
U
ser’s M

anual

RL78 Family

 EEPROM Emulation Library Pack02

Japanese Release

ZIP file name: JP_R_EEL_RL78_P02_Vx.xx_x_E

Rev.1.00 Mar 2014

16-Bit Single-Chip Microcontroller

Supported Devices:

RL78/D1A RL78/G1A

RL78/F12 RL78/I1A

RL78/F13 RL78/L13

RL78/F14 RL78/L1C

RL78/G13

RL78/G14

16

All information contained in these materials, including products and product specifications,

represents information on the product at the time of publication and is subject to change by

Renesas Electronics Corporation without notice. Please review the latest information published

by Renesas Electronics Corporation through various means, including the Renesas Electronics

Corporation website (http://www.renesas.com).

www.renesas.com

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you
or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of
third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No
license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of
Renesas Electronics or others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration,
modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The
recommended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below.
“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual

equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.
“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-

crime systems; and safety equipment etc.
Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property
damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas
Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any
application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred
by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas
Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas
Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and
malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation
of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by
you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility
of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and
regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive.
Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws
and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose
manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use
Renesas Electronics products or technology described in this document for any purpose relating to military applications or use
by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas
Electronics products or technology described in this document, you should comply with the applicable export control laws and
regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise
places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this
document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of
unauthorized use of Renesas Electronics products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document
or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(2012.4)

NOTES FOR CMOS DEVICES

(1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a

reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL
(MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise
from entering the device when the input level is fixed, and also in the transition period when the input level
passes through the area between VIL (MAX) and VIH (MIN).

(2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If
an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc.,
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of
CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be
connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling
related to unused pins must be judged separately for each device and according to related specifications
governing the device.

(3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause
destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop
generation of static electricity as much as possible, and quickly dissipate it when it has occurred.
Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended
to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and
transported in an anti-static container, static shielding bag or conductive material. All test and measurement
tools including work benches and floors should be grounded. The operator should be grounded using a wrist
strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken
for PW boards with mounted semiconductor devices.

(4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS
device. Immediately after the power source is turned ON, devices with reset functions have not yet been
initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A
device is not initialized until the reset signal is received. A reset operation must be executed immediately
after power-on for devices with reset functions.

(5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal
operation and external interface, as a rule, switch on the external power supply after switching on the internal
power supply. When switching the power supply off, as a rule, switch off the external power supply and then
the internal power supply. Use of the reverse power on/off sequences may result in the application of an
overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements
due to the passage of an abnormal current. The correct power on/off sequence must be judged separately
for each device and according to related specifications governing the device.

(6) INPUT OF SIGNAL DURING POWER OFF STATE : Do not input signals or an I/O pull-up power supply
while the device is not powered. The current injection that results from input of such a signal or I/O pull-up
power supply may cause malfunction and the abnormal current that passes in the device at this time may
cause degradation of internal elements. Input of signals during the power off state must be judged
separately for each device and according to related specifications governing the device.

How to Use This Manual

Target Readers This manual is intended for users who wish to understand the features of the RL78

microcontrollers EEPROM Emulation Library Pack 02 and to use the library in

designing and developing application systems.

The target products are as follows.

RL78/D1A, RL78/F12, RL78/F13, RL78/F14, RL78/G13, RL78/G14, RL78/G1A,

RL78/I1A, RL78/L13, RL78/L1C

Purpose This manual is intended to give users understanding of how to use EEPROM

Emulation Library Pack 02 to rewrite the flash data memory in RL78-family

microcontrollers (i.e. write constant data by the application).

Organization The RL78 EEPROM Emulation Library Pack 02 user’s manual is separated into the

following parts

:

• Overview of EEPROM Emulation

• Using EEPORM Emulation

• EEPROM Emulation Function

How to Read This Manual It is assumed that the readers of this manual have general knowledge of electrical

engineering, logic circuits, and microcontrollers.

• To gain a general understanding of features

-> Read this manual in order of the table of contents.

• For details on the functions of the library

-> Refer to section 5, User Interface, of this user’s manual.

Conventions Data significance: Higher-order digits to the left and lower-order digits to the right

 Active low representations: xxx (overscore over pin and signal name)

 Note: Footnote for item marked with Note in the text.

 Caution: Information requiring particular attention

 Remark: Supplementary information

 Numeral representation: Binary ... xxxx or xxxxB

 Decimal ... xxxx

 Hexadecimal ... xxxxH or 0xXXXX

All trademarks and registered trademarks are the property of their respective owners.

EEPROM is a registered trademark of Renesas Electronics Corporation.

RL78 Family

EEPROM Emulation Library Pack02

R01US0068EJ0100 Rev.1.00 Page 5 of 53
Mar. 28, 2014

Contents
Chapter 1 Overview ... 7

1.1 Outline ... 7
1.2 Target Devices .. 7
1.3 Definition of Terms .. 7

Chapter 2 EEPROM Emulation ... 9
2. 1 Specifications of EEPROM Emulation .. 9
2. 2 Outline of Function ... 9
2. 3 EEL architecture ... 11

2. 3. 1 System Structure .. 11
2. 3. 2 EEL Pool .. 11
2. 3. 3 Structure of EEL Block ... 13
2. 3. 4 EEL Block Header ... 14
2. 3. 5 Structure of Stored Data .. 15
2. 3. 6 EEL Block Overview ... 16

Chapter 3 EEL Functional Specifications .. 17
3.1 EEL Functions / Commands of the EEL_Execute Function .. 17

3. 1. 1 EEL_CMD_STARTUP command [Startup processing] ... 17
3. 1. 2 EEL_CMD_SHUTDOWN command [Shutdown processing] 17
3. 1. 3 EEL_CMD_REFRESH command [Refresh processing] .. 17
3. 1. 4 EEL_CMD_FORMAT command [Format processing] ... 18
3. 1. 5 EEL_CMD_WRITE command [Write processing] .. 18
3. 1. 6 EEL_CMD_READ command [Read processing] .. 18
3. 1. 7 EEL_CMD_VERIFY command [Verify processing] .. 18

3.2 State Transitions .. 19
3.3 Basic Flowchart .. 21
3.4 Command Operation Flowchart ... 23
3.5 BGO（Back Ground Operation）function ... 24

Chapter 4 Using EEPROM Emulation ... 25
4.1 Caution Points .. 25
4.2 Number of stored user data items and total user data size ... 27
4.3 Initial Values to be set by User ... 28

Chapter 5 User Interface ... 31
5. 1 Request Structure (eel_request_t) Settings... 31

5.1.1 User Write Access .. 32
5.1.2 User Read Access .. 32

5. 2 EEL Function Calls ... 33
5. 3 Data Types ... 33
5. 4 EEL Function ... 34

FDL_Init ... 35
FDL_Open ... 36
FDL_Close... 37
EEL_Init ... 38

RL78 Family

EEPROM Emulation Library Pack02

R01US0068EJ0100 Rev.1.00 Page 6 of 53
Mar. 28, 2014

EEL_Open ... 39
EEL_Close... 40
EEL_Execute .. 41
EEL_Handler ... 45
EEL_GetSpace .. 46
EEL_GetVersionString ... 47

Chapter 6 Software Resources and Processing Time .. 48
6. 1 Processing Time ... 48
6. 2 Software Resources ... 50

6. 2. 1 Sections ... 52
Appendix A Revision History .. 53

Major Changes in This Document .. 53

RL78 Family Chapter 1 Overview

EEPROM Emulation Library Pack02

R01US0068EJ0100 Rev.1.00 Page 7 of 53
Mar. 28, 2014

Chapter 1 Overview

1.1 Outline

EEPROM emulation is a feature used to store data in the on-board flash memory in the same way as EEPROM.

During EEPROM emulation, the Data Flash library and EEPROM emulation library are used, and the data flash

memory is written to and read from.

The Data Flash library is a software library used to perform operations on the data flash memory. The EEPROM

emulation library is a software library used to execute EEPROM emulation from a user-created program. The Data

Flash library and EEPROM emulation library are placed in the code flash memory for use.

The EEPROM emulation library is free software to rewrite the data flash through the user program.

In this user’s manual, processing of the EEPROM emulation library includes processing of the Data Flash library.

Be sure to use this user’s manual together with the release note supplied with the package of this EEPROM

emulation library and the user’s manual for the target device.

1.2 Target Devices

For the latest device information, please contact our distributors or sales representatives.

1.3 Definition of Terms

The terms used in this manual are defined below.

• Pack

"Pack" is an identification name representing an EEPROM emulation library type. Use the pack corresponding to

your device.

• EEL

An abbreviation of the EEPROM Emulation library.

In this user’s manual, the RL78 EEPROM emulation library Pack02 is hereafter referred to as EEL.

• FDL

An abbreviation of the Data Flash library.

• FSL

An abbreviation of the Flash Self Programming library.

• EEL function

A generic term for the functions offered by the EEL.

