January 2002

ISL9V3040D3S / ISL9V3040S3S / ISL9V3040P3

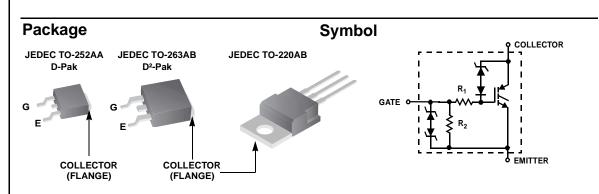
EcoSPARK[™] 300mJ, 400V, N-Channel Ignition IGBT

General Description

FAIRCHILD

The ISL9V3040D3S, ISL9V3040S3S, and ISL9V3040P3 are the next generation ignition IGBTs that offer outstanding SCIS capability in the space saving D-Pak (TO-252), as well as the industry standard D²-Pak (TO-263), and TO-220 plastic packages. This device is intended for use in automotive ignition circuits, specifically as a coil driver. Internal diodes provide voltage clamping without the need for external components.

EcoSPARK[™] devices can be custom made to specific clamp voltages. Contact your nearest Fairchild sales office for more information.

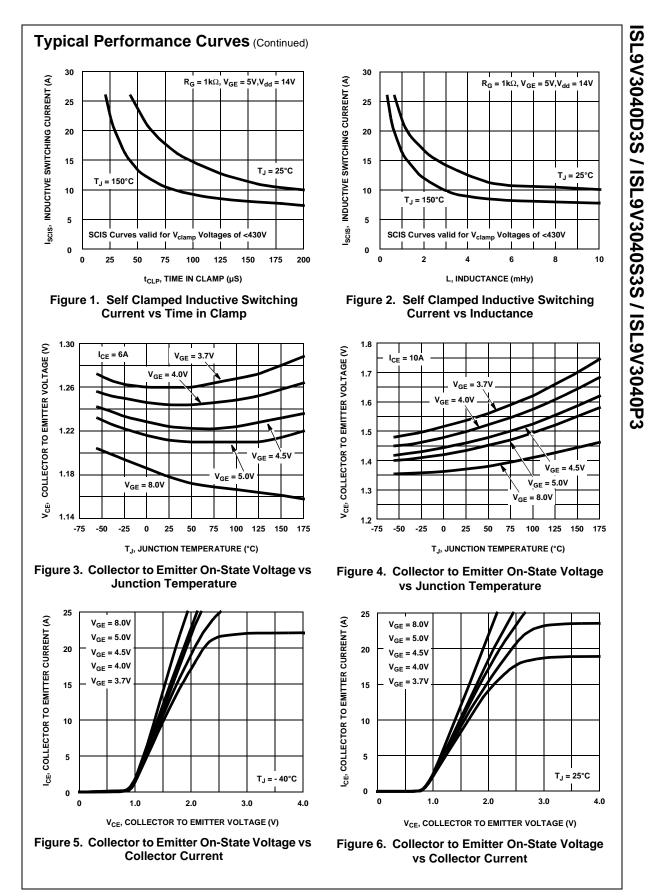

Formerly Developmental Type 49362

Applications

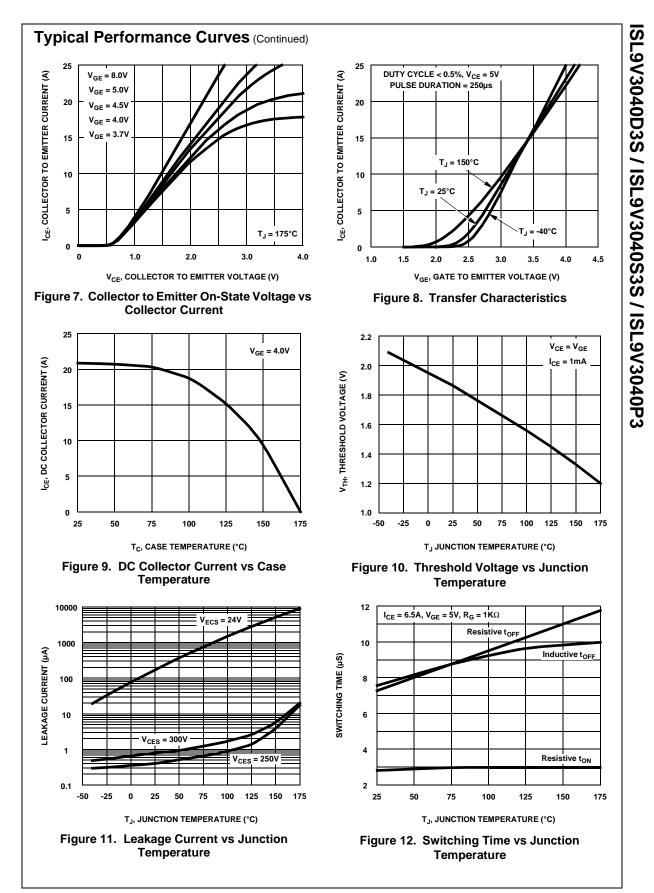
- · Automotive Ignition Coil Driver Circuits
- Coil- On Plug Applications

Features

- Space saving D-Pak package availability
- SCIS Energy = 300mJ at T₁ = 25°C
- Logic Level Gate Drive

