

NPN Silicon Germanium RF Transistor Preliminary data

- For high gain low noise amplifiers
- Smallest Package 1.4 x 0.8 x 0.59mm
- Noise figure F = 0.65 dB at 1.8 GHz outstanding G_{ms} = 21 dB at 1.8 GHz
- Gold metallization for extra high reliability

ESD: Electrostatic discharge sensitive device, observe handling precaution!

Туре	Marking		Pin Conf	Package		
BFP620F_E6327	ACs	1 = B	2 = E	3 = C	4 = E	TSFP-4

Maximum Ratings

Parameter	Symbol	Value	Unit
Collector-emitter voltage	V _{CEO}	2.3	V
Collector-base voltage	V _{CBO}	7.5	
Emitter-base voltage	V _{EBO}	1.2	
Collector current	I _C	80	mA
Base current	/ _B	3	a A
Total power dissipation	P _{tot}	185	mW
$T_{\rm S} \le 98^{\circ}{\rm C}^{-1}$			
Junction temperature	Tj	150	°C
Ambient temperature	T _A	-65 150	
Storage temperature	T _{stg}	-65 150	

Thermal Resistance

Junction - soldering point ²) $R_{\text{thJS}} \leq 280$	K/W
--	-----

 ${}^{1}T_{S}$ is measured on the emitter lead at the soldering point to the pcb

 2 For calculation of R_{thJA} please refer to Application Note Thermal Resistance

Parameter	Symbol	Values			Unit
		min.	typ.	max.	1
DC characteristics	ļ			ł	ι
Collector-emitter breakdown voltage	V _{(BR)CEO}	2.3	2.8	-	V
I _C = 1 mA, I _B = 0					
Collector-base cutoff current	I _{CBO}	-	-	200	nA
$V_{\rm CB} = 5 \rm V, \ I_{\rm E} = 0$					
Emitter-base cutoff current	I _{EBO}	-	-	10	μA
V _{EB} = 1 V, <i>I</i> _C = 0					
DC current gain	h _{FE}	100	180	250	-
<i>I</i> _C = 20 mA, <i>V</i> _{CE} = 1.5 V					
AC characteristics (verified by random sampling	g)				
Transition frequency	f _T	-	65	-	GHz
$I_{\rm C} = 60 \text{ mA}, V_{\rm CF} = 1.5 \text{ V}, f = 1 \text{ GHz}$					
Collector-base capacitance	C _{cb}	-	0.12	0.2	pF
V _{CB} = 2 V, <i>f</i> = 1 MHz					
Collector-emitter capacitance	C _{ce}	-	0.2	-	
V _{CE} = 2 V, <i>f</i> = 1 MHz					
Emitter-base capacitance	C _{eb}	-	0.45	-	
V _{EB} = 0.5 V, <i>f</i> = 1 MHz					
Noise figure	F	-	0.7	-	dB
$I_{\rm C}$ = 5 mA, $V_{\rm CE}$ = 2 V, $Z_{\rm S}$ = $Z_{\rm Sopt}$,					
<i>f</i> = 1.8 GHz					
Power gain, maximum stable ¹⁾	G _{ms}	-	21.5	-	
$I_{\rm C}$ = 20 mA, $V_{\rm CE}$ = 2 V, $Z_{\rm S}$ = $Z_{\rm Sopt}$, $Z_{\rm L}$ = $Z_{\rm Lopt}$,					
<i>f</i> = 1.8 GHz					
Insertion power gain	$ S_{21} ^2$	-	19	-	dB
<i>I</i> _C = 20 mA, <i>V</i> _{CE} = 2 V, <i>f</i> = 1.8 GHz,					
$Z_{\rm S} = Z_{\rm L} = 50\Omega$					
Third order intercept point at output ²⁾	IP ₃	-	24.5	-	dBm
V _{CE} = 2 V, <i>f</i> = 1.8 GHz, Z _S =Z _L =50Ω,					
$I_{\rm C} = 20 {\rm mA}$					-
1dB compression point at output ³⁾	P _{-1dB}	-	11.5	-	
$V_{CE} = 2 \text{ V}, f = 1.8 \text{ GHz}, Z_{S} = Z_{L} = 50 \Omega,$					
$l_{\rm c} = 20 \rm mA$					

Electrical Characteristics at $T_A = 25^{\circ}$ C, unless otherwise specified

 ${}^{1}G_{\rm ms} = |S_{21} / S_{12}|$

 2 IP3 value depends on termination of all intermodulation frequency components. Termination used for this measurement is 50 Ω from 0.1MHz to 6GHz

³DC current at no input power

SPICE Parameters (Gummel-Poon Model, Berkley-SPICE 2G.6 Syntax) :

Transistor Chip Data

IS =	354	aA	BF =	557.1	-	NF =	1.021	-
VAF =	1000	V	IKF =	2.262	А	ISE =	2.978	pА
NE =	3.355	-	BR =	100	-	NR =	1	-
VAR =	1.2	V	IKR =	6.31	mA	ISC =	19.23	fA
NC =	2.179	-	RB =	2.674	Ω	IRB =	18	μA
RBM =	2.506	Ω	RE =	0.472		RC =	2.105	Ω
CJE =	371.6	fF	VJE =	0.898	V	MJE =	0.315	-
TF =	1.306	ps	XTF =	2.71	-	VTF =	0.492	V
ITF =	2.444	A	PTF =	0	deg	CJC =	225.6	fF
VJC =	0.739	V	MJC =	0.3926	-	XCJC =	1	-
TR =	0.3884	ns	CJS =	60	fF	VJS =	0.5	V
MJS =	0.5	-	XTB =	-0.9	-	EG =	1.114	eV
XTI =	3.43	-	FC =	0.821	-	TNOM	298	К

All parameters are ready to use, no scaling is necessary

Package Equivalent Circuit:

The TSFP-4 package has two emitter leads. To avoid high complexity of the package equivalent circuit, both leads are combined in one electrical connection.

 R_{LXI} are series resistors for the inductances L_{XI} and K_{Xa-yb} are the coupling coefficients between the inductances L_{Xa} and L_{yb} . The referencepins for the coupled ports are B, E, C, B`, E`, C`.

For examples and ready to use parameters please contact your local Infineon Technologies distributor or sales office to obtain a Infineon Technologies CD-ROM or see Internet: http://www.infineon.com/silicondiscretes

Published by Infineon Technologies AG, St.-Martin-Strasse 53, 81669 München © Infineon Technologies AG 2005. All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.Infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.