RL78 Family Chapter 1 Overview

EEPROM Emulation Library Pack02

R01US0068EJ0100 Rev.1.00 Page 8 of 53
Mar. 28, 2014

• FDL function

A generic term for the functions offered by the FDL.

• FSL function

A generic term for the functions offered by the FSL.

• Block number

A number which identifies a block of Flash memory.

•EEL Blocks

An abbreviation of blocks that the EEPROM emulation library accesses. In this user’s manual, EEPROM emulation

blocks are hereafter referred to as EEL blocks.

•CF

 Code Flash

•DF

Data Flash

RL78 Family Chapter 2 EEPROM Emulation

Type 01 EEPROM Emulation Library Pack02

R01US0068EJ0100 Rev.1.00 Page 9 of 53
Mar. 28, 2014

Chapter 2 EEPROM Emulation

2. 1 Specifications of EEPROM Emulation

By calling the EEL function provided by the EEL from a user-created program, use is possible without the

awareness of data flash memory operations.

For the EEL, a one-bye identifier (data ID: 1 to 64) is assigned by the user for each data item, and reading and

writing using any unit from 1 to 255 bytes are possible on an assigned identifier basis.(The EEL can handle up to 64

identifiers.)

Note that three or more continuous block area of data flash memory (recommended) Note are used to store the

data. These blocks are called EEL blocks. Data written by EEPROM emulation is divided into reference data and

user-specified data, and the reference data is written to the target blocks from the lower block address, while the

user data is written from the higher block address.

Note: At least two blocks are necessary for EEPROM emulation. When two blocks are specified, if a write error

occurs even once, only reading of normally written data is possible but writing is no longer possible. After

that, the two target blocks must be formatted when the EEL is used to write data. Written data is erased

completely. Since a contingency (such as voltage drop) may occur in the system, we recommend that you

specify at least three blocks.

2. 2 Outline of Function

The EEL provides basic read/write functions having the following features.

• Up to 64 data items settable

• A data size of 1 to 255 bytes settable

• Supporting the back ground operation (BGO)

• Consumption of memory for management data

(10 bytes per EEL block and 2 bytes per EEL block write data)

• Reset resistance (EEL_CMD_WRITE, EEL_CMD_REFRESH)

• Block rotation (averaging data flash use frequency)

Renesas Electronics also provides RL78 EEPROM Emulation Library Pack 01 (EEL Pack01) as another EEL.

EEL consumes smaller amount of resource than EEL Pack01. Other functional differences are listed in the table

below. (For details of functions, see the RL78 Microcontroller EEPROM Emulation Library Pack 01 user’s manual

R01US0054EJ0102.)

RL78 Family Chapter 2 EEPROM Emulation

EEPROM Emulation Library Pack02

R01US0068EJ0100 Rev.1.00 Page 10 of 53
Mar. 28, 2014

Item EEL Pack01 EEL

User data length 1 to 255 1 to 255

Amount of stored user data Note 1 1 to 255 1 to 64

Data ID range 1 to 255 1 to 64

Number of EEPROM emulation blocks Note 2 4 to 255 3 to 255

Recommended user data size Note 1
980 x total number of blocks

x 1/4 - 980/2 bytes

1014/2 bytes

Enforce mode and TimeOut mode Supported Not supported

Back ground maintenance processing Supported Not supported

Data ID number Can be set arbitrarily Cannot be set arbitrarily

Auto-checksum for data Supported Not supported

Note1: The total size of user data must be within 1/2 of each block when all user data are written to an EEL

block. Therefore, the range used for the number of stored user data items differs depending on the size

of the stored user data. It is also necessary to consider the size of the reference data provided for each

data item for management use when determining the total size. For details about the number of stored

user data items and total size, see 4.2 Number of stored user data items and total user data size.

Note 2: EEL blocks cannot be set more than maximum number of blocks of on-board data flash memory.

RL78 Family Chapter 2 EEPROM Emulation

EEPROM Emulation Library Pack02

R01US0068EJ0100 Rev.1.00 Page 11 of 53
Mar. 28, 2014

2. 3 EEL architecture

This chapter describes the EEL architecture required for the user to rewrite data flash (the EEL pool) by using the

EEL.

2. 3. 1 System Structure

The EEL offers interface for accessing the data flash area defined by the user. The arrows shown in the figure 2-1

below indicate the flow of processing.

Figure 2-1 System Structure

2. 3. 2 EEL Pool

The EEL pool is a user-defined data flash area that is accessible by the EEL. The user program can access the

data flash only by using this EEL pool in the data flash via the EEL. The EEL pool size must be specified with the

number of blocks in the data flash of the target device. For the procedure to specify the number of blocks, see

section 4.3, Initial Values to be set by User.

The EEL pool is divided into 1024-byte blocks. Each block has a state which indicates the current usage of the

block.

State Description

Active Only a single EEL block is active at a time to store defined data. The active block circulates in

data flash blocks allocated in the EEL pool.

Invalid No data is stored in invalid blocks. EEL blocks are marked as invalid by the EEL or become

invalid in the case of erasure blocks.

Excluded If functional operation failed and possibility of a data flash failure is clarified, the EEL excludes

the relevant block and the block is no longer used for EEPROM emulation.

Before using the EEL, the FDL must

be initialized.

(FDL_Init and FDL_Open function)

ユーザ・プログラム
Code Flash

User Program

EEL

FDL

Data Flash

(EEL Pool)

RL78 Family Chapter 2 EEPROM Emulation

EEPROM Emulation Library Pack02

R01US0068EJ0100 Rev.1.00 Page 12 of 53
Mar. 28, 2014

Figure 2-2 shows an exemplary pool configuration for a device with 8 KB data flash.

When no writable area is remaining in the active block (block 1 in the example) and data can no longer be stored

(failure in write command), a new active block is selected in a cyclic manner and the current valid data set is copied

to this new active block. This process is referred to as refresh. After the EEL_CMD_REFRESH command is

executed, the previous active block becomes invalid and only a single active block exists. Excluded blocks (like

block 7 in the example) are ignored during this process and not considered as candidates for the selection of the

next active block.

Figure 2-2 EEL pool structure

The overall life cycle of a block in the EEL pool is shown in Figure 2-3. During normal operation, the block

switches between active and invalid state. When an error occurs during an access to the EEL block, the error EEL

block is marked as excluded. This block will not enter the lifecycle again. However, the user can try to reanimate the

block by a format of the complete pool which also erases all existing data content.

Figure 2-3 Life cycle of an EEL block

invalid
block

active
block

excluded
block

AI X

format

physical

block

0

physical
block

1

physical
block

2

physical
block

3

physical
block

4

physical
block

5

physical
block

6

physical
block

7

EEL
block

0

Data Flash Memory

EEL pool

EEL
block

1

EEL
block

2

EEL
block

3

EEL
block

4

A I Xactive block invalid block excluded block

AI I I I

EEL
block

5

EEL
block

6

EEL
block

7

I I X

RL78 Family Chapter 2 EEPROM Emulation

EEPROM Emulation Library Pack02

R01US0068EJ0100 Rev.1.00 Page 13 of 53
Mar. 28, 2014

The EEL pool has the four states shown below.

Table 2-1 States of the EEL Pool

State Description

Pool operational This is the usual case during EEL operation. All commands are available and can be executed.

Pool full Free space for data write is insufficient in the active block in use. This state indicates that a

refresh needs to be executed.

Pool exhausted No continuously usable EEL block is left. (At least two blocks that are not excluded are

necessary for EEL operations.)

Pool inconsistent There is a mismatch in the pool state and the data structure in the EEL block does not match

the user-set data structure. The EEL block is in the undefined state (e.g. no active block is

present).

2. 3. 3 Structure of EEL Block

The detailed block structure used by the EEL is depicted in Figure 2-4. In general, an EEL block is divided into three

utilized areas: the block header, the reference area and the data area.

Figure 2-4 ELL Block Structure (Example of RL78/G13 Data Flash Block 0)

Table 2-2 Configuration of Each EEL Block

Name Description

block header The block header contains all block status information needed for the block management

within the EEL-pool. It has a fixed size of 8 bytes.

reference area The reference area contains reference data which are required for the management of

data. When data is written, this area extends in the address increment direction.

data area The data area contains user data. When data is written, this area extends in the address

decrement direction.

block header

reference area

separator (erased 2 bytes)

erased area

(all bytes 0xFF)

data area

0xF1000

0xF13FF

growing

growing

RL78 Family Chapter 2 EEPROM Emulation

EEPROM Emulation Library Pack02

R01US0068EJ0100 Rev.1.00 Page 14 of 53
Mar. 28, 2014

Between reference area and data area, there is an erased area. With each EEL data update (i.e. the data is

written), this area is reduced successively. However, at least two bytes of space always remain between reference

area and data area for management and separation of these areas. This is indicated by the separator in Figure 2-4.

The EEL block header is detailed in 2.3.4, EEL Block Header, while the structure of data stored in the reference

and data area are described in Section 2.3.5, Structure of Stored Data.

2. 3. 4 EEL Block Header

The structure of the block header is depicted in Figure 2-5. It is composed of eight bytes, four of which are

reserved for the system.

