DATA SHEET

BIPOLAR ANALOG INTEGRATED CIRCUIT μ PC8220T5A

Tx AND Rx MCP IC FOR 1.9 GHz PHS

DESCRIPTION

The μ PC8220T5A is MCP (Multi Chip Packaging) IC consisted of silicon germanium (SiGe) bipolar process and LDMOS designed for use as transmitting and receiving for 1.9 GHz PHS.

This device is packaged in surface mount 16-pin plastic TSON (Thin Small Outline Non-leaded) package.

This IC manufactured using our 50 GHz f_{max} UHS2 (<u>U</u>ltra <u>High S</u>peed Process) SiGe bipolar process and LDMOS (<u>Lateral Diffusion MOS FET Process</u>).

FEATURES

- Tx Block -

Circuit Current (DRV+PA): I = 160 mA TYP. @ Vcc = Vds = 3.0 V, f = 1.9 GHz, Pin = −19 dBm, Pout = +20.5 dBm

Output Power
 Pout = +20.5 dBm MIN. @ Vcc = Vds = 3.0 V, f = 1.9 GHz, Pin = -19 dBm
 Power Gain
 GP = 39.5 dB MIN. @ Vcc = Vds = 3.0 V, f = 1.9 GHz, Pin = -19 dBm

• Adjacent Channel Power : Padj1 = -65 dBc TYP. @ Vcc = Vds = 3.0 V, f = 1.9 GHz, Pout = +20.5 dBm, $\Delta \pm 600 \text{ kHz}$

: Padj2 = -70 dBc TYP. @ Vcc = Vds = 3.0 V, f = 1.9 GHz, Pout = +20.5 dBm, $\Delta \pm 900$ kHz

 $\bullet \quad \text{Harmonics Frequency Level} : 2 \\ \text{fo} = -45 \text{ dBc TYP.} \ @ \ \text{Vcc} = \text{Vds} = 3.0 \text{ V}, \ \text{Pout} = \ +20.5 \text{ dBm}$

: $3f_0 = -60 \text{ dBc TYP}$. @ $V_{CC} = V_{ds} = 3.0 \text{ V}$, $P_{out} = +20.5 \text{ dBm}$

Gain 1 dB Compression Output Power: Po (1 dB) = +21 dBm TYP. @ Vcc = Vds = 3.0 V

Rx Block –

Circuit Current : Icc = 11.5 mA TYP. @ Vcc = 3.0 V

Convertion Gain
 : CG = 21.5 dB TYP. @ fRF = 1.9 GHz, fIF = 240 MHz, fLo = 1.66 GHz

• Noise Figure : NF = 3.1 dB TYP. @ SSB

• Input 3rd Order Distortion : IIP3 = -14.5 dBm TYP. @ fRF1 = 1.9 GHz, fRF2 = 1.9006 GHz, PRF = -35 dBm/tome

Intercept Point

• Image Rejection Ratio : IMR = 40 dBc TYP. @ f_{RF1} = 1.9 GHz, f_{RF2} = 1.42 GHz, P_{RF} = -35 dBm/tome

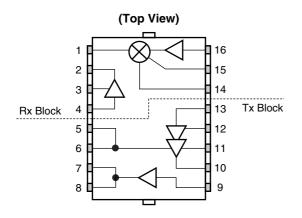
• High-density Surface Mounting : 16-pin plastic TSON package $(3.3 \times 2.3 \times 0.6 \text{ mm})$

APPLICATION

PHS

ORDERING INFORMATION

Part Number	Order Number	Package	Marking	Supplying Form
μPC8220T5A-E1	μPC8220T5A-E1-A	16-pin plastic TSON (Pb-Free) Note	8220	 Embossed tape 12 mm wide Pin 8, 9 face the perforation side of the tape Qty 3 kpcs/reel


Note With regards to terminal solder (the solder contains lead) plated products (conventionally plated), contact your nearby sales office.

Remark To order evaluation samples, contact your nearby sales office. Part number for sample order: μ PC8220T5A

Caution Observe precautions when handling because these devices are sensitive to electrostatic discharge.

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC Compound Semiconductor Devices representative for availability and additional information.

