

SSM3J13T

Power Management Switch High Speed Switching Applications

• Small Package

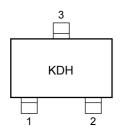
• Low on Resistance: $R_{on} = 70 \text{ m}\Omega \text{ (max) } (@V_{GS} = -4 \text{ V})$: $R_{on} = 95 \text{ m}\Omega \text{ (max) } (@V_{GS} = -2.5 \text{ V})$

• Low Gate Threshold Voltage

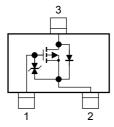
Maximum Ratings (Ta = 25°C)

Characteristics		Symbol	Rating	Unit	
Drain-Source voltage		V_{DS}	-12	V	
Gate-Source voltage		V_{GSS}	±8	V	
Drain current	DC	I _D	-3.0	A	
	Pulse	I _{DP} (Note 2)	-6.0		
Drain power dissipation		P _D (Note 1)	1.25	W	
Channel temperature		T _{ch}	150	°C	
Storage temperature range		T _{stg}	−55~150	°C	

Note 1: Mounted on FR4 board


 $(25.4 \text{ mm} \times 25.4 \text{ mm} \times 1.6 \text{ t}, \text{ Cu pad: } 645 \text{ mm}^2, \text{ t} = 10 \text{ s})$

Note 2: The pulse width limited by max channel temperature.



Weight: 10 mg (typ.)

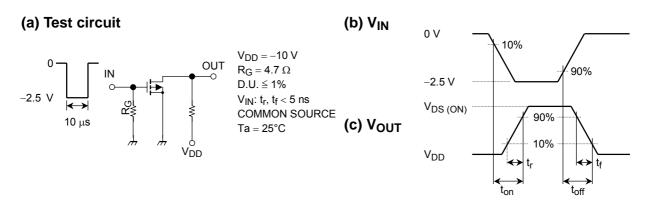
Marking

Equivalent Circuit

Handling Precaution

When handling individual devices (which are not yet mounted on a circuit board), be sure that the environment is protected against electrostatic electricity. Operators should wear anti-static clothing, and containers and other objects that come into direct contact with devices should be made of anti-static materials.

The Channel-to-Ambient thermal resistance R_{th} (ch-a) and the drain power dissipation P_D vary according to the board material, board area, board thickness and pad area, and are also affected by the environment in which the product is used. When using this device, please take heat dissipation fully into account


Electrical Characteristics (Ta = 25°C)

SSM3J13T

Characteristic		Symbol	Test Condition	Min	Тур.	Max	Unit
Gate leakage current		I _{GSS}	$V_{GS} = \pm 8 \text{ V}, V_{DS} = 0$	_	_	±1	μΑ
Drain-Source breakdown voltage		V (BR) DSS	$I_D = -1 \text{ mA}, V_{GS} = 0$	-12	_	_	V
		V (BR) DSX	$I_D = -1 \text{ mA}, V_{GS} = 8 \text{ V}$	-4	_	_	V
Drain Cut-off currer	nt	I _{DSS}	$V_{DS} = -12 \text{ V}, V_{GS} = 0$	_	_	-1	μА
Gate threshold volt	age	V _{th}	$V_{DS} = -3 \text{ V}, I_D = -0.1 \text{ mA}$	-0.45	_	-1.1	V
Forward transfer ad	dmittance	Y _{fs}	$V_{DS} = -3 \text{ V}, I_D = -1.5 \text{ A}$ (Note 3)	3.8	_	_	S
Drain-Source ON resistance		R _{DS} (ON)	$I_D = -1.5 \text{ A}, V_{GS} = -4 \text{ V}$ (Note 3)	_	50	70	mΩ
			$I_D = -1.5 \text{ A}, V_{GS} = -2.5 \text{ V}$ (Note 3)	_	70	95	
			$I_D = -1.5 \text{ A}, V_{GS} = -2.0 \text{ V}$ (Note 3)	_	90	180	
Input capacitance		C _{iss}	$V_{DS} = -10 \text{ V}, V_{GS} = 0, f = 1 \text{ MHz}$	_	890	_	pF
Reverse transfer capacitance		C _{rss}	$V_{DS} = -10 \text{ V}, V_{GS} = 0, f = 1 \text{ MHz}$	_	203	_	pF
Output capacitance		C _{oss}	$V_{DS} = -10 \text{ V}, V_{GS} = 0, f = 1 \text{ MHz}$	_	288	_	pF
Switching time	Turn-on time	t _{on}	$V_{DD} = -10 \text{ V}, I_D = -1 \text{ A}$	_	48	_	ns
	Turn-off time	t _{off}	$V_{GS} = 0$ ~ $-2.5 \text{ V}, R_G = 4.7 \Omega$	—	120	_	

Note 3: Pulse test

Switching Time Test Circuit

Precaution

 V_{th} can be expressed as voltage between gate and source when low operating current value is I_D = $-100~\mu A$ for this product. For normal switching operation, V_{GS} (on) requires higher voltage than V_{th} and V_{GS} (off) requires lower voltage than V_{th} .

(relationship can be established as follows: V_{GS} (off) < V_{th} < V_{GS} (on))

Please take this into consideration for using the device.

 $V_{\rm GS}$ recommended voltage of –2.5 V or higher to turn on this product.