Figure 2-5 Structure of EEL block header

The block status flags start at the beginning of the block and include the A flag, B flag, I flag, and X flag, each of

which is one byte, for a total of 4 bytes of data. The combination of flags indicates the EEL block status.

Figure 2-5 shows the placement status of flags, and Table 2-3 shows the combination status of flags.

Table 2-3 Overviews of Block Status Flags

Block Status Flag
State Description

A Flag B Flag I Flag X Flag

0x01 0xFE 0xFF 0xFF

Active

Currently used block

After the EEL_CMD_REFRESH command is executed,

the A flag of a new active block is set to 0x02.

0x02 0xFD 0xFF 0xFF

Currently used block

After the EEL_CMD_REFRESH command is executed,

the A flag of a new active block is set to 0x03.

0x03 0xFC 0xFF 0xFF

Currently used block

After the EEL_CMD_REFRESH command is executed,

the A flag of a new active block is set to 0x01.

Data other than
the above 0xFF 0xFF

Invalid Invalid block

--

other
than
0xFF

0xFF

-- --

other
than
0xFF

Excluded Excluded block

N

Reserved

0x00

0x00

Reserved

0xFF -　N

A

-

X

I

B

-

Reserved-

Reserved-

0x0000

0x0001

0x0002

0x0003

0x0004

0x0005

0x0006

0x0007

relative byte
index within

block

RL78 Family Chapter 2 EEPROM Emulation

EEPROM Emulation Library Pack02

R01US0068EJ0100 Rev.1.00 Page 15 of 53
Mar. 28, 2014

2. 3. 5 Structure of Stored Data

The structure of stored data when user data is written to an EEL block is shown in the figure below. A data is

composed of three parts: the start-of-record (SoR) field and the end-of-record (EoR) field and the data field. The

EEL descriptor table can be used to set data for use in the EEL. Each data is referred to by an identification number

(ID) and can have a size between 1 and 255 byte. (The exact specification of the format of the EEL descriptor can

be found in Section 4.3)

Each time data is written, stored data increase in the EEL block and multiple units of stored data exist in the EEL

block, but only the most recent stored data is referenced.

SoR and EoR build up the so-called reference data which is required for the management of the data. The

reference data and user data values are stored in different sections of the active block, namely the reference area

and the data area, respectively. Figure 2-6 shows the overview of the entire structure of stored data.

Figure 2-6 Structure of Stored Data

Table 2-4 Description of Each Field of Data Area

Name Description

SoR field

(Start of Record)

The one-byte SoR field contains the ID of data. This field indicates the start of write

processing. Data IDs 0x00 and 0xFF are not used to avoid patterns of erased cells.

EoR field

(End of Record)

The one-byte EoR field contains a 0xFF – data ID value.

This field indicates successful end of write processing. If writing does not end normally due

to a device reset or other reasons, the corresponding stored data is ignored by the EEL.

data field The data field contains the user data. The size of user data is 1 to 255 bytes. When data of

two bytes or more is stored, the smallest address of the data is allocated to the smallest

address of the data field (as shown in figure 2-7)

Data is written to the EEL block in the order of SoR -> data field -> EoR. If write processing does not end

successfully, the immediately previous data becomes valid.

Note1: The total size of the reference consumed by each stored data is 2 bytes. This should be considered when

evaluating the free space in a block before writing the data through the EEL_GetSpace function.

Note2: No checksum is added to user data. If a checksum is needed, add it to user data and check through the

user program.

ID

Data

0xFF -　ID

reference data in EEL
block reference area

SoR

EoR

0x0000

Data Size - 1

 data field in EEL
 block data area

RL78 Family Chapter 2 EEPROM Emulation

EEPROM Emulation Library Pack02

R01US0068EJ0100 Rev.1.00 Page 16 of 53
Mar. 28, 2014

2. 3. 6 EEL Block Overview

Figure 2-7 shows an example of an EEL block that contains multiple units of stored data:

•Data ID 0x01 with size = 0x04,

•Data ID 0x02 with size = 0x01

•Data ID 0x03 is defined but not written here,

•Data ID 0x04 with size = 0x02

The data have been written in the sequence ID 0x01 -> ID 0x04 -> ID 0x02. In this example, the data with ID

0x03 has not been written yet.

Figure 2-7 Example of an Active EEL Block

SoR à ID = 0x04

SoR à ID = 0x01

SoR à ID = 0x02

A = 0x02

erased area

 (all bytes 0xFF)

DATA(ID=0x01)[0]

DATA(ID=0x04)[1]

DATA(ID=0x02)[0]

reference
area

data area

separator (erased 2 bytes)

B = 0xFD

I = 0xFF

X = 0xFF

reserved

reserved

reserved

reserved

0x0000

0x0001

0x0002

0x0003

0x0004

0x0005

0x0006

0x0007

EoR à ~ID = 0xFE

EoR à ~ID = 0xFB

EoR à ~ID = 0xFD

0x0008

0x0009

0x000A

0x000B

0x000C

0x000D

0x000E

0x000F

DATA(ID=0x01)[1]

DATA(ID=0x01)[2]

DATA(ID=0x01)[3]0x03FF

DATA(ID=0x04)[0]

0x03FE

0x03FD

0x03FC

0x03FB

0x03FA

0x03F9

0x03F8

…
…
…
…
…
…
…
…

…

block header

relative byte
 index within

 block

RL78 Family Chapter 3 EEL Functional Specifications

EEPROM Emulation Library Pack02

R01US0068EJ0100 Rev.1.00 Page 17 of 53
Mar. 28, 2014

Chapter 3 EEL Functional Specifications

This chapter describes the functional specifications of the EEL required for the user to execute EEPROM

emulation.

3.1 EEL Functions / Commands of the EEL_Execute Function

The table below summarizes the EEL functions offered by the EEL.

Table 3-1 EEL Functions

EEL function name Functional overview

FDL_Init Initializes the FDL.

FDL_Open Preparation processing of FDL

FDL_Close End processing of FDL

EEL_Init Initializes the EEL

EEL_Open Preparation processing of EEL

EEL_Close End processing of EEL

EEL_Execute Manipulates data flash with commands.

Command : EEL_CMD_STARTUP

EEL_CMD_WRITE

EEL_CMD_READ

EEL_CMD_REFRESH

EEL_CMD_VERIFY

EEL_CMD_FORMAT

EEL_CMD_SHUTDOWN

EEL_Handler Controls the EEL while it is running.

EEL_GetSpace Checks free space in the EEL block

EEL_GetVersionString Obtains EEL version information.

With the EEL_Execute function, the following commands can be executed.

3. 1. 1 EEL_CMD_STARTUP command [Startup processing]

This checks the block status and sets the system to the EEPROM emulation start (started) state.

3. 1. 2 EEL_CMD_SHUTDOWN command [Shutdown processing]

Set the EEPROM emulation operation to the stopped state (opened).

3. 1. 3 EEL_CMD_REFRESH command [Refresh processing]

The latest stored data is copied from the active block (copy source block) to the next block (copy destination

block) in the EEL pool after the erase processing. This makes the copy destination block active.

RL78 Family Chapter 3 EEL Functional Specifications

EEPROM Emulation Library Pack02

R01US0068EJ0100 Rev.1.00 Page 18 of 53
Mar. 28, 2014

3. 1. 4 EEL_CMD_FORMAT command [Format processing]

This initializes (erases) everything, including the data recorded in the EEL blocks. Be sure to use this command

before using EEPROM emulation for the first time.

3. 1. 5 EEL_CMD_WRITE command [Write processing]

Write the specified data to an EEL block.

3. 1. 6 EEL_CMD_READ command [Read processing]

Read the specified data from an EEL block.

3. 1. 7 EEL_CMD_VERIFY command [Verify processing]

This command performs internal verification to check signal levels of the active block.

RL78 Family Chapter 3 EEL Functional Specifications

EEPROM Emulation Library Pack02

R01US0068EJ0100 Rev.1.00 Page 19 of 53
Mar. 28, 2014

3.2 State Transitions

To use EEPROM emulation from a user-created program, it is necessary to initialize the EEL and execute

functions that perform operations such as reading and writing on EEL blocks. Figure 3-1 shows the overall state

transitions, and Figure 3-2 shows an operation flow for using basic features. When using EEPROM emulation,

incorporate EEPROM emulation into user-created programs by following this flow.

Figure 3-1 State transitions diagram

FDL_Init()
 ↓
FDL_Open()
　　 ↓
EEL_Init()

closed

FDL_Close()

EEL_Open() EEL_Close()

opened

Format executing
busy

Startup executing
busy

EEL_CMD_FORMAT

EEL_CMD_STARTUP
status:OK
status:ERROR

started

status:OK
 ERROR Verify

EEL_CMD_FORMAT

EEPROM command executing
busy

EEL_CMD_WRITE
EEL_CMD_READ
EEL_CMD_REFRESH
EEL_CMD_VERIFY

status:OK
status:ERROR

EEL_CMD_SHUTDOWN

status:ERROR

EEL_CMD_STARTUP

 Reset or Power ON uninitialized

exhausted

EEPROM command executing
busy

EEL_CMD_READ
EEL_CMD_VERIFY

status:OK
status:ERROR

status:
ERROR
POOL_EXHAUSTED

status:
ERROR
POOL_EXHAUSTED

EEL_CMD_SHUTDOWN

Note 1: EEL_Close and EEL_Init can be called from every state. Please note however, that this interrupts any

EEL processing and can lead to unpredictable behavior.

