm{CTL}$	REC: 1.0 V PB: 1.0V	DC	
30	TRICK /CG CTL	REC PB	5V: CG OFF OV: CG ON 5V: TRICK OV: NORMAL PB	
31	QV/QH-INS	REC: 0 to 5 V PB: 0 to 5 V	OV : Through 1.0V: 20IRE INS 2.0V: 6OIRE INS 3.0V: QH INS V_{CC} : QV INS	
32	S-DET OUT	REC: 0 V PB: $4.2 / 0.2 \mathrm{~V}$	DC DC SVHS: 4.2V VHS: 0.2 V	
33	H-SYNC OUT	REC: OV PB: OV		
34	C.SYNC OUT	REC: PB:		

Continued on next page.

LA71076SM

Continued from preceding page.				
Pin No.	Pin name	DC voltage	Signal wave form	Input/Output form
35	VIDEO-OUT	REC: 0.8 V		
36	EQ CTL	REC: 1.0 V PB: 1.0 V	DC	
37	AGC TC2	REC: 2.0 V PB: 2.0 V	DC DC	
38	VIDEO-IN3	REC: 1.8 V PB: 1.8 V		
39	AFC2-FILT	REC: 3.5 V PB: 3.5V		

Continued on next page.

LA71076SM

Pin No.	Pin name	DC voltage	Signal wave form	Input/Output form
P40	VIDEO-IN2	REC: 1.8 V PB: 1.8 V		
P41	SYNC DET FILT	REC 4.9V NO-SIG: 0.3V PB: 4.9V NO-SIG: 0.3V	DC	
P42	VIDEO-IN1	REC: 1.8 V PB: 1.8V		
P43	VCA-FILT (Phase)	REC: 2.8 V PB : 2.8V	DC	
P44	VCA-IN	REC: 2.7 V PB: 2.7V		

Continued on next page.

Pin No.	Pin name	DC voltage	Signal wave form	Input/Output form
45	VCA- FILT(Gain)	REC: 2.9 V PB: 2.9 V	DC	
46	CCD-DRIVE	REC: 1.9V PB: 1.9V		
47	CCD INPUT	REC: PB:		
48	CCD-V ${ }_{\text {SS }}$	OV	$\mathrm{V}_{\text {SS }}$	
49	DELEY OUT	REC: PB:		OMP05309
50	CCD-V ${ }_{\text {SS }}$	OV	$\mathrm{V}_{S S}$	
51	CLOCK IN	REC: PB:		(51)
52	VCO FILT	REC: 2.5 V PB: 2.5 V	DC	OMP05312

Continued on next page.

LA71076SM

Pin No.	Pin name	DC voltage	Signal wave form	Input/Output form
53	4FSC OUT	REC: 1.5 V		
54	CCD-V ${ }_{\text {DD }}$	5 V	$V_{\text {DD }}$	
55	VIDEO INPUT CTL	REC: 2.5V PB: 2.5 V	0 to $1 \mathrm{~V}:$ VIDEO1 2 to $3 \mathrm{~V}:$ VIDEO2 4 to $\mathrm{V}_{\mathrm{CC}}:$ VIDEO3	
56	$\mathrm{C}-\mathrm{V}_{\mathrm{Cc}}$	5 V	V_{CC}	
57	ALWAYS V_{CC}	5 V	V_{CC}	
58	SLD-FILT	REC: PB:	DC DC	
59	SP/LP/EP	REC: $5 \mathrm{~V}:$ EP OPEN: LP OV: SP PB: $5 \mathrm{~V}:$ EP OPEN: LP OV: SP		

Continued on next page.

LA71076SM

Continued from preceding page.				
Pin No.	Pin name	DC voltage	Signal wave form	Input/Output form
60	AFC/APC-FILT	REC: PB:		
61	XO IN	REC: 4.0V PB: 4.0V		
62	XO OUT			
63	REC APC-FILT	REC: 1.8 V PB: 1.8 V	DC	

Continued on next page.

