LVDS Interface ICs

4bit LVDS Transceiver

BU90LV049

Description

LVDS Interface IC of ROHM "Serializer" "Deserializer" operate from 8MHz to 150MHz wide clock range, and number of bits range is from 35 to 70. Data is transmitted seven times (7X) stream and reduce cable number by 3(1/3) or less. The ROHM's LVDS has low swing mode to be able to expect further low EMI. Driver and Receiver of 4 bits operate to 250MHz. It can be used for a variety of purposes, home appliances such as LCD-TV, business machines such as decoders, instruments, and medical equipment.

Features

>500 Mbps (250 MHz) switching rates

■Flow-through pinout simplifies PCB layout.

- ■400 ps typical driver channel-to-channel skew
- ■150 ps typical receiver channel-to-channel skew

■3.3V single power supply design

 $\blacksquare \pm 200 \text{mV}$ and $\pm 350 \text{mV}$ selectable differential signaling (driver)

- ■6mA and 8mA selectable output drive strength (receiver)
- ■3-STATE output control

■Internal fail-safe biasing of receiver inputs

■High impedance on LVDS outputs on power down

Conforms to TIA/EIA-644-A LVDS Standard

■Industrial operating temperature range (-40°C to +85°C)

Applications

Car Navigation System Copier Digital TV (Signal System) FA equipment Medical equipment Vending machine, Ticket vending machine

Precaution

This chip is not designed to protect from radioactivity.

Block Diagram

Figure 1. Block Diagram

SSOP-B16 Package Outline and Specification

(UNIT : mm)

Figure 2. SSOP-B16 Package Outline and Specification

Figure 3. Pin Diagram (Top View)

•Pin Description

Pin Name	Pin No.	Туре	Descriptions
DIN	10, 11	LVCMOS In	Driver input pin, LVCMOS levels.
DOUT+	6, 7	LVDS Out	Non-inverting driver output pin, LVDS levels.
DOUT-	5, 8	LVDS Out	Inverting driver output pin, LVDS levels.
RIN+	2, 3	LVDS In	Non-inverting receiver input pin, LVDS levels.
RIN-	1, 4	LVDS In	Inverting receiver input pin, LVDS levels.
ROUT	14, 15	LVCMOS Out	Receiver output pin, LVCMOS levels.
SL	9	LVCMOS In	Drive strength and Swing Level select pin : When SL is low or open, Rout set 8mA mode and the driver is normal swing level (350mV). When SL is high, Rout set 6mA mode and the driver is reduce swing level (200mV).
EN	16	LVCMOS In	Enable pin: When EN is Low or open, the receiver and driver are disabled. When EN is high, the receiver and driver are enabled.
VCC	12	Power	Power supply pin, +3.3V±0.3V.
GND	13	GND	Ground pin.

Table 1 : Pin Description

•Function Description

Driver Truth Table

		INPUT	OUTPUTS		Service of Lancel	
EN	SL	DIN DOUT+ DO		Dout-	Swing Level	
Ц	L or Open	L	L	Н	250ma\/	
п		Н	Н	L	330m v	
Ц	н	L	L	Н	200>/	
п		Н	Н	L	200m v	
All other combinations of EN, SL inputs		х	Z	Z		

■Receiver Truth Table

		INPUT	OUTPUTS	Drive
EN	SL	$R_{IN+} - R_{IN-}$	R _{out}	Strength
		$VID \ge 0V$	Н	
		$VID \le -0.1V$	L	
Н	L or Open	Full Fail-safe		8mA
		OPEN/SHORT	Н	
		or Terminated		
		$VID \ge 0V$	Н	
		$VID \leq -0.1V$	L	
н н		Full Fail-safe		6mA
		OPEN/SHORT	Н	
		or Terminated		
All other combinations of		x	7	
EN, SL inputs		~	2	

Absolute Maximum Ratings

ltom	Sympol	Valı	ا ا ما ا		
Item	Symbol	Min.	Max.	Unit	
Supply voltage	V _{cc}	-0.3	4.0	V	
Input voltage	V _{IN}	-0.3	V _{cc} +0.3	V	
Output voltage	V _{OUT}	-0.3	V _{cc} +0.3	V	
Storage temperature range	Tstg	-55	150	°C	

Package Power

Package	PD(mW)	DERATING(mW/℃) ※1
	400	4.0
SSOP-B16	450 ^{*2}	4.5 ^{*2}

%1 At temperature Ta $> 25^{\circ}$ C

&2 Package power when mounting on the PCB board.