Note 2: Once the EEL_CMD_FORMAT command is started, be sure to finish it.

RL78 Family Chapter 3 EEL Functional Specifications

EEPROM Emulation Library Pack02

R01US0068EJ0100 Rev.1.00 Page 20 of 53
Mar. 28, 2014

[Overview of state transitions diagram]

To use EEL to manipulate the data flash memory, it is necessary to execute the provided functions in order to

advance the processing.

(1) uninitialized

This is the state after turning the power on or resetting.

(2) closed

This is the state in which the data to perform EEPROM emulation is initialized by executing the FDL_Init,

FDL_Open, and EEL_Init functions (no ongoing operation to the data flash memory).

 To execute FSL, STOP mode, or HALT mode processing after executing EEPROM emulation, execute

EEL_Close in the opened state to switch to the closed state.

(3) opened

This state is switched to by executing EEL_Open in the closed state and makes it possible to perform

operations on the data flash memory. It is not possible to execute FSL, STOP mode, or HALT mode

processing until EEL_Close is executed and the system switches to the closed state.

(4) started

This state is switched to by executing the EEL_CMD_STARTUP command in the opened state and

makes it possible to execute EEPROM emulation. Writes and reads that use EEPROM emulation are

performed in this state.

(5)exhausted

This state is made from the opened or started state when continuously usable EEL blocks have been

exhausted during command execution. In this state, only EEL_CMD_READ, EEL_CMD_VERIFY, and

EEL_CMD_SHUTDOWN commands are executable.

(6) busy

This is the state used when executing a specified command. The state that is switched to differ

depending on which command is executed and how it terminates.

RL78 Family Chapter 3 EEL Functional Specifications

EEPROM Emulation Library Pack02

R01US0068EJ0100 Rev.1.00 Page 21 of 53
Mar. 28, 2014

3.3 Basic Flowchart

Figure 3-2 below shows the basic procedure to perform read and write operations for the data flash by using the

EEL.

Figure 3-2 Basic Flowchart of EEL

Note 1: When using the EEPROM emulation for the first time, be sure to execute the EEL_CMD_FORMAT

command.

Note 2: Error processing is omitted in the above flowchart.

start

end

(2) FDL_Open function

(11) FDL_Close function

(3) EEL_Init function

(10) EEL_Close function

(4) EEL_Open function

(5) EEL_Execute function

EEL_CMD_STARTUP

(6) EEL_Execute function

EEL_CMD_WRITE

(7) EEL_Execute function

EEL_CMD_READ

(9) EEL_Execute function

EEL_CMD_SHUTDOWN

(1) FDL_Init function

EEL_ERR_POOL_FULL?

(8) EEL_Execute function

EEL_CMD_REFRESH

Yes

No

RL78 Family Chapter 3 EEL Functional Specifications

EEPROM Emulation Library Pack02

R01US0068EJ0100 Rev.1.00 Page 22 of 53
Mar. 28, 2014

[Overview of basic operation flow]

(1)FDL initialization processing (FDL_Init)

Because it is necessary to initialize the FDL parameters (RAM) if using the EEL to access the data flash memory,

the FDL_Init function must be executed in advance. If FSL processing was executed after this initialization

finished, the initialization processing must be re-executed.

(2) FDL preparation processing (FDL_Open)

Set the Data Flash Control Register (DFLCTL) to the state where accessing the data flash memory is

permitted(DFLEN = 1).

(3) EEL initialization processing (EEL_Init)

Initialize the parameters (RAM) used by the EEL.

(4) EEPROM emulation preparation processing (EEL_Open)

Set the data flash memory to a state (opened) for which control is enabled to execute EEPROM emulation.

(5) EEPROM emulation execution start processing (EEL_Execute: EEL_CMD_STARTUP command)

Set the system to a state (started) in which EEPROM emulation can be executed.

(6) EEPROM emulation data write processing (EEL_Execute: EEL_CMD_WRITE command)

Write the specified data to an EEL block.

(7) EEPROM emulation data read processing (EEL_Execute: EEL_CMD_READ command)

Read the specified data from an EEL block.

(8) EEPROM emulation refresh processing (EEL_Execute: EEL_CMD_REFRESH command)

The latest stored data is copied from the active block (copy source block) to the next block (copy destination

block) in the EEL pool after the erase processing. This makes the copy destination block active

(9) EEPROM emulation execution stop processing (EEL_Execute: EEL_CMD_SHUTDOWN command)

Set the EEPROM emulation operation to the stopped state (opened).

(10) EEPROM emulation end processing (EEL_Close)

Set the data flash memory to a state (closed) for which control is disabled to stop EEPROM emulation.

(11) FDL end processing (FDL_Close)

Set the Data Flash Control Register (DFLCTL) to the state where accessing the data flash memory is inhibited

(DFLEN = 0).

RL78 Family Chapter 3 EEL Functional Specifications

EEPROM Emulation Library Pack02

R01US0068EJ0100 Rev.1.00 Page 23 of 53
Mar. 28, 2014

3.4 Command Operation Flowchart

The figure below shows the basic procedure to perform read and write operations for data flash by using the

EEL.

Figure 3-3 Command Operation Flowchart

(1) EEL_Execute function

Perform operations for data Flash.

(2) Busy state check

Check status_enu of the request structure (eel_request_t). When status_enu is EEL_BUSY, continue the data

flash operation. If status_enu is other than EEL_BUSY, terminate the data flash operation with an error.

(3) EEL_Handler function

Control the EEL while it is running. By repeating the execution of the EEL_Handler function, continue the

data flash operation.

(4) Final state check

If the final state is EEL_OK, the operation ends normally. Otherwise, it will be terminated with an error.

(1)EEL_Execute function

Start

Error

(2) Busy state check
(3) EEL_Handler function

(4) Final state check

Normal end

Not busy

Busy

Normal end

Abnormal end

RL78 Family Chapter 3 EEL Functional Specifications

EEPROM Emulation Library Pack02

R01US0068EJ0100 Rev.1.00 Page 24 of 53
Mar. 28, 2014

3.5 BGO（Back Ground Operation）function

The EEL_Execute function starts command processing and then immediately returns the control to the user

program. This allows the user program to run during the data flash operation and so is called back ground operation

(BGO).

The data flash read or write command processing is started by executing the EEL_Execute function, and the

processing is continued and completed by executing the EEL_Handler function. For this reason, the EEL_Handler

function must be executed continuously until the processing is completed.

To see if the processing requested from the EEL_Execute function has been successfully completed, call the

EEL_Handler function from the user program and check the status of ongoing processing.

The EEL_CMD_SHUTDOWN command does not require calling of the EEL_Handler function. However, we

recommend that you follow the command operation flowchart shown in figure 3-3.

RL78 Family Chapter 4 Using EEPROM Emulation

EEPROM Emulation Library Pack02

R01US0068EJ0100 Rev.1.00 Page 25 of 53
Mar. 28, 2014

Chapter 4 Using EEPROM Emulation

EEPROM emulation can store a maximum of 64 Note data items each consisting of 1 to 255 bytes in the flash

memory by using three or more blocks (recommended) of flash memory.

EEPROM emulation can be executed by incorporating the EEL into a user-created program and executing that

program.

Note: For details about the number of user data items that can be stored, see 4.2 Number of stored user data

items and total user data size.

4.1 Caution Points

EEPROM emulation is achieved by using a feature for manipulating the on-board microcontroller data flash

memory. Therefore, it is necessary to note the following

Table 4-1 Points for Caution (1/2)

No Caution Points

1 All EEL codes and constants must be placed in the same 64-Kbyte flash block.

2 Initialization by the FDL_Init function must be performed before the FDL_Open, FDL_Close, or any EEL

function is executed.

3 The EEL must be initialized by the EEL_Init function before any EEL function is executed.

4 The data flash memory cannot be read during data flash memory operation by the EEL.

5 Do not execute STOP mode or HALT mode processing while the EEPROM emulation is being used.

If it is necessary to execute STOP mode or HALT mode processing, be sure to execute all of the

processing up to and including the EEL_Close function and FDL_Close function to finish EEPROM

emulation.

6 The watchdog timer does not stop during the execution of the EEL.

7 The request structure (eel_request_t) must be placed at an even address.

8 Do not destroy the request structure (eel_request_t) during command execution.

9 Initialize the argument (RAM) that is used by the EEPROM emulation library function. When not initialized,

a RAM parity error is detected and the RL78 microcontroller might be reset. For a RAM parity error, refer

to the user’s manual of the target RL78 microcontroller.