PIN CONNECTIONS AND INTERNAL BLOCK DIAGRAM

Pin No.	Pin Name	Pin No.	Pin Name
1	RFin	9	INPUT2
2	LNA _{out}	10	OUTPUT1
3	GND (LNA)	11	Vcc (TX)
4	LNAin	12	GND (DRV)
5	GND (DRV)	13	INPUT1
6	GND (DRV)	14	IF OUT
7	OUT2 (PA)	15	Vcc (RX)
8	OUT2 (PA)	16	Lo IN

NOTE ON CORRECT USE

Exposed heatsink at bottom on package that is combined with GND (ground) must be soldered to PCB RF/DC ground.

ABSOLUTE MAXIMUM RATINGS (Ta = +25°C, unless otherwise specified)

Parameter	Symbol	Ratings	Unit
LNA Output Voltage	VLNAout	4.0	٧
Mixier Output Voltage	Vcc, IFout	4.0	V
Driver Output Voltage	Vcc, Vout1	4.0	٧
PA Drain-Source Voltage	V _{ds}	8.0	٧
PA Gate-Source Voltage	Vgs	8.0	٧
Input Power 1	Pin1	+10	dBm
Input Power 2	P _{in2}	+16	dBm
LNA Input Power	PLNAin	+10	dBm
Local Input Power	P _{Loin}	+10	dBm
Channel Temperature	Tch	150	°C
Operating Ambient Temperature	TA	-30 to +70	°C
Storage Temperature	T _{stg}	-55 to +150	°C
Power Dissipation of Package	Po	5.33 Note	W
Circuit Current 1 (LNA + Mixer)	Icc1	21	mA
Circuit Current 2 (PA Driver)	lcc2	70	mA
Circuit Current 3 (PA)	lds	259	mA

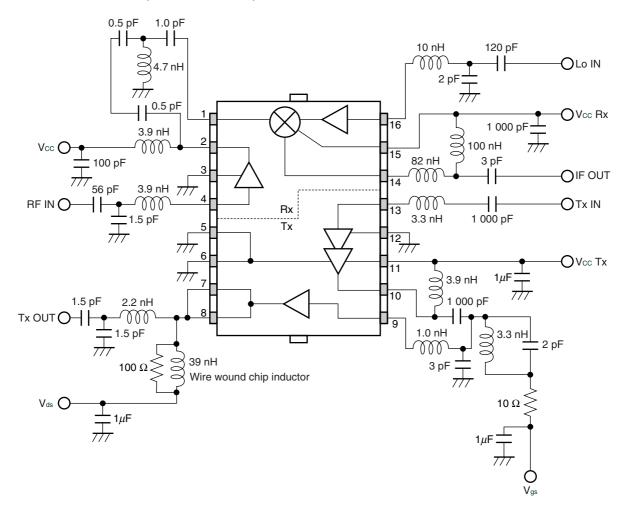
Note Mounted on $33 \times 21 \times 0.4$ mm polyimide PCB

RECOMMENDED OPERATING RANGE (Ta = +25°C, unless otherwise specified)

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
LNA Output Voltage	VLNAout	2.7	3.0	3.3	V
Mixer Output Voltage	Vcc, IFout	2.7	3.0	3.3	V
Driver Output Voltage	Vcc, Vout1	2.7	3.0	3.3	V
PA Drain-Source Voltage	Vds	2.7	3.0	3.5	V
PA Gate-Source Voltage	Vgs	0	2.0	2.5	V
Operating Ambient Temperature	TA	-30	+25	+70	°C
RF Input Frequency	f _{RF}	1.8	1.9	2.0	GHz
Local Input Power	PLoin	-20	-15	-10	dBm

ELECTRICAL CHARACTERISTICS

– Tx Block – (Ta = +25°C, Vcc = Vds = 3.0 V, Zs = ZL = 50 Ω , unless otherwise specified)