The size of PCB board $:70 \times 70 \times 1.6 \text{ (mm}^3)$

The material of PCB board : The FR4 glass epoxy board.(3% or less copper foil area)

Recommended Operating Conditions

Itom	Sumbal	Value			Linit	Condition	
item	Symbol	Min.	Тур.	Max.	Onit	Condition	
Supply voltage	Vcc	3.0	3.3	3.6	V		
Operating temperature range	Topr	-40	25	85	°C		

•DC Characteristics

Symbol	Parameter	Conditions	Pin	Min	Тур	Max	Units
LVCMOS Input DC Specification (Driver Inputs, ENABLE Pins)							
V _{IH}	Input High Voltage			$V_{\rm cc} \times 0.8$	-	V _{cc}	V
V _{IL}	Input Low Voltage			GND	-	$V_{\rm cc} \times 0.2$	V
I	Input Current	$V_{IN} = 0V$ or V_{CC}	EN SL	-10	-	+10	μA
V _{CL}	Input Clamp Voltage	V _{cL} = −18mA		-1.5	-0.8	-	V
LVDS O	utput DC Specification (Driver Out	tput)					
	Differential Output Voltage	SL= GND, R = 100Ω (Figure 4)		250	350	450	mV
	Differential Output Voltage	SL= V_{CC} , R_1 = 100 Ω (Figure 4)	D _{OUT+}	120	200	300	mV
ΔV_{OD}	Change in Magnitude of V _{oD} for Complementary Output States			_	1	35	mV
V _{os}	Offset Voltage	$SL = V_{CC}$ or GND , P = 100 Q (Figure 4)		1.125	1.25	1.375	V
ΔV_{os}	Change in Magnitude of Vos for Complementary Output States			-	1	25	mV
I _{os}	Output Short Circuit Current	ENABLED, $D_{IN} = V_{CC}, D_{OUT+} = 0V \text{ or}$ $D_{IN} = GND, D_{OUT-} = 0V$		_	-5.4	-9.0	mA
I _{osd}	Differential Output Short Circuit Current	ENABLED, V _{OD} = 0V		_	-5.4	-9.0	mA
I _{oz}	Output 3-STATE Current	EN = 0V and SL = V _{CC} V _{OUT} = 0V or V _{CC}		-10	1	+10	μA
LVDS In	put DC Specification (Receiver Inp	outs)					
V_{TH}	Differential Input High Threshold	V _{CM} = 1.2V, 0.05V, 2.35V	R _{IN⁺}	-	-	100	mV
V _{TL}	Differential Input Low Threshold		R_{IN-}	-100	-	-	mV
V _{CMR}	Common-Mode Voltage Range	V_{ID} = 200mV pk to pk		0.1	_	2.3	V
I _{IN}	Input Current	V _{IN} = 0 or Vcc		-20	-	+20	μA
LVCMOS	S Output DC Specification (Receiv	er Outputs)					
V _{OH1}	Output High Voltage	I _{oH} = —8 mA, V _{ID} = +200 mV, SL=GND		V _{cc} - 0.4	-	-	V
$V_{\rm OH2}$	Output High Voltage	$I_{OH} = -6 \text{ mA}, V_{ID} = +200 \text{ mV},$ SL = V _{CC}		V _{cc} - 0.4	-	-	
V _{OL1}	Output Low Voltage	I _{oL} = 8 mA, V _{ID} = ─200 mV, SL=GND	R _{out}	-	_	0.4	V
V _{OL2}	Output Low Voltage	I_{OL} = 6 mA, V_{ID} = -200 mV, SL = V_{CC}		-	-	0.4	
I _{oz}	Output 3-STATE Current	Disabled, V _{out} = 0V or V _{cc}		-10	1	+10	μA
General	DC Specifications						
I _{CC}	Power Supply Current	EN = Vcc and SL = 0V	V	-	12	-	mA
I _{CCZ}	TRI-State Supply Current	EN = 0V and SL = 0V	• cc	-	2	-	mA