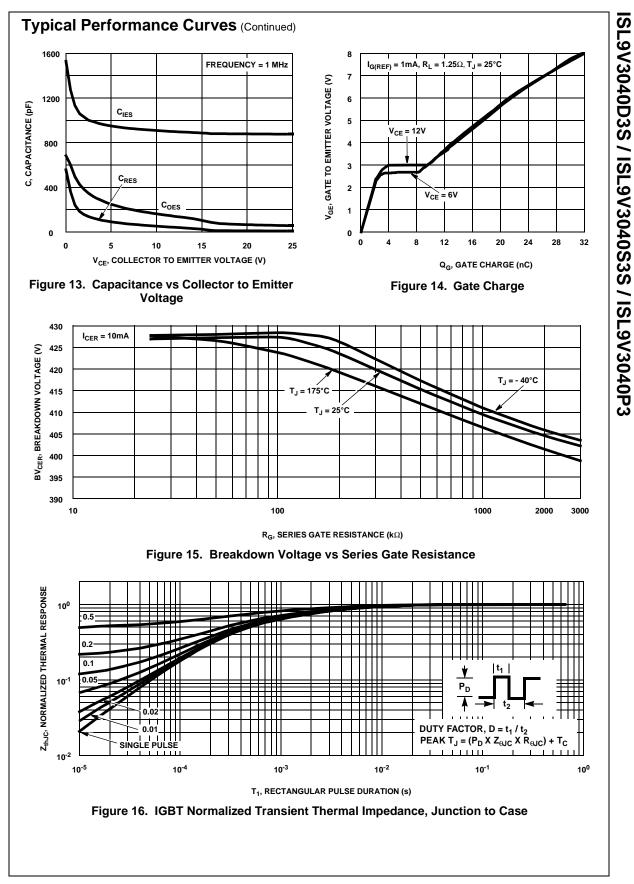

Device Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter	Ratings	Units	
BV _{CER}	Collector to Emitter Breakdown Voltage (I _C = 1 mA)	430	V	
BV _{ECS}	Emitter to Collector Voltage - Reverse Battery Condition (I _C = 10 mA)	24	V	
E _{SCIS25}	At Starting $T_J = 25^{\circ}$ C, $I_{SCIS} = 14.2$ A, L = 3.0 mHy	300	mJ	
E _{SCIS150}	At Starting $T_J = 150^{\circ}$ C, $I_{SCIS} = 10.6$ A, L = 3.0 mHy	170	mJ	
I _{C25}	Collector Current Continuous, At T _C = 25°C, See Fig 9	21	Α	
I _{C110}	Collector Current Continuous, At T _C = 110°C, See Fig 9	17	Α	
V _{GEM}	Gate to Emitter Voltage Continuous	±10	V	
PD	Power Dissipation Total $T_C = 25^{\circ}C$	150	W	
	Power Dissipation Derating $T_{C} > 25^{\circ}C$	1.0	W/°C	
TJ	T _J Operating Junction Temperature Range		°C	
T _{STG}	Storage Junction Temperature Range	-40 to 175	°C	
ΤL	T _L Max Lead Temp for Soldering (Leads at 1.6mm from Case for 10s)		°C	
T _{pkg}	Max Lead Temp for Soldering (Package Body for 10s)	260	°C	
ESD	Electrostatic Discharge Voltage at 100pF, 1500 Ω	4	kV	