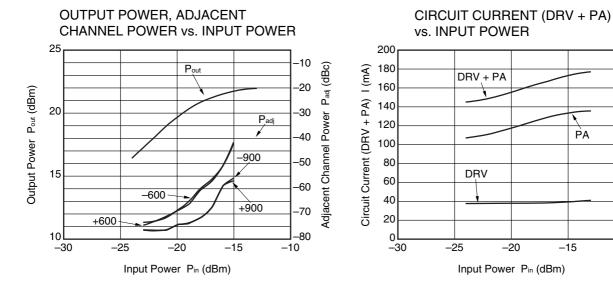

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Threshold Voltage	V_{th}	$I_{ds} = 8 \text{ mA}, V_{ds} = 3.5 \text{ V}$	1.15	1.4	1.65	٧
Gate-Source Voltage	Vgs	f = 1.9 GHz, P _{in} = -19 dBm,	1.5	1.8	2.1	٧
Circuit Current (DRV + PA)	1	$P_{out} = +20.5 \text{ dBm}$	-	160	190	mA
Input Return Loss	RLin	f = 1.9 GHz, P _{in} = -19 dBm	_	10	1	dB
Output Return Loss	RLout		-	5	1	dB
Output Power	Pout	f = 1.9 GHz, P _{in} = -19 dBm,	+20.5	-	-	dBm
Power Gain (DRV + PA)	G₽	V_{gs} adjusting	39.5	40.5	-	dB
Power Gain (DRV)	GP (DRV)		_	31	-	dB
Power Gain (PA)	GP (PA)		-	9.5	-	dB
Liner Gain	GL	Pin = -20 dBm	-	40.5	-	dB
Adjacent Channel Power 1	P _{adj1}	f = 1.9 GHz, P _{out} = +20.5 dBm ⊿ 600 kHz ^{Note}	-	-65	-58	dBc
Adjacent Channel Power 2	P _{adj2}	f = 1.9 GHz, P _{out} = +20.5 dBm ⊿ 900 kHz ^{Note}	-	-70	-60	dBc
Occupied Band Width	OBW	Pout = +20.5 dBm Note	-	250	270	kHz
2nd Harmonics Frequency Level	2f ₀	P _{out} = +20.5 dBm	-40	-45	ı	dBc
3rd Harmonics Frequency Level	3fo	P _{out} = +20.5 dBm	-55	-60	ı	dBc
Gain 1 dB Compression Output Power	Po (1 dB)		_	+21.0	-	dBm

Note $P_{in} = -19$ dBm, CW: Measure by changing to modulation wave, after setting from adjusting by V_{gs} to $P_{out} = +20.5$ dBm.

- Rx Block - (TA = +25°C, Vcc = 3.0 V, fRF = 1.9 GHz, fIF = 240 MHz, fLo = 1.66 GHz, PLoin = -15 dBm, Zs = ZL = 50Ω , unless otherwise specified)

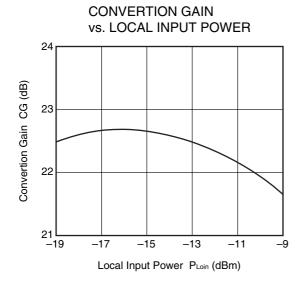
Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Circuit Current	Icc	No Signal	8.9	11.5	15.0	mA
Circuit Current (LNA)	ICCLNA	No Signal	1.25	1.8	_	mA
Convertion Gain (LNA + Mixer)	CG	$P_{RF} = -35 \text{ dBm}$	19.0	21.5	25.5	dB
Convertion Gain (LNA)	CG (LNA)	$P_{RF} = -35 \text{ dBm}$	-	15.5	_	dB
Convertion Gain (Mixer)	CG (Mixer)	P _{RF} = -20 dBm	=	6.0	-	dB
Noise Figure	NF	SSB	=	3.1	4.5	dB
Input 3rd Order Distortion Intercept Point	IIP3	f _{RF1} = 1.9 GHz, f _{RF2} = 1.9006 GHz, P _{RF} = -35 dBm/tone	-16.5	-14.5	-	dBm
Image Rejection Ratio	IMR	f _{RF1} = 1.9 GHz, f _{RF2} = 1.42 GHz, P _{RF} = -35 dBm/tone	30	40	-	dBc
1/2 IF Ratio	1/2 IFR	f _{RF1} = 1.9 GHz, f _{RF2} = 1.78 GHz, P _{RF} = -35 dBm/tone, f _{IF} = 240 MHz	40	50	-	dBc
Local Leak	LOLeak	Loin → LNAin Leak	-	-62	-50	dBm

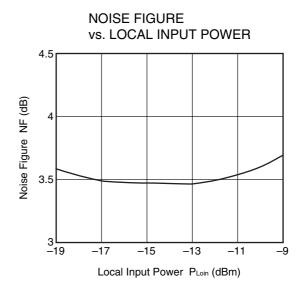
EVALUATION CIRCUIT (Vcc = Vds = 3.0 V)

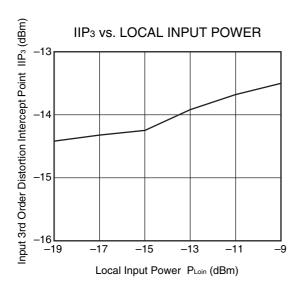


The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.

