

GENERAL DESCRIPTION

The MSD2N60 is a N-channel enhancement-mode MOSFET , providing the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost effectiveness. The TO-252 package is universally preferred for all commercial-industrial applications

FEATURES

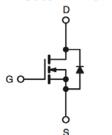
Originative New Design

Very Low Intrinsic Capacitances

Excellent Switching Characteristics

Unrivalled Gate Charge: 9.5nC (Typ.)

Extended Safe Operating Area


Lower RDS(ON) : 4.0 Ω (Typ.) @VGS=10V

100% Avalanche Tested

D-PAK(TO-252)

1.Gate 2. Drain 3. Source

RoHS COMPLIANT

FREE Avaliable

Absolute Ma	aximum Ratings (Tc=25°C unless otherwise specified)		
Symbol	Parameter	Value	Unit
V _{DSS}	Drain-Source Voltage	600	V
I _D	Drain Current -Continuous (T _C =25°C)	2	Α
	Drain Current -Continuous (T _C =100°C)	1.3	А
I _{DM}	Drain Current -Pulsed	8.0	А
V_{GS}	Gate-Source Voltage	±30	V
E _{AS}	Single Pulsed Avalanche Energy	120	mJ
E _{AR}	Repetitive Avalanche Energy	5.4	mJ
d_v/d_t	Peak Diode Recovery dv/dt	4.5	V/ns
P _D	Power Dissipation (T _C =25°C)	23	W
	- Derate above 25℃	0.18	W/°C
T_J, T_{STG}	Operating and Storage Temperature Range	-55 to + 150	$^{\circ}\!\mathbb{C}$
T _L	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds	300	°C

[•] Drain current limited by maximum junction temperature

Brückewell MSD2N60 600V N-Channel MOSFET

Thermal	Resistance Characteristics						
Symbol	Parameter		Тур.	Max.		Units	
$R_{\theta JC}$	Junction-to-Case	_		2.87		°C/W	
$R_{\theta JA}$	Junction-to-Ambient			50.0		C/VV	
Electrica	I Characteristics (Tc=25°C unless	otherwise specified)					
Symbol	Parameter	Test Condition	ns	Min	Туре	Max	Units
On Chara	acteristics						
V_{GS}	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{D}=25$	0μΑ	2.0	_	4.0	V
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =10V,I _D =1.0A		_	4.0	4.7	Ω
Off Chara	acteristics						
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0 V , I _D =250μA		600			V
△BV _{DSS}	Breakdown Voltage Temperature Coefficient	I _D =250μA, Referenced to 2	5℃		0.6		V/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =600V , V _{GS} = 0 V		_	_	10	μA
		V _{DS} =480V , V _C = 125°C		_	_	100	μA
I _{GSSF}	Gate-Body Leakage Current, Forward	V _{GS} =30V , V _{DS} =0 V		_	_	100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	V _{GS} =-30V , V _{DS} =0 V		_	_	-100	nA
Dynamic	Characteristics						
C _{iss}	Input Capacitance			_	320	420	pF
C _{oss}	Output Capacitance	─V _{DS} =25V, V _{GS} =0V, ─f=1.0MHz		_	35	46	pF
C _{rss}	Reverse Transfer Capacitance	1-1.0IVII 12	-T=1.0MHZ		4.5	6.0	pF
Switchin	g Characteristics						
t _{d(on)}	Turn-On Time	V_{DS} =300 V, I_{D} =2A, R_{G} =25 Ω		_	8	30	ns
t _r	Turn-On Rise Time				23	60	ns
$t_{\text{d(off)}}$	Turn-Off Delay Time				25	60	ns
tf	Turn-Off Fall Time				28	70	ns
Q_g	Total Gate Charge	V _{DS} =480V,I _D =2A,			9.5	13	nC
Q_{gs}	Gate-Source Charge	V_{DS} = 400 V, I_{D} = 2A, V_{GS} = 10 V		_	1.6		nC
Q_{gd}	Gate-Drain Charge	VGS-10 V			4.0		nC