Continued from preceding page.				
Pin No.	Pin name	DC voltage	Signal wave form	Input/Output form
64	AGC-TC1 /BALANCER	REC: 1.9 V PB: 2.3V	DC DC	
65	REG4.0V	REC: 4.0V PB: 4.0V		OMP05328
66	REQ monitor	REC: 1.7 V PB:	$300 \mathrm{mVp}-\mathrm{p}$ DC	
67	C-GND	OV	GND	
68	REC-C-CTL	REC: 2.3 V PB: 2.3V	REC-C-LEVEL 0 to 1.0 V : 270 mV p -p 1.8 to $2.7 \mathrm{~V}: 320 \mathrm{mVp}-\mathrm{p}$ 3.5 to $5.0 \mathrm{~V}: 380 \mathrm{mVp}-\mathrm{p}$	
69	KIL FILT	REC: PB: 1.8V		

Continued on next page.

Continued from preceding page.				
Pin No.	Pin name	DC voltage	Signal wave form	Input/Output form
70	ACC FILT	REC: 1.8 V PB: 1.8 V	DC	
71	REC CURRENT-2	REC: 2.25 PB: 2.25	DC	
72	PB C MONI	REC: 2.5 V PB: 2.5V	$150 \mathrm{mVp}-\mathrm{p}$	OMP05335
73	REC CURRENT-1	REC: 2.25 PB: 2.25	DC	
74	HA monitor	REC: - PB: 2.0V	$\text { FM } 300 \mathrm{mVp} \mathrm{p}-\mathrm{p}$	
75	AUDIO V_{CC}	5.0 V	V_{CC}	
76	AUDIO IN-1	REC: 3V PB: 3V	CW 95mVp-p CW 95mVp-p	

Continued on next page.

LA71076SM

Continue	om preceding			
Pin No.	Pin name	DC voltage	Signal wave form	Input/Output form
77	ALC DET	REC PB: 0 V	DC	
78	AUDIO IN-2	REC: 3V PB: 3V	CW 95mVp-p	
79	VREF	REC: 2.3 V PB: 2.3 V	DC	
80	AUDIO IN-3	REC: 3V PB: 3V	CW 95mVp-p	
81	HEAD AMP GND	OV	GND	
82	PBEPL+	REC: 4.1V PB: 1.8V		
83	PBEPL-	REC: 4.1V PB: 1.8V	$\begin{aligned} & \text { SP } 13 \mathrm{mAp}-\mathrm{p} \\ & \text { EP } 10 \mathrm{mAp}-\mathrm{p} \end{aligned}$ $\text { FM 0.5mVp-p } \bigcap \int=$	

LA71076SM

Continued from preceding page.				
Pin No.	Pin name	DC voltage	Signal wave form	Input/Output form
84	PBEPH-	REC: 4.1 V PB: 1.8 V	SP 13mAp-p EP 10mAp-p FM 0.5mVp-p	OMP05347
85	PBEPH+	REC: 4.1V PB: 1.8V	FM 0.5mVp-p	
86	HEAD AMP GND	OV	GND	
87	HEAD AMP V_{CC}	5 V	V_{CC}	
88	PBSPL+	REC: 4.1V PB: 1.8V	$\begin{aligned} & \text { FM 0.5mVp-p } \\ & \text { ? } \end{aligned}$	
89	PBSPL-	REC PB:	SP 13mAp-p EP 10mAp-p FM 0.5mVp-p	

Continued on next page.

LA71076SM

Continued from preceding page.				
Pin No.	Pin name	DC voltage	Signal wave form	Input/Output form
90	PBSPH-	REC	$\begin{aligned} & \text { SP 13mAp-p } \\ & \text { EP 10mAp-p } \end{aligned}$	
91	PBSPH+	REC: 4.1V PB: 1.8V	FM 0.5mVp-p	
92	AGC FILT	REC: 1.6 V PB: -	DC	
93	ENV DET OUT	REC PB 0.5 to 4.8 V	DC	
94	COMP OUT	REC: 0.7 V PB: - TRICK PB: 0.5V/4.5V	DC TRICK MODE HA SW OUT	

Continued on next page.

