C4D20120A-Silicon Carbide Schottky Diode Z-REC ${ }^{\text {tm }}$ Rectifier

$$
\begin{aligned}
& \mathbf{V}_{\mathbf{R R M}}=1200 \mathrm{~V} \\
& \mathbf{I}_{\mathbf{F}}=20 \mathrm{~A} \\
& \mathbf{Q}_{\mathbf{c}}=130 \mathrm{nC}
\end{aligned}
$$

Features

- 1.2 kV Schottky Rectifier
- Zero Reverse Recovery Current
- High-Frequency Operation
- Temperature-Independent Switching
- Extremely Fast Swtitching

Benefits

- Replace Bipolar with Unipolar Rectifiers
- Essentially No Switching Losses
- Higher Efficiency
- Reduction of Heat Sink Requirements
- Parallel Devices Without Thermal Runaway

Applications

- Switch Mode Power Supplies
- Power Factor Correction
- Motor Drives

Package

TO-220-2

Part Number	Package	Marking
C4D20120A	TO-220-2	C4D20120

Maximum Ratings ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Value	Unit	Test Conditions	Note
$\mathrm{V}_{\text {RRM }}$	Repetitive Peak Reverse Voltage	1200	V		
$\mathrm{V}_{\text {RSM }}$	Surge Peak Reverse Voltage	1300	V		
$V_{\text {R }}$	DC Peak Reverse Voltage	1200	V		
$\mathrm{I}_{\text {(AVG) }}$	Maximum DC Current	27	A	$\mathrm{T}_{\mathrm{C}}=135^{\circ} \mathrm{C}$, no AC component	
$\mathrm{I}_{\text {FRM }}$	Repetitive Peak Forward Surge Current	$\begin{aligned} & 91 \\ & 61 \end{aligned}$	A	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}$, Half Sine Pulse $\mathrm{T}_{\mathrm{c}}=110^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}$, Half Sine Pulse	
$\mathrm{I}_{\text {fSM }}$	Non-Repetitive Forward Surge Current	$\begin{aligned} & 130 \\ & 110 \end{aligned}$	A	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}$, Half Sine Pulse $\mathrm{T}_{\mathrm{C}}=110^{\circ} \mathrm{C}$, $\mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}$, Half Sine Pulse	
$\mathrm{P}_{\text {tot }}$	Power Dissipation	$\begin{aligned} & 242 \\ & 104 \end{aligned}$	W	$\begin{aligned} & \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{C}}=110^{\circ} \mathrm{C} \end{aligned}$	
T ${ }_{\text {c }}$	Maximum Case Temperature	135	${ }^{\circ} \mathrm{C}$		
T	Operating Junction Range	$\begin{aligned} & -55 \text { to } \\ & +175 \end{aligned}$	${ }^{\circ} \mathrm{C}$		
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	$\begin{aligned} & -55 \text { to } \\ & +135 \end{aligned}$	${ }^{\circ} \mathrm{C}$		
	TO-220 Mounting Torque	$\begin{gathered} 1 \\ 8.8 \end{gathered}$	$\stackrel{\mathrm{Nm}}{\text { lbf-in }}$	M3 Screw 6-32 Screw	

Electrical Characteristics

Symbol	Parameter	Typ.	Max.	Unit	Test Conditions	Note
V_{F}	Forward Voltage	$\begin{aligned} & 1.5 \\ & 2.2 \end{aligned}$	$\begin{gathered} 1.8 \\ 3 \end{gathered}$	V	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=20 \mathrm{~A} \\ & \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{F}}=20 \mathrm{~A} \\ & \mathrm{~T}_{\mathrm{J}}=175^{\circ} \mathrm{C} \end{aligned}$	
I_{R}	Reverse Current	$\begin{aligned} & 35 \\ & 65 \end{aligned}$	$\begin{aligned} & 200 \\ & 400 \end{aligned}$	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{R}}=1200 \vee \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{R}}=1200 \vee \mathrm{~T}_{\mathrm{J}}=175^{\circ} \mathrm{C} \end{aligned}$	
Q_{C}	Total Capacitive Charge	130		nC	$\begin{aligned} & \mathrm{V}_{\mathrm{R}}=1200 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=20 \mathrm{~A} \\ & \mathrm{~d} / / \mathrm{d} t=200 \mathrm{~A} / \mu \mathrm{s} \\ & \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \end{aligned}$	
C	Total Capacitance	$\begin{gathered} 1500 \\ 93 \\ 67 \end{gathered}$		pF	$\begin{aligned} & V_{R}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{R}}=400 \mathrm{~V}_{1} \mathrm{~T}_{\mathrm{J}}=25^{\circ}{ }^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{R}}=800 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	

Note:

1. This is a majority carrier diode, so there is no reverse recovery charge.

Thermal Characteristics

Symbol	Parameter	Typ.	Max.	Unit	Test Conditions	Note
$\mathrm{R}_{\text {өлс }}$	Thermal Resistance from Junction to Case	0.62		${ }^{\circ} \mathrm{C} / \mathrm{W}$		

Typical Performance

Figure 1. Forward Characteristics

Figure 2. Reverse Characteristics

Typical Performance

Figure 3. Current Derating

Figure 5. Recovery Charge vs. Reverse Voltage

Figure 4. Power Derating

Figure 6. Capacitance vs. Reverse Voltage

Figure 7. Transient Thermal Impedance

$$
\begin{gathered}
\mathrm{V}_{\mathrm{fT}}=\mathrm{V}_{\mathrm{T}}+\mathrm{If} * \mathrm{R}_{\mathrm{T}} \\
\mathrm{~V}_{\mathrm{T}}=0.97+\left(\mathrm{T}_{3} *-1.40 * 10^{-3}\right) \\
\mathrm{R}_{\mathrm{T}}=0.023+\left(\mathrm{T}_{3} * 2.71 * 10^{-4}\right)
\end{gathered}
$$

Note: $\mathbf{T}_{\mathbf{j}}=$ Diode Junction Temperature In Degrees Celsius

Package Dimensions

Package TO-220-2

	POS	Inches		Millimeters	
		Min	Max	Min	Max
	A	. 381	. 410	9.677	10.414
	B	. 235	. 255	5.969	6.477
	C	. 100	. 120	2.540	3.048
	D	. 223	. 337	5.664	8.560
	E	. 590	. 615	14.986	15.621
	F	. 143	. 153	3.632	3.886
	G	1.105	1.147	28.067	29.134
	H	. 500	. 550	12.700	13.970
	J	R 0.197		R 0.197	
	L	. 025	. 036	. 635	. 914
	M	. 045	. 055	1.143	1.397
	N	. 195	. 205	4.953	5.207
	P	. 165	. 185	4.191	4.699
	Q	. 048	. 054	1.219	1.372
	S	3°	6°	3°	6°
	T	3°	6°	3°	6°
	U	3°	6°	3°	6°
	V	. 094	. 110	2.388	2.794
	W	. 014	. 025	. 356	. 635
	X	3°	$5.5{ }^{\circ}$	3°	$5.5{ }^{\circ}$
	Y	. 385	. 410	9.779	10.414
	Z	. 130	. 150	3.302	3.810

NOTE:

1. Dimension L, M, W apply for Solder Dip Finish

Recommended Solder Pad Layout

TO-220-2

Part Number	Package	Marking
C4D20120A	TO-220-2	C4D20120

"The levels of environmentally sensitive, persistent biologically toxic (PBT), persistent organic pollutants (POP), or otherwise restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2002/95/EC on the restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS), as amended through April 21, 2006."

