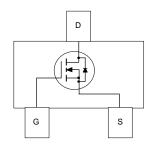

NDS351N


General Description

These N-Channel logic level enhancement mode power field effect transistors are produced using Fairchild's proprietary, high cell density, DMOS technology. This very high density process is especially tailored to minimize on-state resistance. These devices are particularly suited for low voltage applications in notebook computers, portable phones, PCMCIA cards, and other battery powered circuits where fast switching, and low in-line power loss are needed in a very small outline surface mount package.

Features

- $\qquad \text{1.1A, 30V. } \mathsf{R}_{\mathrm{DS(ON)}} = 0.25 \Omega \ @ \mathsf{V}_{\mathrm{GS}} = 4.5 \mathsf{V}.$
- Proprietary package design using copper lead frame for superior thermal and electrical capabilities.
- High density cell design for extremely low R_{DS(ON)}.
- Exceptional on-resistance and maximum DC current capability.
- Compact industry standard SOT-23 surface mount package.

Absolute Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter		NDS351N	Units
V _{DSS}	Drain-Source Voltage		30	V
V _{GSS}	Gate-Source Voltage - Continuous		20	V
I _D	Maximum Drain Current - Continuous	(Note 1a)	± 1.1	А
	- Pulsed		± 10	
P _D	Maximum Power Dissipation	(Note 1a)	0.5	W
		(Note 1b)	0.46	
T_J, T_{STG}	Operating and Storage Temperature Range		-55 to 150	°C
THERMA	L CHARACTERISTICS			<u> </u>
R _{OJA}	Thermal Resistance, Junction-to-Ambient		250	°C/W
ANA		(Note 1a)		
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	(Note 1)	75	°C/W

NDS351N

Symbol	Parameter	Conditions		Min	Тур	Max	Units
OFF CHA	RACTERISTICS	<u> </u>					•
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$		30			V
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}$				1	μΑ
			T _J =125°C			10	μΑ
I _{GSSF}	Gate - Body Leakage, Forward	$V_{GS} = 12 \text{ V}, V_{DS} = 0 \text{ V}$				100	nA
I _{GSSR}	Gate - Body Leakage, Reverse	$V_{GS} = -12 \text{ V}, V_{DS} = 0 \text{ V}$				-100	nA
	ACTERISTICS (Note 2)	·					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$		8.0	1.6	2	V
			T _J =125°C	0.5	1.3	1.5	
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} = 4.5 V, I _D = 1.1 A			0.185	0.25	Ω
			T _J =125°C		0.26	0.37	
		$V_{GS} = 10 \text{ V}, I_{D} = 1.4 \text{ A}$			0.135	0.16	
I _{D(ON)}	On-State Drain Current	$V_{GS} = 4.5 \text{ V}, \ V_{DS} = 5 \text{ V}$		5			Α
g _{FS}	Forward Transconductance	$V_{DS} = 5 \text{ V}, I_{D} = 1.1 \text{ A}$			2.5		S
DYNAMIC	CHARACTERISTICS						
C _{iss}	Input Capacitance	$V_{DS} = 10 \text{ V}, V_{GS} = 0 \text{ V},$ $f = 1.0 \text{ MHz}$			140		pF
C _{oss}	Output Capacitance				80		pF
C _{rss}	Reverse Transfer Capacitance				18		pF
SWITCHII	NG CHARACTERISTICS (Note 2)						
t _{d(on)}	Turn - On Delay Time	$V_{DD} = 10 \text{ V}, I_{D} = 1 \text{ A},$			9	15	ns
t _r	Turn - On Rise Time	V_{GS} = 10 V, R_{GEN} = 50 Ω			16	30	ns
$t_{d(off)}$	Turn - Off Delay Time				26	50	ns
t _f	Turn - Off Fall Time				19	40	ns
Q_g	Total Gate Charge	$V_{DS} = 10 \text{ V}, I_{D} = 1.1 \text{ A},$			2	3.5	nC
Q_{gs}	Gate-Source Charge	$V_{GS} = 5 \text{ V}$				1	nC
Q_{gd}	Gate-Drain Charge					2	nC

NDS351N

Electrical Characteristics (T _A = 25°C unless otherwise noted)								
Symbol	Parameter Conditions		Min	Тур	Max	Units		
DRAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS								
I _s	Maximum Continuous Drain-Source Diode Forward Current				0.6	А		
I _{SM}	Maximum Pulsed Drain-Source Diode Forward Current				5	Α		
V _{SD}	Drain-Source Diode Forward Voltage	V _{GS} = 0 V, I _S = 1.1 A (Note 2)		8.0	1.2	V		

Notes

1. R_{gat} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{gat} is guaranteed by design while R_{get} is determined by the user's board design.

$$P_D(t) = \frac{T_J - T_A}{R_{\theta J} \oint t} = \frac{T_J - T_A}{R_{\theta J} \oint R_{\theta C} \oint t} = I_D^2(t) \times R_{DS (ON)} g_{T_J}$$

Typical $R_{\rm g,A}$ using the board layouts shown below on 4.5"x5" FR-4 PCB in a still air environment:

a. 250°C/W when mounted on a 0.02 in² pad of 2oz cpper.

b. 270°C/W when mounted on a 0.001 in² pad of 2oz cpper.

Scale 1 : 1 on letter size paper

2. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.