

MURS140 & MURS160

Vishay General Semiconductor

Surface Mount Ultrafast Plastic Rectifier

Major Ratings and Characteristics

I _{F(AV)}	1.0 A			
V _{RRM}	400 V, 600 V			
I _{FSM}	35 A			
t _{rr}	50 ns			
V _F	1.05 V			
T _j max.	175 °C			

DO-214AA (SMB)

Epoxy meets UL 94V-0 Flammability rating

Polarity: Color band denotes cathode end

J-STD-002B and JESD22-B102D

E3 suffix for commercial grade

Terminals: Matte tin plated leads, solderable per

Mechanical Data

Case: DO-214AA (SMB)

Features

- · Glass passivated chip junction
- · Ideal for automated placement
- · Ultrafast reverse recovery time
- Low switching losses, high efficiency
- · High forward surge capability
- Meets MSL level 1, per J-STD-020C
- Solder Dip 260 °C, 40 seconds

Typical Applications

For use in high frequency rectification and freewheeling application in switching mode converters and inverters for consumer, computer and Telecommunication

Maximum Ratings

 $T_A = 25$ °C unless otherwise specified

Parameter	Symbol	MURS140	MURS160	Unit
Device Marking Codes		MG	MJ	
Maximum repetitive peak reverse voltage	V _{RRM} 400 600		V	
Working peak reverse voltage	V _{RWM}	400	600	V
Maximum DC blocking voltage	V _{DC}	400	600	V
	I _{F(AV)}	1.0 2.0		A
Peak forward surge current 8.3 ms single half sine-wave superimposed on rated load	I _{FSM}	35		A
Operating junction and storage temperature range	T _J , T _{STG}	- 65 to + 175		О°

MURS140 & MURS160

Vishay General Semiconductor

Electrical Characteristics

 $T_A = 25 \ ^{\circ}C$ unless otherwise specified#

Parameter	Test condition		Symbol	MURS 140	MURS 160	Unit
Maximum instantaneous forward voltage ⁽¹⁾	at I _F = 1.0 A, at I _F = 1.0 A,	T _J = 25 °C T _J = 150 °C	V _F	1.: 1.:	25 05	V
Maximum instantaneous reverse current at rated DC blocking voltage ⁽¹⁾		T _J = 25 °C T _J = 150 °C	Ι _R	5 15	.0 50	μΑ
Maximum reverse recovery time	at $I_F = 0.5 \text{ A}$, $I_R = 1.0 \text{ A}$, $I_{rr} = 0.2$	25 A	t _{rr}	5	0	ns
Maximum reverse recovery time	at I _F = 1.0 A, di/dt = 50 A/µs, V _I I _{rr} = 10 % I _{RM}	_R = 30 V,	t _{rr}	7	5	ns
Maximum forward recovery time	at $I_F = 1.0 \text{ A}$, di/dt = 100 A/µs, re	ecovery to 1.0 V	t _{fr}	5	0	ns

Notes:

(1) Pulse test: t_p = 300 μs pulse, duty cycle \leq 2 %

Thermal Characteristics

 T_A = 25 °C unless otherwise specified

Parameter	Symbol	MURS140	MURS160	Unit
Typical thermal resistance junction to ambient	$R_{ extsf{ heta}JL}$	13		C/W

Ratings and Characteristics Curves

 $(T_A = 25 \circ C \text{ unless otherwise noted})$

Figure 1. Forward Current Derating Curve

Figure 2. Maximum Non-Repetitive Peak Forward Surge Current

MURS140 & MURS160

Vishay General Semiconductor

Figure 3. Typical Instantaneous Forward Characteristics

Figure 4. Typical Reverse Leakage Characteristics

Package outline dimensions in inches (millimeters)

Mounting Pad Layout

Figure 5. Typical Junction Capacitance

Vishay

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.