Switching Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Units
LVDS Outputs (Driver Outputs)						
t _{PHLD}	Differential Propagation Delay High to Low	$R_L = 100 \Omega$, $C_L = 15 pF$	0.5	1.7	2.8	ns
t _{PLHD}	Differential Propagation Delay Low to High	(Figure 5 and Figure 6)	0.5	1.7	2.8	ns
t _{sKD1}	Differential Pulse Skew t _{PHLD} - t _{PLHD}		0	0.3	0.4	ns
t _{SKD2}	Differential Channel-to-Channel Skew		0	0.4	0.5	ns
t _{sKD3}	Differential Part to Part Skew		0	-	1.0	ns
t _{TLH}	Rise Time		-	0.5	1.5	ns
t _{THL}	Fall Time		-	0.5	1.5	ns
t _{PHZ}	Disable Time High to Z	$R_L = 100 \Omega$, $C_L = 15 pF$	-	2	5	ns
t _{PLZ}	Disable Time Low to Z	(Figure 7 and Figure8)	-	2	5	ns
t _{PZH}	Enable Time Z to High		-	3	7	ns
t _{PZL}	Enable Time Z to Low		-	3	7	ns
f _{Max}	Maximum Operating Frequency		250	-	-	MHz
LVCMOS	Outputs (Receiver Outputs)					
t _{PHL}	Propagation Delay High to Low	$C_L = 15pF$ $V_{1D} = 200mV$	1.2	2.0	3.7	ns
t _{PLH}	Propagation Delay Low to High	(Figure 9 and Figure 10)	1.2	1.9	3.7	ns
t _{sK1}	Pulse Skew t _{PHLD} - t _{PLHD}		0	0.1	0.4	ns
t _{sk2}	Channel-to-Channel Skew		0	0.15	0.5	ns
t _{sK3}	Part to Part Skew		-	-	1.0	ns
t _{TLH}	Rise Time		-	0.5	1.5	ns
t _{THL}	Fall Time		-	0.5	1.5	ns
t _{PHZ}	Disable Time High to Z	$R_L = 2k \Omega$	-	8	14	ns
t _{PLZ}	Disable Time Low to Z	С _L = 15рF	-	8	14	ns
t _{PZH}	Enable Time Z to High	(Figure 11 and Figure 12)	-	3	14	ns
t _{PZL}	Enable Time Z to Low	7	-	9	14	ns
f _{Max}	Maximum Operating Frequency		250	-	-	MHz

• Parameter Measurement Information

Figure 4. Driver VOD and VOS Test Circuit

Figure 5. Driver Propagation Delay and Transition Time Test Circuit

Figure 6. Driver Propagation Delay and Transition Time Waveforms

Figure 8. Driver 3-STATE Delay Waveform

Figure 9. Receiver Propagation Delay and Transition Time Test Circuit

Figure 10. Receiver Propagation Delay and Transition Time Waveforms

Figure 11. Receiver 3-STATE Delay Test Circuit

Figure 12. Receiver 3-STATE Delay Waveforms

Figure 14. Driver Output Levels

The contents described herein are subject to change without notice. For updates of the latest information, please contact and confirm with ROHM CO. LTD.

Any part of this application note must not be duplicated or copied without our permission.

Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set.

Any data, including, but not limited to application circuit diagrams and information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.

• Upon the sale of any such devices, other than for buyer's right to use such devices itself, resel or otherwise dispose of the same, implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by ROHM CO., LTD. is granted to any such buyer.

The products described herein utilize silicon as the main material.
 The products described herein are not designed to be X ray proof.

The products listed in this catalog are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

Contact us for further information about the products.

Denver Detroit

France

Denmark

Nashville

ROHM CO., LTD.

21, Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan TEL: +81-75-311-2121 FAX: +81-75-315-0172

URL http://www.rohm.com	Russia Seoul
Published by	Masan Dalian
LSI Business Promotion Dept.	Beijing Tianjin

San Diego Atlanta Boston Chicago Dallas FAX: +1-858-625-3670 FAX: +1-958-625-3670 FAX: +1-928-438-7164 FAX: +1-847-368-1008 FAX: +1-469-362-7973 FAX: +1-469-362-7973 FAX: +1-248-348-9942 FAX: +1-248-348-9942 FAX: +1-55-820-6702 TEL: +1-858-625-3630 TEL: +1-858-625-3630 TEL: +1-770-754-5972 TEL: +1-978-371-0382 TEL: +1-847-368-1006 TEL: +1-469-287-5366 TEL: +1-303-708-0908 TEL: +1-248-348-9920
 TEL: +1-615-622-6700
 FAX: +1-615-622-6702