10 All members of the request structure (eel_request_t) must be initialized once before a command is

executed. If any unused member exists in the request structure (eel_request_t), set a desired value for the

member. If any member is not initialized, the RL78 microcontroller may be reset due to a RAM parity error.

For details, see the User’s Manual: Hardware for the RL78 microcontroller in use.

11 The EEL does not support multitask execution. Do not execute the EEL functions during interrupt

processing.

RL78 Family Chapter 4 Using EEPROM Emulation

EEPROM Emulation Library Pack02

R01US0068EJ0100 Rev.1.00 Page 26 of 53
Mar. 28, 2014

Table 4-2 Points for Caution (1/2)

No Caution Points

12 After the FDL_Close and EEL_Close functions have been executed, the requested command and ongoing

command stop and cannot be resumed. Before calling the FDL_Close and EEL_Close functions, finish all

ongoing commands.

13 Before using the EEPROM emulation library, always close the FSL. Also, do not run the FSL while the

EEPROM emulation library is being used. When using the FSL, be sure to execute all of the processing up

to and including the EEL_Close function and FDL_Close function to finish EEPROM emulation.

When using EEPROM emulation after executing FSL processing, it is necessary to start processing from

the initializing function (the FDL_Init function).

14 Before starting the EEPROM emulation, be sure to start up the high-speed on-chip oscillator first. The

high-speed on-chip oscillator must also be activated when using the external clock.

15 In address above 0xFFE20 (0xFE20), do not place data buffer (argument) or stack which is used by

EEL functions and FDL functions.

16 When using data transfer controller (DTC) during EEPROM emulation, do not place RAM area used by

DTC in self-RAM and in address above 0xFFE20 (0xFE20).

17 Until EEPROM emulation is finished, do not corrupt RAM area (including self-RAM) used by EEPROM

emulation.

18 No checksum is added to user data. If a checksum is needed, add it to user data and check through the

user program.

19 When the FDL descriptor or EEL descriptor is changed, the EEPROM emulation can no longer be

executed. In that case, the EEL pool must be formatted by the EEL_CMD_FORMAT command in addition

to initialization of FDL and EEL. When adding data, however, the EEPROM emulation can be continuously

executed.

20 Do not operate the Data Flash Control Register (DFLCTL) during the execution of the EEL.

21 To use the data flash memory for EEPROM emulation, it is necessary to execute the

EEL_CMD_FORMAT command upon first starting up to initialize the data flash memory and make it

usable as EEPROM emulation blocks.

22 It is recommended that at least three blocks be provided in the data flash memory to use the EEL.

23 Do not destroy EEL blocks by the user program that uses other EELs or FDLs.

24 The EEL does not support multitask execution. When executing an EEL function on the OS, do not

execute in from two or more tasks.

25 About an operation frequency of RL78 microcontrollers and an operation frequency value set by the

initializing function (FDL_Init), be aware of the following points:

-When using a frequency lower than 4 MHz as an operation frequency of RL78 microcontrollers, only 1

MHz, 2 MHz and 3 MHz can be used (frequencies other than integer values like a 1.5 MHz cannot be

used). Also, set an integer value 1, 2, or 3 to the operation frequency value set by the initializingfunction.

- When using a frequency of 4 MHz or higher Note1 as an operation frequency of RL78 microcontrollers, a

certain frequency can be used as an operation frequency of RL78 microcontrollers.

- This operation frequency is not the frequency of the high-speed on-chip oscillator.

Note 1: For a maximum frequency, see the target RL78 microcontroller user’s manual.

RL78 Family Chapter 4 Using EEPROM Emulation

EEPROM Emulation Library Pack02

R01US0068EJ0100 Rev.1.00 Page 27 of 53
Mar. 28, 2014

4.2 Number of stored user data items and total user data size

The total size of user data that can be used in the EEPROM emulation is limited. The size required for writing all user data

to an EEL block must be within 1/2 of the block. Therefore, the number of stored data items that can be used differs

depending on the size of user data that is actually stored. The following shows how to calculate the size that can be used

when actually writing user data, as well as the total user data size.

[Maximum usable size of one block that can be used to write the user data]

Size of one block of data flash memory: 1024 bytes

Size required for EEPROM emulation block management: 8 bytes

Free space necessary as termination information (separator): 2 bytes

Maximum usable size of one block = 1024 bytes - 8 bytes - 2 bytes = 1014 bytes

[Maximum size and recommended size]

Data must be held in one block. Therefore, the maximum size is the maximum usable size of one block but the following

relational expression should be met. To enable all data to be updated at least once, we recommend that the data be within

the half size of the maximum usable size of one block.

Maximum size = the basic total user data size + maximum data size + 2 ≤ 1014

(Assumed that the largest data can be updated once after all data have been written.)

Recommended size = 1014 / 2

(Assumed that all data can be updated once after all data have been written.)

[Calculating the size for writing each user data item
]Note

Size of each written user data item = data size + reference data size (2 bytes)

Note: For details, see 2.3.5 Structure of Stored Data.

[Calculating the basic total user data size]

Basic total size = (user data 1 + 2) + (user data 2 + 2) ... + (user data n + 2)

RL78 Family Chapter 4 Using EEPROM Emulation

EEPROM Emulation Library Pack02

R01US0068EJ0100 Rev.1.00 Page 28 of 53
Mar. 28, 2014

4.3 Initial Values to be set by User

As the initial values for the EEL, be sure to set the items indicated below. In addition, before executing the EEL, be sure to

execute the high-speed on-chip oscillator. The high-speed on-chip oscillator must also be activated when using the external

clock.

・Number of stored data items, and specific data IDs and data size

<Data flash library user include file (fdl_descriptor.h)> Note 1,2

<EEPROM emulation library user include file (eel_descriptor.h)>Note 1, 2

<EEPROM emulation library user program file (eel_descriptor.c)>Note 2

Note 1: The macros and macro names that are being used have common parameters with the EEL, so changes

should be made to numerical values only.

Note 2: After initializing the EEPROM emulation blocks (after executing the EEL_CMD_FORMAT command), do

not change the values. If the values are changed, reinitialize the EEL blocks (by executing the

EEL_CMD_FORMAT command).

#define EEL_VAR_NO 8

#define FDL_SYSTEM_FREQUENCY 32000000

#define FDL_WIDE_VOLTAGE_MODE

#define FDL_POOL_BLOCKS 0

#define EEL_POOL_BLOCKS 4

:(1) Operation frequency

:(2) Voltage mode

:(3) FDL pool size

:(4) EEL pool size

:(5) Number of stored data items

 __far const eel_u08 eel_descriptor[EEL_VAR_NO+2] =

{

 (eel_u08)(EEL_VAR_NO), /* variable count */ ¥

(eel_u08)(sizeof(type_A)), /* id=1 */ ¥

 (eel_u08)(sizeof(type_B)), /* id=2 */ ¥

 (eel_u08)(sizeof(type_C)), /* id=3 */ ¥

 (eel_u08)(sizeof(type_D)), /* id=4 */ ¥

 (eel_u08)(sizeof(type_E)), /* id=5 */ ¥

 (eel_u08)(sizeof(type_F)), /* id=6 */ ¥

 (eel_u08)(sizeof(type_X)), /* id=7 */ ¥

 (eel_u08)(sizeof(type_Z)), /* id=8 */ ¥

(eel_u08)(0x00), /* zero terminator */ ¥

};

:(6) Data size of the identifier

(data ID)

RL78 Family Chapter 4 Using EEPROM Emulation

EEPROM Emulation Library Pack02

R01US0068EJ0100 Rev.1.00 Page 29 of 53
Mar. 28, 2014

(1) Operation frequency

This sets an operation frequency which is used in RL78 microcontrollers. Note1

The setting value is set to the FDL_Init frequency parameter by the following expressions (The frequency is

calculated by raising its decimals. The result calculated omits its decimals.).

Setting value of FDL_Init operation frequency = ((FDL_SYSTEM_FREQUENCY + 999999)/1000000)

Ex.1: When FDL_SYSTEM_FREQUENCY is 20000000 (20 MHz),

((20000000 + 999999)/10000000) = 20.999999 = 20

Ex.2: When FDL_SYSTEM_FREQUENCY is 4500000 (4.5 MHz),

((4500000 + 999999)/10000000) = 5.499999 = 5

Ex.3: When FDL_SYSTEM_FREQUENCY is 5000001 (5.000001 MHz),

((5000001 + 999999)/10000000) = 6.000000 = 6

Note1: This setting is a value required to control data flash memory. This setting does not change the

operation frequency of RL78 microcontrollers. In addition, this operation frequency is not the

frequency of the high-speed on-chip oscillator.

(2) Voltage mode Note 2

This sets the voltage mode of data flash memory. Note 3

When FDL_WIDE_VOLTAGE_MODE is not defined: Full-speed mode

When FDL_WIDE_VOLTAGE_MODE is defined: Wide voltage mode

Note 2: The FDL_WIDE_VOLTAGE_MODE is commented out and not defined in the initial setting. To use

RL78 microcontrollers in the wide voltage mode, cancel the comment-out to define the mode.