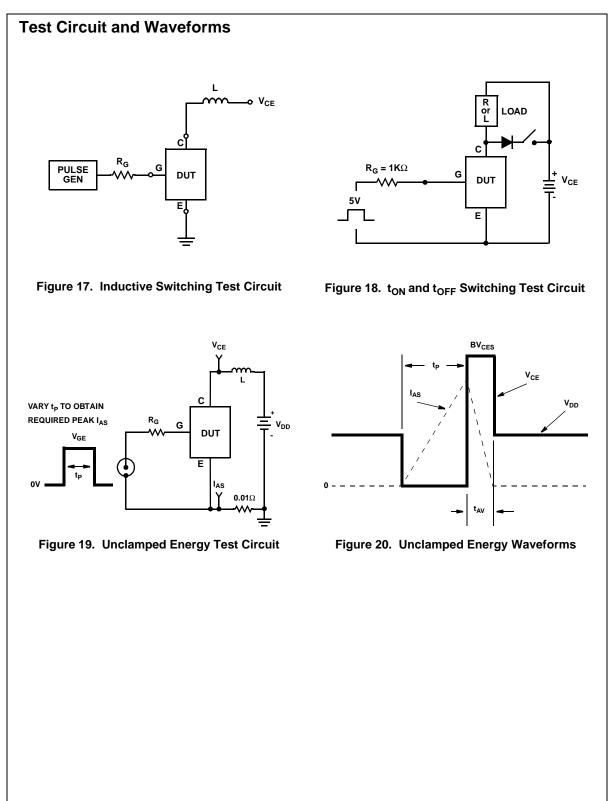

©2002 Fairchild Semiconductor Corporation

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Device Marking		Device	Package		Reel Size	Tape Width		Qu	Quantity	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	V304			T						1	
V3040SISL9V3040S3STO-263ABTubeN/A50 unitsV3040P3TO-220ABTubeN/A50 unitsSountsValue N/A50 unitsSountsValue N/A50 unitsSountsValue N/A50 unitsSountsSymbolParameterTest ConditionsMinTypMaxUnitf State CharacteristicsBV _{CER} Collector to Emitter Breakdown Voltage $ _{C} = 2mA, V_{GE} = 0, R_{C} = 150, T_{T_4} = 40.0150°C300VBVCESCollector to Emitter Breakdown Voltage _{C} = 75mA, V_{GE} = 0, R_{C} = 100, R_{C} = 0, R_{C} = 100, R_{C} = 0, R_{C} = 100, R_{C} = 0, R_{C} = 100, 150°C300VBVCESCollector to Emitter Breakdown Voltage _{C} = 75mA, V_{GE} = 0, R_{C} = 120, R_{C} = 100, R_{C} = 100,$	V3040S		ISL9V3040S3ST	Т	O-263AB	263AB 330mm		24mm		800 units	
V3040PISL9V3040P3TO-220ABTubeN/A50 unitsectrical Characteristics $T_A = 25^{\circ}C$ unless otherwise notedSymbolParameterTest ConditionsMinTypMaxUnitsf State CharacteristicsBV _{CER} Collector to Emitter Breakdown Voltage $ _C = 2mA, V_{GE} = 0, R_G = 1K\Omega, See Fig. 15$ $T_J = 40 to 150^{\circ}C$ 370400430VBV _{CES} Collector to Emitter Breakdown Voltage $ _C = 7mA, V_{GE} = 0, R_G = 0, See Fig. 15$ $T_J = 40 to 150^{\circ}C$ 390420450VBV _{ECS} Emitter to Collector Breakdown Voltage $ _C = 7mA, V_{GE} = 0, R_G = 0, See Fig. 15$ $T_G = 25^{\circ}C$ 300-VVBV _{GES} Emitter to Collector Breakdown Voltage $ _C = 7mA, V_{GE} = 0V, T_G = 25^{\circ}C$ 25 PA μ π π BV _{GES} Eate to Emitter Breakdown Voltage $ _{CE} = 24V, R_G = 14\Omega, See Fig. 11$ $T_C = 25^{\circ}C$ -25 PA BV _{GES} Eate to Collector Leakage Current $V_{GE} = 24V, R_G = 150^{\circ}C$ -1mAR_1Series Gate Resistance-10K-26K Ω R_2Gate to Emitter Resistance-10K-26K Ω V _{GE(SAT)} Collector to Emitter Saturation Voltage $ _C = 16A, T_C = 150^{\circ}C$ -1.581.80VV _{GE(EAT)} Collector to Emitter Saturation Voltage $ _C = 10A, V_{GE} = 12V, V_{GE} = 1.58^{\circ}C$ -1.581.80VV _{GE(SAT)} Collector to Emitter Saturation Voltage <td>V304</td> <td>0D</td> <td>ISL9V3040D3S</td> <td>Т</td> <td>D-252AA</td> <td>Tube</td> <td colspan="2">N/A</td> <td colspan="2">75 units</td>	V304	0D	ISL9V3040D3S	Т	D-252AA	Tube	N/A		75 units		
lectrical CharacteristicsTest ConditionsMinTypMaxUnitf State Characteristics BV_{CER} Collector to Emitter Breakdown Voltage $ _C = 2mA, V_{GE} = 0, R_G = 1K\Omega, See Fig. 15370400430VBV_{CES}Collector to Emitter Breakdown Voltage _C = 10mA, V_{GE} = 0, R_G = 0, See Fig. 15390420450VBV_{CES}Emitter to Collector Breakdown Voltage _C = 75mA, V_{GE} = 0, R_G = 160°C390420450VBV_{ECS}Emitter to Collector Breakdown Voltage _C = 25°C30VI_{CER}Collector to Emitter Breakdown Voltage _{CES} = 12m\pm 12\pm 14-VI_{CER}Collector to Emitter Leakage CurrentV_{CER} = 250°, V_{TC}3025\mu AR_G = 1K\Omega, SeeFig. 11T_C = 25°C-1mASee Fig. 11T_C = 150°C-1mAR_GGate to Emitter Leakage CurrentV_{EC} = 24V, T_C = 25°C, V_{TC}-1mAR_GGate to Emitter Resistance10K-26K\OmegaN_{CE}(SAT)Collector to Emitter Saturation Voltage _C = 6A, T_C = 25°C, V_C - V_C = 160°C1.60VV_{CE}(SAT)Collector to Emitter Saturation Voltage _C = 10A, V_CE = 12V, V_C - 1.581.80VV_{CE}(SAT)Collector to Emitter Saturation Voltage _C = 10A, V_CE = 12V, V_C - 1.90°C, V_C - 1.90°C, V_CE = 4.5V1.90°C, C. 1$	V304	0S	ISL9V3040S3S	T	O-263AB	Tube			50 units		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			1				N/A		50	50 units	