__ _10

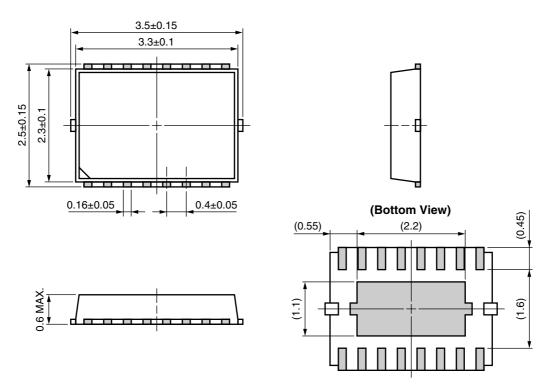

TYPICAL CHARACTERISTICS (T_A = +25°C, unless otherwise specified)


-Tx Block - (Vcc = Vds = 3.0 V, f = 1.9 GHz, Pin = -19 dBm, Pout = +20.5 dBm)



Remark The graphs indicate nominal characteristics.

- Rx Block - (Vcc = 3.0 V, fRF1 = 1.90 GHz, PRF1 = -35 dBm, fRF2 = 1.9006 GHz, PRF2 = -35 dBm, fLo = 1.66 GHz)



Remark The graphs indicate nominal characteristics.

7

PACKAGE DIMENSIONS

16-PIN PLASTIC TSON (UNIT: mm)

Remark (): Reference value

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your nearby sales office.

Soldering Method	Soldering Conditions		Condition Symbol
Infrared Reflow	Peak temperature (package surface temperature) Time at peak temperature Time at temperature of 220°C or higher Preheating time at 120 to 180°C Maximum number of reflow processes Maximum chlorine content of rosin flux (% mass)	: 260°C or below : 10 seconds or less : 60 seconds or less : 120±30 seconds : 3 times : 0.2%(Wt.) or below	IR260
Wave Soldering	Peak temperature (molten solder temperature) Time at peak temperature Preheating temperature (package surface temperature) Maximum number of flow processes Maximum chlorine content of rosin flux (% mass)	: 260°C or below : 10 seconds or less : 120°C or below : 1 time : 0.2%(Wt.) or below	WS260
Partial Heating	Peak temperature (terminal temperature) Soldering time (per side of device) Maximum chlorine content of rosin flux (% mass)	: 350°C or below : 3 seconds or less : 0.2%(Wt.) or below	HS350

Caution Do not use different soldering methods together (except for partial heating).

9

NEC μ PC8220T5A

 The information in this document is current as of November, 2004. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.

- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
 risks of damage to property or injury (including death) to persons arising from defects in NEC
 semiconductor products, customers must incorporate sufficient safety measures in their design, such as
 redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
 - "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

- (1) "NEC" as used in this statement means NEC Corporation, NEC Compound Semiconductor Devices, Ltd. and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).

M8E 00.4-0110

NEC μ PC8220T5A

▶ For further information, please contact

NEC Compound Semiconductor Devices, Ltd. http://www.ncsd.necel.com/

E-mail: salesinfo@ml.ncsd.necel.com (sales and general) techinfo@ml.ncsd.necel.com (technical)

Sales Division TEL: +81-44-435-1588 FAX: +81-44-435-1579

NEC Compound Semiconductor Devices Hong Kong Limited

E-mail: ncsd-hk@elhk.nec.com.hk (sales, technical and general)

Hong Kong Head Office TEL: +852-3107-7303 FAX: +852-3107-7309
Taipei Branch Office TEL: +886-2-8712-0478 FAX: +886-2-2545-3859
Korea Branch Office TEL: +82-2-558-2120 FAX: +82-2-558-5209

NEC Electronics (Europe) GmbH http://www.ee.nec.de/

TEL: +49-211-6503-0 FAX: +49-211-6503-1327

California Eastern Laboratories, Inc. http://www.cel.com/

TEL: +1-408-988-3500 FAX: +1-408-988-0279