Note 3: For details of the voltage mode, see the corresponding RL78 microcontrollers user’s manual.

(3) FDL pool size

Specify 0.

(4) EEL pool size Note 4

The number of blocks in the data flash memory of the target device must be specified as the number of

blocks in the EEL pool.

Note 4: Specify 3 (3 blocks) or a greater value (recommended).

(5) Number of stored data items

 Specify the number of data items to be used in the EEPROM emulation. A value of 1 to 64 can be set.

RL78 Family Chapter 4 Using EEPROM Emulation

EEPROM Emulation Library Pack02

R01US0068EJ0100 Rev.1.00 Page 30 of 53
Mar. 28, 2014

(6) Data size of each data identifier (data ID)

A table to define the data size of each identifier is provided below. This is called an EEL descriptor table.

The EEL can only add identifiers while the program is running. Data to be written must be registered in the

EEL descriptor table in advance.

Figure 4-1 EEL Descriptor Table (When there are eight different data)

__far const eel_u08 eel_descriptor [Number of stored data items + 2]

EEL_VAR_NO

Byte size of data ID1

Byte size of data ID2

Byte size of data ID3

Byte size of data ID4

Byte size of data ID5

Byte size of data ID6

Byte size of data ID7

Byte size of data ID8

0x00

・EEL_VAR_NO

User-specified number of data items used in the EEL

・Byte size of Data IDx

User-specified size of user data (in bytes)

・Termination area (0x00)

Specify 0 as the termination information.

RL78 Family Chapter 5 User Interface

EEPROM Emulation Library Pack02

R01US0068EJ0100 Rev.1.00 Page 31 of 53
Mar. 28, 2014

Chapter 5 User Interface

5. 1 Request Structure (eel_request_t) Settings

Basic operations such as reading from and writing to the data flash are performed by a single function. The

function transfers commands and data ID to the EEL via the request structure (eel_request_t). Furthermore, the

EEL state and error information are acquired via the request structure (eel_request_t).

In subsequent sections, write access to the request structure (eel_request_t) from the user is called user write

access, and read access to it from the user is called user read access.

Figure 5-1 Request Structure (eel_request_t)

The request structure (eel_request_t) is defined in the eel_types.h file. It should not be changed by the user.

 [Definition of the request structure (eel_request_t)]

typedef struct

{

 __near eel_u08* address_pu08;

 eel_u08 identifier_u08;

 eel_command_t command_enu;

 eel_status_t status_enu;

} eel_request_t;

EEL

User Program

address_pu08

identifier_u08

command_enu

status_enu

User read access

User write access

RL78 Family Chapter 5 User Interface

EEPROM Emulation Library Pack02

R01US0068EJ0100 Rev.1.00 Page 32 of 53
Mar. 28, 2014

Figure 5-2 Alignment of Variables of the Request Structure (eel_request_t)

5.1.1 User Write Access

(1) address_pu08

Specify the start address of the data buffer used for EEL_CMD_WRITE command and EEL_CMD_READ

command execution.

Associated command (macro name) Setting

EEL_CMD_WRITE Start address of the data bufferNote 1

EEL_CMD_READ Start address of the data bufferNote 2

Note 1: Buffer which contains data written by the user

Note 2: Buffer which contains data read from the data flash

(2) identifier_u08

Specify the data ID used for each command. For more information about how to do this, see the description of the

EEL_Execute function in section 5.4, EEL Functions.

Associated command (macro name) Setting

EEL_CMD_WRITE ID of write data

EEL_CMD_READ ID of read data

(3) command_enu

Commands to be set in the common executable function.

Associated command (macro name) Description

EEL_CMD_STARTUP Startup processing

EEL_CMD_WRITE Write processing

EEL_CMD_READ Read processing

EEL_CMD_REFRESH Refresh processing

EEL_CMD_VERIFY Verify processing

EEL_CMD_FORMAT Format processing

EEL_CMD_SHUTDOWN Shutdown processing

5.1.2 User Read Access

- status_enu

EEL status and error information. For information about the status and errors which might occur during the

execution of the functions, see the description of the EEL_Execute function in section 5.4, EEL Functions.

__near eel_u08* address_pu08

eel_u08 identifier_u08 eel_command_t command_enu;

eel_status_t status_enu;

 bit0 Bit15

RL78 Family Chapter 5 User Interface

EEPROM Emulation Library Pack02

R01US0068EJ0100 Rev.1.00 Page 33 of 53
Mar. 28, 2014

5. 2 EEL Function Calls

This section describes how to call the EEL functions from a user program written in C or assembly language.

- C language

When an EEL function is called from a user program in C language in the same way as a normal C function is

called, the EEL function’s parameters are passed to the EEL as arguments and the required processing is

performed.

- Assembly language

Before calling an EEL function from a user program in assembly language, take necessary procedures (such as

setting parameters or return addresses) based on the function-calling rules for the C compiler package used by the

user as a development environment. The EEL function’s parameters are passed to the EEL as arguments and the

required processing is performed.

Remarks 1: To call the EEL functions offered by the EEL from a user program, you should define the following

standard header file and include it in that program:

 C language

fdl.h: FDL header file

fdl_types.h: FDL definition setting header file

eel.h: EEL header file

eel_types.h: EEL definition setting header file

Assembly language

fdl.inc: FDL header file

eel.inc: EEL header file

eel_types.inc: EEL definition setting header file

Remarks 2: If an EEL function other than EEL_Init is called before EEL_Init is called, the correct operation is not guaranteed.

Remarks 3: If an EEL function other than FDL_Init is called before FDL_Init is called, the correct operation is not guaranteed.

5. 3 Data Types

Below are the data types of the parameters to be specified for calling the EEL functions offered by the EEL.

Macro name Description

eel_u08 Unsigned 8-bit integers (unsigned char)

eel_u16 Unsigned 16-bit integers (unsigned short)

eel_u32 Unsigned 32-bit integers (unsigned long)

RL78 Family Chapter 5 User Interface

EEPROM Emulation Library Pack02

R01US0068EJ0100 Rev.1.00 Page 34 of 53
Mar. 28, 2014

5. 4 EEL Function

The subsequent sections describe the EEL functions offered by the EEL. These functions appear in the

following format.

Name

 [Function]

Describes the function overview of this function.

 [Format]

<C language>

Describes the format to call this function from a user program described in the C language.

<Assembler>

Describes the format to call this function from a user program described in the Assembly language.

[Pre-conditions]

Describes the precondition of this function.

[Post-conditions]

Describes the post condition of this function.

[Cautions]

Describes the cautions of this function.

[Register status after calling this function]

Describes the register status after this function is called.

[Arguments]

Describes the argument of this function.

 [Return values]

Describes the return values from this function.

RL78 Family Chapter 5 User Interface

EEPROM Emulation Library Pack02

R01US0068EJ0100 Rev.1.00 Page 35 of 53
Mar. 28, 2014

FDL_Init

[Function]

FDL initialization processing

[Format]
<C language>

fdl_status_t __far FDL_Init(const __far fdl_descriptor_t* descriptor_pstr)

<Assembler>

CALL !FDL_Init or CALL !!FDL_Init

Remark Call this function by using ! if placing the FDL at 00000H to 0FFFFH or by using !! if not.

[Pre-conditions]

1. The FSL and EEL processing must be either not executing or finished.

2. The high-speed on-chip oscillator has been started up.

[Post-conditions]

Execute the FDL_Open function.

[Cautions]

1. Be sure to execute this function when starting EEPROM emulation to make it possible to start accessing the

data flash memory.

2. This function is mutually exclusive with the FSL. Before executing this function, be sure to end FSL. Also,

never use any FSL functions during EEPROM emulation.

3. To use FSL after this function is executed, the RAM must be reinitialized, so always execute this function

when restarting the EEL.

4. To execute this function again, always be sure to end EEL.

5. The descriptor table used for this function cannot be modified. Be sure to use a defined descriptor table.

[Register status after calling this function]

Return Value : C

Corrupted registers: AX (argument), BC (argument)

[Arguments]

Argument Type Description

descriptor_pstr fdl_descriptor_t* (far) Pointer to the descriptor table

[Return values]

Type Symbol Definition Description

fdl_status_t FDL_OK Normal end

FDL_ERR_CONFIGURATION Initialization error. The setting is incorrect. Or

high-speed on-chip oscillator does not run. Make sure

that the defined data has not been changed and the

high-speed on-chip oscillator has been started up.

Remark Assembly language return values are stored in register C.

RL78 Family Chapter 5 User Interface

EEPROM Emulation Library Pack02

R01US0068EJ0100 Rev.1.00 Page 36 of 53
Mar. 28, 2014

FDL_Open

[Function]

FDL preparation processing

Set the Data Flash Control Register (DFLCTL) to the state where accessing the data flash memory is permitted

(DFLEN = 1).
[Format]

<C language>

void __far FDL_Open(void)

<Assembler>

CALL !FDL_Open or CALL !!FDL_Open

Remark Call this function by using ! if placing the FDL at 00000H to 0FFFFH or by using !! if not.