LA71076SM

\begin{tabular}{|c|c|c|c|c|}
\hline Pin No. \& Pin name \& DC voltage \& Signal wave form \& Input/Output form \\
\hline 95 \& AUDIO GND \& OV \& GND \& \\
\hline 96 \& \begin{tabular}{l}
AUDIO \\
LINE OUT
\end{tabular} \& REC: 2.3 V

PB: 2.3 V \& CW 1.4Vp-p
CW 1.4Vpp \&

\hline 97 \& ALC DET IN \& REC: OV
PB: OV \& CW 600mVp-p
GND \& OMP05357

\hline 98 \& AUDIO REC IN \& | REC: 0V |
| :--- |
| PB: OV | \& CW 280mVp-p

GND \&

\hline 99 \& AUTO BIAS OUT \& | REC: 4.3V |
| :--- |
| PB: 5V | \& DC \&

\hline 100 \& AUDIO PB IN \& | REC: 2.3 V |
| :--- |
| PB: 2.3V | \& Half-wave rectified wave form (70 kHz)

CW 95mVp-p \&

\hline
\end{tabular}

Function Control Table

Pin No.	Function	L (to 0.5V)				H (4.0V to)	
12	AUDIO MUTE	OFF				ON	
19	REC: XO MODE	NORMAL				XO MODE	
	PB: DOC OFF	DOC AUTO				DOC OFF	
30	PB: TRICK	NORMAL				TRICK	
	REC: COPY GUARD	ON				OFF	
Pin No.	Function	L (to 0.5V)				H (1.0V to)	
13	RF SW PULSE	L				H	
14	C ROT PULSE	L				H	
15	HA PULSE	L				H	
Pin No.	Function	to 0.7V	1.1 V to 3.3 V		1.7 V to 2.3 V	2.7V to 3.3 V	3.7 V to
31	CHARACTER INSERT	THROUGH	$\begin{aligned} & \text { EDGH } \\ & 25 I R E \end{aligned}$		CHARA 4OIRE	$\begin{gathered} \mathrm{QH} \\ 25 \mathrm{IRE} \end{gathered}$	QV SYNC
Pin No.	Function	L (to 0.5V)		M (2.0 to 2.8V OR OPEN)		H (3.6V to)	
16	REC/EE/PB (Y/C)	PB		REC			
17	REC/EE/PB (Audio)	PB		EE		REC	
55	INPUT SELECT	IN-1		IN-2		IN-3	
59	TAPE SPEED	SP		LP		EP	
68	REC C-LEVEL	+1.5dB		STANDARD		-1.5dB	
71	REC: REC-CURRENT-2	LOW		STANDARD		MAX	
73	REC: REC-CURRENT-1	LOW		STANDARD		MAX	
10	NC CTL	MAX		STANDARD		LOW	
Pin No.	Function	L (to 0.5V)				OPEN OR H (4.0V to)	
18	COMB THROUGH CONTROL	KIL+SP-REC-NO-CORR				KIL+SP-REC	
Pin No.	Function	L (to 0.5V)				H (4.0V to)	
8	REC-I ARRANGEMENT	SP-CURRENT MORE				SP/EP SAME CURRENT	
Pin No.	Function	L (to 0.5 V)		M (2.5V)		H (4.0V to)	
11	REC/PAUSE/PB (Head Amp)	PB		REC PAUSE		REC	

Test Mode Control

Pin No.	Function	
22	Phase EQ Q adjust/Y-test	PULL-UP = Y-test
23	EQ monitor/R-EQ slope control	PULL-UP = REC EQ slope is changes to slant
29	Phase EQ F0 adjust/F-test	PULL-UP = F-test
36	PB EQ Low side band CTL/REC EQ in	REC EQ external signal: input with bias (3.5V)
66	REC ENV monitor/Head Amp in	Head Amp external signal: input with bias (3.5V)
72	PB-C monitor/FM Mute \& Child Lock ISync Slice Level	PULL-UP = REC: FM mute at pin66 R/P pin23 changes to TEST mode Child Lock mode
		additional resistor to GND: Sync Slice Level changes to Pedestal side.
74	PB Head Amp monitor/ENV in	External ENV signal: input with bias (3.5V)

Test Circuits

- Specifications of any and all SANYO Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
\square SANYO Semiconductor Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
$■$ In the event that any or all SANYO Semiconductor products (including technical data,services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
\square No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Semiconductor Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of February, 2006. Specifications and information herein are subject to change without notice.