Brückewell MSD2N60 600V N-Channel MOSFET

Source-Drain Diode Maximum Ratings and Characteristics									
Is	Continuous Source-Drain Diode Forward Current			_	2.0				
I _{SM}	Pulsed Source-Drain Diode Forward C	urrent		_	6.0	A			
V _{SD}	Source-Drain Diode Forward Voltage	I _S =2A, V _{GS} =0V		_	1.4	V			
trr	Reverse Recovery Time	I _S =2 A , V _{GS} = 0V		230		ns			
Qrr	Reverse Recovery Charge	di _F /dt=100A/µs	_	1.0		μC			

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature
- 2. IAS=2.0A, VDD=50V, RG=25 Ω , Starting TJ =25 $^{\circ}$ C
- 3. ISD≤2.0A, di/dt≤300A/µs, VDD≤BVDSS , Starting TJ =25 °C
- 4. Pulse Test : Pulse Width ≤ 300µs, Duty Cycle ≤ 2%
- 5. Essentially Independent of Operating Temperature

• Characteristic Curves

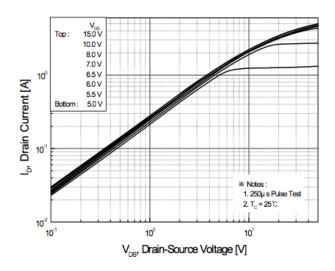


Figure 1. On Region Characteristics

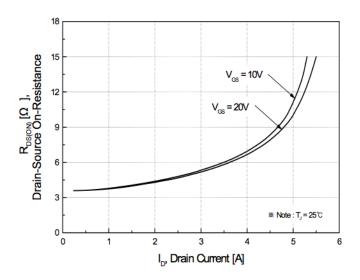


Figure 3. On Resistance Variation vs Drain Current and Gate Voltage

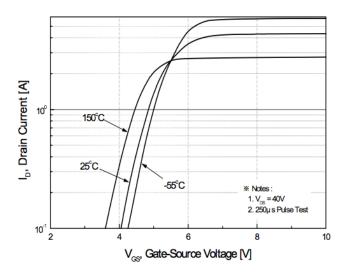


Figure 2. Transfer Characteristics

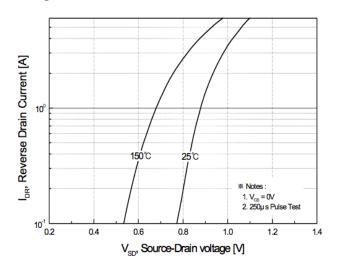


Figure 4. Body Diode Forward Voltage Variation with Source Current and Temperature