f State Characteristics BV_{CER} Collector to Emitter Breakdown Voltage $I_C = 2mA$, $V_{GE} = 0$, $R_G = 1K\Omega$, See Fig. 15 $T_J = 40$ to 150°C370400430V BV_{CES} Collector to Emitter Breakdown Voltage $I_C = 10mA$, $V_{GE} = 0$, $R_G = 0$, See Fig. 15 $T_J = 40$ to 150°C390420450V BV_{ECS} Emitter to Collector Breakdown Voltage $I_C = 75mA$, $V_{GE} = 0$, $T_C = 25°C$ 30V BV_{CER} Gate to Emitter Breakdown Voltage $I_{CES} = 22mA$ ± 12 ± 14 -V I_{CER} Collector to Emitter Leakage Current $V_{CES} = 25°C$ $= -25°C$ 1mA I_{CES} Emitter to Collector Leakage Current $V_{EC} = 24V$, $R_G = 180.C$ $T_C = 25°C$ 1mA I_{LCS} Emitter to Collector Leakage Current $V_{EC} = 24V$, $R_G = 160°C$ -70- Ω R_2 Gate to Emitter Resistance10K-26K Ω $N_{CE(SAT)}$ Collector to Emitter Saturation Voltage $I_C = 6A$, $V_{CE} = 4.5V$ $T_C = 150°C$, -1.581.80V $V_{CE(SAT)}$ Collector to Emitter Saturation Voltage $I_C = 10A$, $V_{CE} = 12V$, $V_{CE} = 5A,$ -1.902.20V $V_{CE(SAT)}$ Collector to Emitter Saturation Voltage $I_C = 10A$, $V_{CE} = 12V$, $V_{CE} = 5N,$ See Fig. 10-1.7-nC $V_{CE(SAT)}$ Collector to Emitter Saturation Voltage $I_C = 10A$, $V_{CE} = 12V$, <br< td=""><td></td><td>al Char</td><td></td><td>C unl</td><td></td><td></td><td>Min</td><td>Typ</td><td>Мах</td><td>Unite</td></br<>		al Char		C unl			Min	Typ	Мах	Unite	
		Charaot			Test Col			тур	IVIAX	Units	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						-					
$ \begin{array}{ c c c c c c } \hline R_{C} = 0, See Fig. 15 \\ T_{J} = -40 to 150^{\circ} C \\ \hline R_{J} = -26 vc 150^{\circ} C \\ \hline R_{C} = 25^{\circ} C \\ \hline R_{C} = 100^{\circ} C \\ \hline R_{C} = 10$	BV _{CER}	Collector	to Emitter Breakdown Volta	age	$R_G = 1K\Omega$, See Fig. 15		370	400	430	V	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	BV _{CES}	Collector	to Emitter Breakdown Volta	age	R _G = 0, See Fig. 15		390	420	450	V	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	BV _{ECS}	Emitter to	Collector Breakdown Volta	age	I _C = -75mA, V _C	nA, V _{GE} = 0V,		-	-	V	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	BV_{GES}	Gate to E	mitter Breakdown Voltage		•		±12	±14	-	V	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	I _{CER}	Collector	to Emitter Leakage Current	t			-	-	25	μA	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$					Fig. 11	0					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	I _{ECS}	Emitter to	Collector Leakage Current	t		-	-	-			