[Pre-conditions]

The FDL_Init function must have finisehed normally.

[Post-conditions]

Execute the EEL_Init function.

[Cautions]

None

[Register status after calling this function]

No registers are corrupted.

[Arguments]

None

[Return values]

None

RL78 Family Chapter 5 User Interface

EEPROM Emulation Library Pack02

R01US0068EJ0100 Rev.1.00 Page 37 of 53
Mar. 28, 2014

FDL_Close

[Function]

FDL end processing

Set the Data Flash Control Register (DFLCTL) to the state where access to the data flash memory is inhibited

(DFLEN = 0). All ongoing EEL processing stop.

[Format]

<C language>

void __far FDL_Close(void)

<Assembler>

CALL !FDL_Close or CALL !!FDL_Close

Remark Call this function by using ! if placing the FDL at 00000H to 0FFFFH or by using !! if not.

[Pre-conditions]

The FDL_Init, FDL_Open, EEL_Init, EEL_Open, and EEL_Close functions must have finished normally.

[Post-conditions]

None

[Cautions]

None

[Register status after calling this function]

No registers are corrupted.

[Arguments]

None

[Return values]

None

RL78 Family Chapter 5 User Interface

EEPROM Emulation Library Pack02

R01US0068EJ0100 Rev.1.00 Page 38 of 53
Mar. 28, 2014

EEL_Init

[Function]

Processing to initialize the RAM used for EEPROM emulation

[Format]

<C language>

eel_status_t __far EEL_Init (void)

<Assembler>

CALL !EEL_Init or CALL !!EEL_Init

Remark Call this function by using ! if placing the EEL at 00000H to 0FFFFH or by using !! if not.

[Pre-conditions]

1. The FSL and the EEL processing must be either not executing or finished.

2. The FDL_Init and FDL_Open function must have finished normally.

[Post-conditions]

Execute the EEL_Open function.

[Cautions]

1. When starting EEPROM emulation, always execute this function to initialize the RAM to be used.

2. This function is mutually exclusive with FSL. Before executing this function, be sure to close FSL. Also, never

use any FSL functions during EEPROM emulation.

3. To use FSL after this function is executed, the RAM must be reinitialized, so always execute this function

when restarting EEL.

4. To execute this function again, always close EEL.

[Register status after calling this function]

Return values: C

[Arguments]

None

[Return values]

Type Symbol Definition Description

eel_status_t EEL_OK Normal end

EEL_ERR_CONFIGURATION Initialization error. The EEL cannot be executed with the

values set by the FDL_Init and EEL_Init functions.

Check the current setting referring to section 4.3, Initial

Values to be set by User.

Remark Assembly language return values are stored in register C.

RL78 Family Chapter 5 User Interface

EEPROM Emulation Library Pack02

R01US0068EJ0100 Rev.1.00 Page 39 of 53
Mar. 28, 2014

EEL_Open

[Function]

EEPROM emulation preparation processing

This function makes the EEPROM emulation executable.

[Format]

<C language>

void __far EEL_Open(void)

<Assembler>

CALL !EEL_Open or CALL !!EEL_Open

Remark Call this function by using ! if placing the EEL at 00000H to 0FFFFH or by using !! if not.

[Pre-conditions]

1. The FDL_Init, FDL_Open, and EEL_Init functions must have finished normally.

2. If EEPROM emulation was executed, the processing up to EEL_Close and FDL_Close function must be

executed to stop the EEPROM Emulation processing.

[Post-conditions]

None

[Cautions]

After the EEL_Open function is executed and the EEPROM emulation has been transitioned to the opened state,

the FSL cannot be executed. In addition, STOP mode and HALT mode cannot be executed. To execute the FSL,

STOP mode, or HALT mode, execute the EEL_Close and FDL_Close functions to transition the EEPROM

emulation to the uninitialized state.

[Register status after calling this function]

No registers are corrupted.

[Arguments]

None

[Return values]

None

RL78 Family Chapter 5 User Interface

EEPROM Emulation Library Pack02

R01US0068EJ0100 Rev.1.00 Page 40 of 53
Mar. 28, 2014

EEL_Close

[Function]

EEPROM emulation end processing

This function makes the EEPROM emulation unexecutable.

[Format]

<C language>

void __far EEL_Close(void)

<Assembler>

CALL !EEL_Close or CALL !!EEL_Close

Remark Call this function by using ! if placing the EEL at 00000H to 0FFFFH or by using !! if not.

[Pre-conditions]

If EEPROM emulation was executed, the EEL_CMD_SHUTDOWN command must be used to set EEPROM

emulation to the stopped state (the opened state).

[Post-conditions]

Execute the FDL_Close function to exit the EEPROM emulation.

[Cautions]

None

[Register status after calling this function]

No registers are corrupted.

[Arguments]

None

[Return values]

None

RL78 Family Chapter 5 User Interface

EEPROM Emulation Library Pack02

R01US0068EJ0100 Rev.1.00 Page 41 of 53
Mar. 28, 2014

EEL_Execute

[Function]

EEPROM emulation execution function

Each type of processing for performing EEPROM emulation operations is specified for this function as an

argument in the command format, and the processing is executed.

[Format]

<C language>

void __far EEL_Execute(__near eel_request_t* request_pstr);

<Assembler>

CALL !EEL_Execute or CALL !!EEL_Execute

Remark Call this function by using ! if placing the EEL at 00000H to 0FFFFH or by using !! if not.

[Pre-conditions]

The FDL_Init, FDL_Open and EEL_Init, EEL_Open functions must have finished normally.

[Post-conditions]

1. While status_enu of the request structure (eel_request_t) is EEL_BUSY, execute the EEL_Handler function

repeatedly.

2. The EEL_Execute function starts command processing and then immediately returns the control to the user

program. The command processing is continued by executing the EEL_Handler function. Therefore, the

EEL_Handler function must be executed continuously until the command processing is completed.

[Cautions]

None

[Register status after calling this function]

Corrupted register: AX (argument)

[Arguments]

Argument Type Description

request_pstr eel_request_t* (near) Pointer to the request structure (eel_request_t)

eel_request_t Details

Member Type Description

eel_request_t.address_pu08 eel_u08 *

(near)

Pointer to the data buffer for storing write and read

data
Note

eel_request_t.identifier_u08 eel_u08 Parameter for setting command to be executed

eel_request_t.command_enu eel_command_t Command to be executed

eel_request_t.status_enu eel_status_t Command execution status

Note: Specify this parameter only for a command that requires the parameter. Set up the data buffer size according

to the byte sizes of the write and read data.

RL78 Family Chapter 5 User Interface

EEPROM Emulation Library Pack02

R01US0068EJ0100 Rev.1.00 Page 42 of 53
Mar. 28, 2014

 Execution Commands (eel_command_t)

Command Description

EEL_CMD_STARTUP This checks the block status and sets the system to the EEPROM emulation start

(started) state. If two active blocks exist, the incorrect block is changed to an

invalid block.

Be sure to execute this command before executing commands other than the

EEL_CMD_FORMAT command and make sure that the command finishes normally.

EEL_CMD_WRITE Note 1 This writes the specified data to the EEL blocks.

* The following arguments must be specified prior to execution.

・address_pu08:Specifies the start address of the RAM area where the write data

is stored.

・identifier_u08: Specifies the data ID of the write data.

EEL_CMD_READ Note 1 This reads the specified data from the EEL blocks.

*The following arguments must be specified prior to execution.

・address_pu08:Specifies the start address of the RAM area where the read data

is stored.

・identifier_u08:Specifies the data ID of the read data.

EEL_CMD_VERIFY Note 1,2 This performs internal verification to check signal levels of the active block. This

command verifies whether signal levels of flash memory cells are appropriate or

not.

EEL_CMD_REFRESHNote1,3 This copies the latest stored data from the active EEL block (copy source block)

to the next block (copy destination block) in the EEL pool after the erase

processing. This makes the copy destination block active.

EEL_CMD_FORMAT This initializes (erases) everything, including the data recorded in the EEL

blocks. Be sure to use this command before using EEPROM emulation for the

first time. Furthermore, use this command to initialize the entire blocks when an

error (such as no active block) has occurred in EEL blocks or when modifying

values in the descriptor table (unchangeable fixed values).

Because EEPROM emulation switches to the stopped state (opened) regardless

of the results after the processing finishes, execute the EEL_CMD_STARTUP

command to continue using EEPROM emulation.

EEL_CMD_SHUTDOWNNote1 This sets EEPROM emulation to the stopped state (opened).

Note 1: Do not execute this command until the EEL_CMD_STARTUP command has finished normally.

Note 2: This command is not used to perform processing for reading written data and compare it. To compare

written data, use the EEL_Execute (EEL_CMD_READ) function through the user program.

Note 3: The erase processing is performed by executing the EEL_CMD_REFRESH command.