12
V_{DS} = 120V
V_{DS} = 300V
V_{DS} = 480V
V_{DS} = 480V
A
Q_C, Total Gate Charge [nC]

Figure 5. Capacitance Characteristics

Characteristic Curves

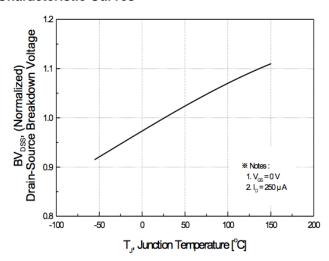


Figure 6. Gate Charge Characteristics

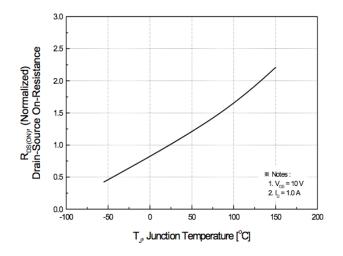


Figure 7. Breakdown Voltage Variation vs. Temperature

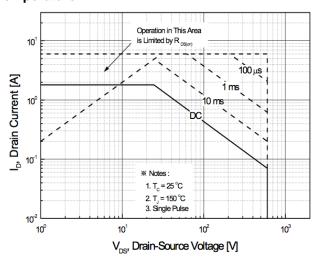


Figure 8. On-Resistance Variation vs. Temperature

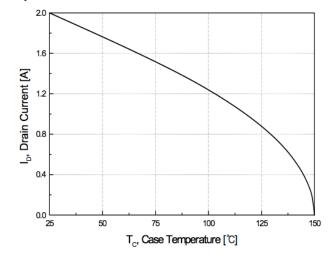


Figure 9. Maximum Safe Operating Area

Figure 10. Maximum Drain Current vs. Case Temperature

Brückewell

MSD2N60 600V N-Channel MOSFET

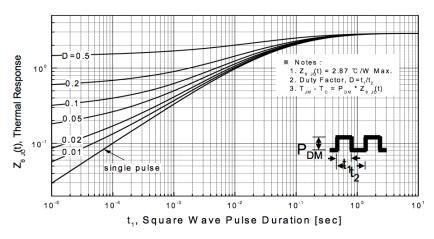


Figure 11. Transient Thermal Response Curve

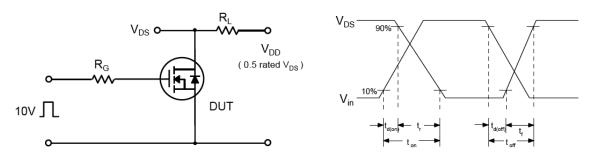


Fig 12. Resistive Switching Test Circuit & Waveforms

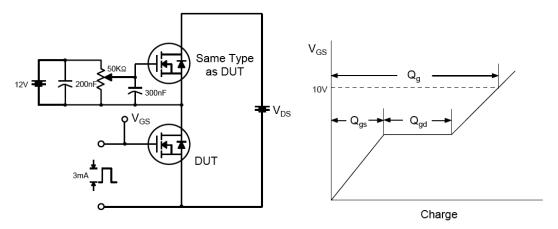


Fig 13. Gate Charge Test Circuit & Waveform

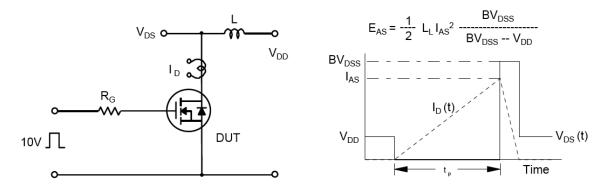


Fig 14. Unclamped Inductive Switching Test Circuit & Waveforms

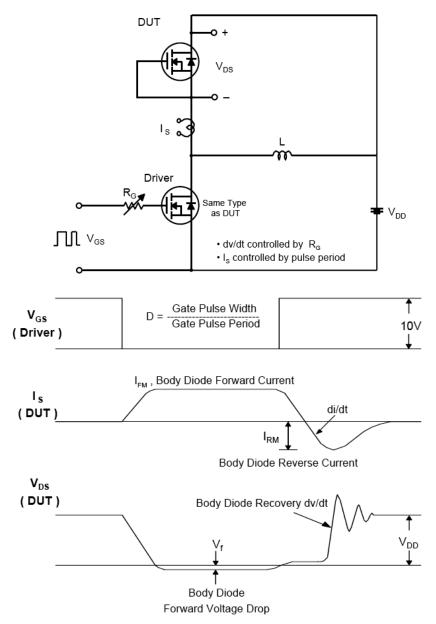
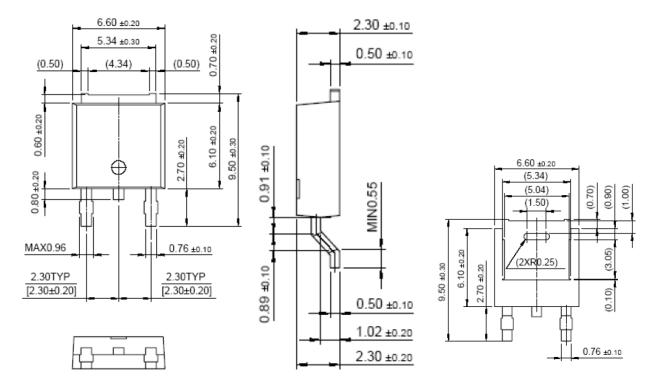



Fig 15. Peak Diode Recovery dv/dt Test Circuit & Waveforms

Package Dimensions

Dimensions in Millimeters

Legal Disclaimer Notice

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Bruckewell Technology Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Bruckewell"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Bruckewell makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Bruckewell disclaims

- (i) Any and all liability arising out of the application or use of any product.
- (ii) Any and all liability, including without limitation special, consequential or incidental damages.
- (iii) Any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Bruckewell's knowledge of typical requirements that are often placed on Bruckewell products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time.

Product specifications do not expand or otherwise modify Bruckewell's terms and conditions of purchase, including but not limited to the warranty expressed therein.