 FAX: +1-615-622-6702
 FAX: +1-615-622-6702

 TEL: +52-33-3123-2001
 FAX: +4-615-622-6702

 FAX: +49-715-49210
 FAX: +49-715-492140

 TEL: +49-8161-48310
 FAX: +49-8161-483120

 TEL: +49-711-72723710
 FAX: +49-711-72723720

 TEL: +44-1697-3066
 FAX: +44-1697-3305

 TEL: +44-308-306700
 FAX: +44-1698-335788

 TEL: +44-349375-24320
 FAX: +43-309-4789

 TEL: +44-39375-24320
 FAX: +34-3075-24410

 TEL: +44-25-757213
 FAX: +34-3075-24410

 TEL: +44-25-757213
 FAX: +34-2575701

 TEL: +42-26757201
 FAX: +42-2675701

 TEL: +42-26757201
 FAX: +42-2675701

 TEL: +42-26182-700
 FAX: +42-26182-715

 TEL: +42-26182-700
 FAX: +42-26182-715

 TEL: +42-26182-700
 FAX: +42-26182-715
 TEL: +1-615-620-6700 FAX: +1-615-620-6702 Mashvine Mexico Düsseldorf Munich Stuttgart United Kingdom Barcelona Hungary Poland TEL: +82-55-240-6234 FAX: +82-55-240-6236 TEL: +66-10-852-2400284 FAX: +86-411-8230-8537 TEL: +86-10-8525-2483 FAX: +86-10-8525-2489 TEL: +86-22-23029181 FAX: +86-22-23029183

Shanghai Shangha Hangzho Nanjing Ningbo Qingdao Suzhou Wuxi Wuxi Shenzhen Dongguan Fuzhou Guangzhou Huizhou Xiamen Zhuhai Hong Kong Taipei Kaohsiung Singapore Philippines Thailand Kuala Lumpur Penang Kyoto Yokohama

TEL: +86-21-6279-2727	FAX: +86-21-6247-2066
TEL: +86-571-87658072	FAX: +86-571-87658071
TEL: +86-25-8689-0015	FAX: +86-25-8689-0393
TEL: +86-574-87654201	FAX: +86-574-87654208
TEL: +86-532-5779-312	FAX:+86-532-5779-653
TEL: +86-512-6807-1300	FAX: +86-512-6807-2300
TEL: +86-510-82702693	FAX: +86-510-82702992
TEL: +86-755-8307-3008	FAX: +86-755-8307-3003
TEL: +86-769-8393-3320	FAX: +86-769-8398-4140
TEL: +86-591-8801-8698	FAX: +86-591-8801-8690
TEL: +86-20-8364-9796	FAX: +86-20-8364-9707
TEL: +86-752-205-1054	FAX: +86-752-205-1059
TEL: +86-592-238-5705	FAX: +86-592-239-8380
TEL: +86-756-3232-480	FAX: +86-756-3232-460
TEL: +852-2-740-6262	FAX: +852-2-375-8971
TEL: +886-2-2500-6956	FAX: +886-2-2503-2869
TEL: +886-7-237-0881	FAX: +886-7-238-7332
TEL: +65-6332-2322	FAX: +65-6332-5662
TEL: +63-2-807-6872	FAX: +63-2-809-1422
TEL: +66-2-254-4890	FAX: +66-2-256-6334
TEL: +60-3-7958-8355	FAX: +60-3-7958-8377
TEL: +60-4-2286453	FAX: +60-4-2286452
TEL: +81-75-365-1218	FAX: +81-75-365-1228
TEL: +81-45-476-2290	FAX: +81-45-476-2295

Catalog No.08T185A '08.6 ROHM ©

The contents described herein are correct as of June, 2008

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the
 product described in this document are for reference only. Upon actual use, therefore, please request
 that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
 otherwise dispose of the same, no express or implied right or license to practice or commercially
 exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

It is our top priority to supply products with the utmost quality and reliability. However, there is always a chance of failure due to unexpected factors. Therefore, please take into account the derating characteristics and allow for sufficient safety features, such as extra margin, anti-flammability, and fail-safe measures when designing in order to prevent possible accidents that may result in bodily harm or fire caused by component failure. ROHM cannot be held responsible for any damages arising from the use of the products under conditions out of the range of the specifications or due to non-compliance with the NOTES specified in this catalog.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact your nearest sales office.

ROHM Customer Support System

THE AMERICAS / EUROPE / ASIA / JAPAN

www.rohm.com

Contact us : webmaster@rohm.co.jp

Copyright © 2008 ROHM CO.,LTD. ROHM CO., LTD. 21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan TEL : +81-75-311-2121 FAX : +81-75-315-0172

Appendix1-Rev2.0

rohm