R2Gate to Emitter Resistance10K-26KΩn State Characteristics $V_{CE(SAT)}$ Collector to Emitter Saturation Voltage $I_C = 6A$, $V_{GE} = 4V$ $T_C = 25^{\circ}C$, See Fig. 3-1.251.60V $V_{CE(SAT)}$ Collector to Emitter Saturation Voltage $I_C = 10A$, $V_{GE} = 4.5V$ $T_C = 150^{\circ}C$, See Fig. 4-1.581.80V $V_{CE(SAT)}$ Collector to Emitter Saturation Voltage $I_C = 10A$, $V_{GE} = 4.5V$ $T_C = 150^{\circ}C$ -1.902.20V $V_{CE(SAT)}$ Collector to Emitter Saturation Voltage $I_C = 10A$, $V_{GE} = 4.5VT_C = 150^{\circ}C-1.902.20VV_{CE(SAT)}Collector to Emitter Saturation VoltageI_C = 10A, V_{CE} = 12V,V_{GE} = 4.5V-17-nC(C_{C(SAT)})Gate ChargeI_C = 10A, V_{CE} = 12V,V_{CE} = 5V, See Fig. 14-17-nCV_{GE(TH)}Gate to Emitter Threshold VoltageI_C = 10MA,V_{CE} = 5V, See Fig. 10T_C = 25^{\circ}C1.3-2.2VV_{GE}Gate to Emitter Plateau VoltageI_C = 10MA,V_{CE} = 10M, V_{CE} = 12V-3.0-VV_{GEP}Gate to Emitter Plateau VoltageI_C = 10A, V_{CE} = 12V-3.0-VV_{GEP}Gate to Emitter Plateau VoltageI_C = 10A, V_{CE} = 12V-3.0-VV_{GEP}Gate to Emitter Plateau VoltageI_C = 10A, V_{CE} = 14V, R_L = 1\Omega,V_G = 5V$					See Fig. 11	T _C = 150°C	-		40		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							-		-		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	R ₂	Gate to E	mitter Resistance		ļ		10K	-	26K	Ω	
$\begin{array}{c cl} \hline CL(GAT) & Constraints of the equation of the equat$	n State (Characte	eristics								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	V _{CE(SAT)}	Collector	to Emitter Saturation Voltag	ge		-	-	1.25	1.60	V	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	V _{CE(SAT)}	Collector	to Emitter Saturation Voltag	ge			-	1.58	1.80	V	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V _{CE(SAT)}	Collector	to Emitter Saturation Voltag	ge		T _C = 150°C	-	1.90	2.20	V	
$\begin{array}{ c c c c c } \hline V_{GE} = 5V, \ See \ Fig. 14 \\ \hline V_{GE(TH)} \\ \hline Bet to Emitter Threshold Voltage \\ \hline I_C = 1.0mA, \\ V_{CE} = V_{GE,} \\ See \ Fig. 10 \\ \hline T_C = 150^\circ C \\ \hline T_C = 150^\circ C \\ \hline 0.75 \\ \hline 0.75 \\ \hline 0.75 \\ \hline 1.8 \\ \hline V \\ \hline See \ Fig. 10 \\ \hline \hline V \\ \hline C \\ \hline F \\ \hline C \\ \hline T \\ T \\$	namic (Characte	eristics								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Q _{G(ON)}	Gate Cha	arge				-	17	-	nC	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	V _{GE(TH)}	Gate to E	mitter Threshold Voltage				1.3	-	2.2	V	
					See Fig. 10	Ĵ	0.75	-	1.8		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V_{GEP}	Gate to E	mitter Plateau Voltage		$I_{C} = 10A, V_{CE} =$	= 12V	-	3.0	-	V	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	vitching	Charac	teristics								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-			ve	V _{CE} = 14V, R ₁	= 1Ω,	-	0.7	4	μs	
$ \begin{array}{c c} t_{fL} & \mbox{Current Fall Time-Inductive} & \mbox{V}_{GE} = 5V, R_G = 1K\Omega & - & 2.8 & 15 & \mu s \\ \hline T_J = 25^{\circ}C, See Fig. 12 & - & 300 & mJ \\ \hline SCIS & \mbox{Self Clamped Inductive Switching} & \ T_J = 25^{\circ}C, L = 3.0 & mHy, & - & 300 & mJ \\ \hline R_G = 1K\Omega, V_{GE} = 5V, See & - & 300 & mJ \\ \hline Fig. 1 \& 2 & & & & \\ \end{array} $					V _{GE} = 5V, R _G =	= 1KΩ	-				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	t _{d(OFF)L}	Current T	urn-Off Delay Time-Inductiv	ve			-	4.8	15	μs	
$R_G = 1K\Omega$, $V_{GE} = 5V$, See Fig. 1 & 2	t _{f∟}	Current F	all Time-Inductive		$T_J = 25^{\circ}C$, See	e Fig. 12	-	2.8	15	μs	
permal Characteristics	SCIS	Self Clan	nped Inductive Switching		$R_G = 1K\Omega$, $V_{GE} = 5V$, See		-	-	300	mJ	
	nermal (haracte	ristics								

