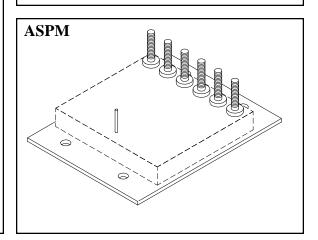


SOLID STATE DEVICES, INC.

14005 Stage Road * Santa Fe Springs, Ca 90670 Phone: (562) 404-4474 * Fax: (562) 404-1773


DESIGNER'S DATA SHEET

FEATURES:

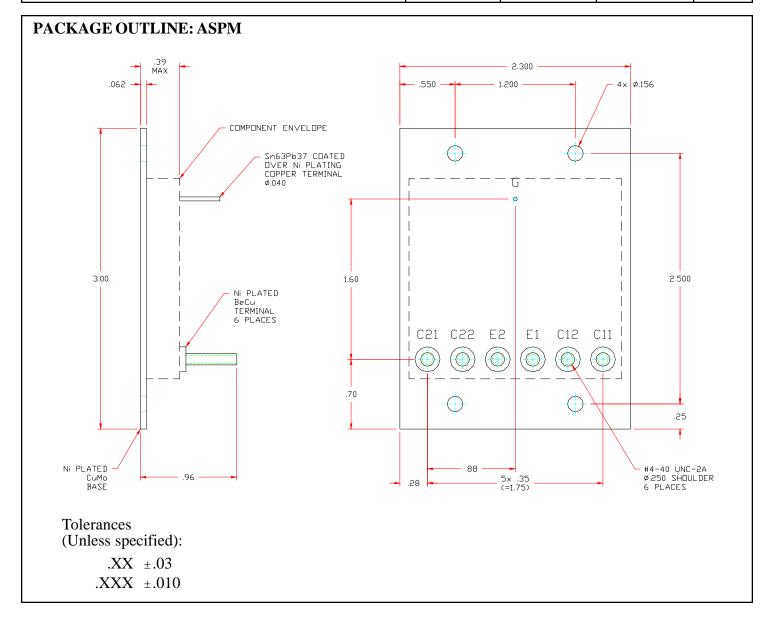
- High Current Switching for Motor Drives and Inverters for Space Applications.
- Push-Pull Configuration with Freewheeling Diodes.
- Low Saturation Voltage at High Currents.
- Low Mechanical Stress Design.
- Hermetic Sealed Construction for Aerospace Applications.
- Excellent Thermal Management.
- Full Power Screened Hermetic Discretes.
- TX, TXV, and S-Level Screening Available.
- Consult Factory for:
 - Faster Switching Speeds;
 - Other Bridge Configurations and Terminal Styles.

SPMQ461-01

200 AMP/600 VOLTS
HALF BRIDGE
IGBT POWER MODULE
FOR SPACE APPLICATIONS

MAXIMUM RATINGS			
CHARACTERISTIC	SYMBOL	VALUE	UNIT
Collector to Emiter Voltage, per Leg	$ m V_{CES}$	600	Volts
Gate to Collector Voltage	$ m V_{GES}$	±20	Volts
Continuous Collector Current, per Leg $T_B = 25^{\circ}C$ $T_B = 90^{\circ}C$	I _{C1} I _{C2}	200 100	Amps
Pulse Collector Current, per Leg 1/	I_{CM}	300	Amps
Clamped Inductive Load Current, per Leg ($T_B = 125$ °C, $V_{CC} = 480$ V, $V_{GE} = 15$ V, $L = 30$ uH, $R_G = 10\Omega$	${ m I_{LM}}$	100	Amps
Reverse Voltage Avalange Energy, per Leg 1/ (I _C = 100A)	E _{ARV}	5.6	mJ
Operating and Storage Temperature	T _{OP} & T _{STG}	-55 TO +150	°C
Thermal Resistance, Junction to Base, per Leg	$\Theta_{\mathbf{JB}}$	0.28	°C/W
Total Module Dissipation, per Leg @ $T_B = 25^{\circ}C$ Dissipation Derating from $T_B = 25^{\circ}C$ to $T_B = 150^{\circ}C$, per Leg	P _{D1} P _{D2}	625 5	W W/°C

1/ Pulse Duration Limited by T_{JMAX}; Repetative Rating


ELECTRICAL SCHEMATIC Q1 CR1 E1 E2 Q2 CR2 C21 C22

SPMQ461-01

SOLID STATE DEVICES, INC. 14005 Stage Road * Santa Fe Springs, Ca 90670 Phone: (562) 404-4474 * Fax: (562) 404-1773

ELECTRICAL CHARACTERISTICS @ T _J =25°C, per Leg (Unless Otherwise Specified)						
RATING	SYMBOL	MIN	MAX	UNIT		
	BV _{CES}	600	-	Volts		
	V _{GE(th)}	2.0	6	Volts		
	V _{CE(sat)2} V _{CE(sat)1}		3.1 2.5	Volts		
Gate-Emitter Leakage Current $(V_{GE} = \pm 20V, V_{CE} = 0V)$	I _{GES}	-	2.0	μAmps		
	I _{CES1} I _{CES1}	-	225 20	µAmps mAmps		
	$V_{ m F}$	-	1.6	Volts		
Insulation Resistance (All terminals to Base @1500V)	R _{INSUL1}	1	-	GΩ		