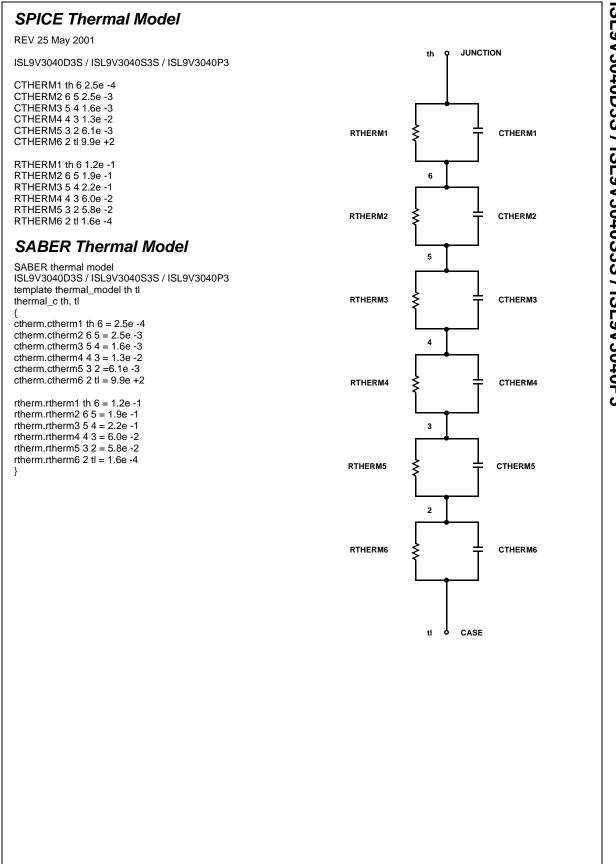
ISL9V3040D3S / ISL9V3040S3S / ISL9V3040P3 Rev.C, February 2002



©2002 Fairchild Semiconductor Corporation


©2002 Fairchild Semiconductor Corporation

ISL9V3040D3S / ISL9V3040S3S / ISL9V3040P3 Rev.C, February 2002



©2002 Fairchild Semiconductor Corporation

ISL9V3040D3S / ISL9V3040S3S / ISL9V3040P3 Rev.C, February 2002

ISL9V3040D3S / ISL9V3040S3S / ISL9V3040P3

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™ Bottomless™ CoolFET™ CROSSVOLT™ DenseTrench™ DOME™ **EcoSPARK™** E²CMOS[™] EnSigna™ FACT™ FACT Quiet Series™ FAST ® FASTr™ FRFET™ GlobalOptoisolator[™] POP[™] GTO™ HiSeC™ ISOPLANAR™ LittleFET™ MicroFET™ MicroPak™ MICROWIRE™

OPTOLOGIC™ OPTOPLANAR™ PACMAN™ Power247™ PowerTrench[®] QFET™ QS™ QT Optoelectronics[™] Quiet Series[™] SILENT SWITCHER®

SMART START™ VCX™ STAR*POWER™ Stealth™ SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8 SyncFET™ TinyLogic™ TruTranslation[™] UHC™ UltraFET[®]

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY. FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
	In Design First Production Full Production