RL78 Family Chapter 5 User Interface

EEPROM Emulation Library Pack02

R01US0068EJ0100 Rev.1.00 Page 43 of 53
Mar. 28, 2014

Command Execution statuses of EEL_Execute/EEL_Handler (eel_status_t) (1/2)

Command Execution Status Category Description Corresponding Commands

EEL_OK Meaning Normal end

All commands
Cause None

Action to

be taken
None

EEL_BUSY Meaning A command is being executed.

All commands
Cause None

Action to

be taken

Keep calling EEL_Handler function until the status

changes.

EEL_ERR_POOL_FULL

Meaning Pool full error

EEL_CMD_WRITE
Cause There is no area that can be used to write the data.

Action to

be taken

Execute EEL_CMD_REFRESH command and

restart writing data.

EEL_ERR_INITIALIZATION Meaning Initialization error

All commands

Cause The FDL_Init, FDL_Open, EEL_Init, and

EEL_Open functions have not been finished

normally.

Action to

be taken

Normally finish the FDL_Init, FDL_Open, EEL_Init,

and EEL_Open functions.

EEL_ERR_ACCESS_LOCKED Meaning EEPROM emulation lock error
Commands other than

EEL_CMD_STARTUP and

EEL_CMD_FORMAT

Cause EEPROM emulation cannot be executed.

Action to

be taken

Make sure that the EEL_CMD_STARTUP

command has finished normally.

EEL_CMD_UNDEFINED Command error

A command that does not exist has been specified.

EEL_ERR_VERIFY Meaning When the EEL_CMD_STARTUP command was

executed:

An error occurred during the internal verification

processing for the block header or the finally

written data.

When the EEL_CMD_VERIFY command was

executed:

An error occurred during the internal verification

processing for the active block.

EEL_CMD_STARTUP

EEL_CMD_VERIFY

Cause Some signal levels of flash memory cells were not

appropriate.

Action to

be taken
Execute the EEL_CMD_REFRESH command.

EEL_ERR_PARAMETER Meaning Parameter error

All commands
Cause An incorrect command parameter has been

specified.
Action to

be taken
Revise the specified parameter.

EEL_ERR_REJECTED Meaning Reject error

All commands
Cause A different command is being executed.

Action to

be taken
Call the EEL_Handler function to terminate

the ongoing command.

RL78 Family Chapter 5 User Interface

EEPROM Emulation Library Pack02

R01US0068EJ0100 Rev.1.00 Page 44 of 53
Mar. 28, 2014

Command Execution statuses of EEL_Execute/EEL_Handler (eel_status_t) (2/2)

Command Execution Status Category Description Corresponding Commands

EEL_ERR_NO_INSTANCE Meaning No-write-data error

EEL_CMD_READ
Cause The specified identifier data has not been written.

Action to

be taken

Write data to the identifier specified using the

EEL_CMD_WRITE command.

EEL_ERR_POOL_INCONSISTENT Meaning EEL block inconsistency error

EEL_CMD_STARTUP

Cause An EEL block has the undefined state (such as

because there are no active blocks).

Action to

be taken

Execute the EEL_CMD_FORMAT command to

initialize the EEL blocks.

EEL_ERR_POOL_EXHAUSTED Meaning EEL block exhaustion error

EEL_CMD_STARTUP

EEL_CMD_FORMAT

EEL_CMD_REFRESH

EEL_CMD_WRITE

Cause There are no more EEL blocks that can be used

to continue.

Action to

be taken

Stop EEPROM emulation.

You can try restoration by executing the

EEL_CMD_FORMAT command (erasing all

existing data) or read existing data.

EEL_ERR_INTERNAL

Meaning Internal error
Commands other than

EEL_CMD_SHUTDOWN

Cause An unexpected error has occurred.

Action to

be taken

Check the device state.

[Return values]

None

RL78 Family Chapter 5 User Interface

EEPROM Emulation Library Pack02

R01US0068EJ0100 Rev.1.00 Page 45 of 53
Mar. 28, 2014

EEL_Handler

[Function]

Continuous EEPROM emulation execution processing

This function continues executing the EEPROM emulation processing specified for the EEL_Execute function.

[Format]

<C language>

void __far EEL_Handler(void);

<Assembler>

CALL !EEL_Handler or CALL !!EEL_Handler

Remark Call this function by using ! if placing the EEL at 00000H to 0FFFFH or by using !! if not.

[Pre-conditions]

1. The FDL_Init, FDL_Open, and EEL_Init,EEL_Open functions must have finished normally.

2. The EEL_Execute function should execute Note, and status_enu of the request structure (eel_request_t)

should be EEL_BUSY.

Note: Execution of the EEL_CMD_SHUTDOWN command does not need execution of the EEL_Handler function.

However, we recommend that you follow the command operation flowchart shown in figure 3-3.

[Post-conditions]

While status_enu of the request structure (eel_request_t) is EEL_BUSY, execute this function repeatedly. If the

EEL_Handler function is executed while no command is executed, status_enu of of the request structure

(eel_request_t) is not updated.

[Cautions]

The command execution status of the EEL_Handler function is set for the ”eel_request_t* request” used as an

argument of the EEL_Execute function. Therefore, when using the EEL_Handler function, do not free the

“eel_request_t* request” variable. For the execution state of the command specified by the EEL_Handler function,

see the list of the EEL_Execute/EEL_Handler command execution state (eel_status_t)

[Register status after calling this function]

No registers are corrupted.

[Arguments]

None

[Return values]

None

RL78 Family Chapter 5 User Interface

EEPROM Emulation Library Pack02

R01US0068EJ0100 Rev.1.00 Page 46 of 53
Mar. 28, 2014

EEL_GetSpace

[Function]

This obtains the free EEL block space.

[Format]

<C language>

eel_status_t __far EEL_GetSpace(__near eel_u16* space_pu16)

<Assembler>

CALL !EEL_GetSpace or CALL !!EEL_GetSpace

Remark Call this function by using ! if placing the EEL at 00000H to 0FFFFH or by using !! if not.

[Pre-conditions]

The FDL_Init,FDL_Open,EEL_Init, and EEL_Open functions, and theEEL_Execute

function(EEL_CMD_STARTUP command) must have finished normally.

[Post-conditions]

None

[Cautions]

1. When the EEL pool has been exhausted, 0 is always returned to indicate that there is no free space.

2. When an error value is returned, the free space information remains unchanged.

[Register status after calling this function]

Return value: C

Corrupted register: AX (argument)

[Arguments]

Argument Type Description

space_pu16 eel_u16* (near) The address at which the free space information of the current

active block is input

[Return values]

Type Symbol Definition Description

eel_status_t EEL_OK Normal end

EEL_ERR_INITIALIZATION EEL_Init has not been executed.

EEL_ERR_ACCESS_LOCKED The EEL_CMD_STARTUP command has not finished normally.

EEL_ERR_REJECTED A command is being executed.

Remark Assembly language return values are stored in register C.

RL78 Family Chapter 5 User Interface

EEPROM Emulation Library Pack02

R01US0068EJ0100 Rev.1.00 Page 47 of 53
Mar. 28, 2014

EEL_GetVersionString

[Function]

This obtains the version information of the EEL.

[Format]

<C language>

__far eel_u08* __far EEL_GetVersionString(void)

<Assembler>

CALL !EEL_GetVersionString or CALL !!EEL_GetVersionString

Remark Call this function by using ! if placing the EEL at 00000H to 0FFFFH or by using !! if not.

[Pre-conditions]

None

[Post-conditions]

None

[Cautions]

None

[Register status after calling this function]

None

[Arguments]

None

 [Return values]

Type Description

eel_u08*

(far)

The address at which the version information of the EEL is input

 (24-bit address area)

Example: For EEPROM emulation library Pack02 V1.00 (ASCII code)

“ERL78T02R110_GVxxx”
 Version information : V110→V1.10

 Corresponding tool : Renesas Electronics version

Type name : Type02

 Corresponding device : RL78

 Target library : EEL

RL78 Family Chapter 6 Software Resources and Processing Time

EEPROM Emulation Library Pack02

R01US0068EJ0100 Rev.1.00 Page 48 of 53
Mar. 28, 2014

Chapter 6 Software Resources and Processing Time

6. 1 Processing Time

This section describes the EEL processing time.

Figure 6-1 shows the concept of EEL function response time and total processing time. The total processing time in the

figure is the case of successful completion and does not include the processing time in the case of abnormal end (such as

incorrect input data or error). Delay time due to execution of the EEL_Handler function is not included either. If the

EEL_Handler function calling interval time is extended, the maximum total processing time may be exceeded.

Figure 6-1 Overview of Processing Time

User Program EEL

EEL_Execute

Status = BUSY

EEL_Handler

Status = BUSY

EEL_Handler

Status = BUSY

EEL_Handler

Status = OK

Response

 Time

Total Processing Time

RL78 Family Chapter 6 Software Resources and Processing Time

EEPROM Emulation Library Pack02

R01US0068EJ0100 Rev.1.00 Page 49 of 53
Mar. 28, 2014

Table 6-1 EEL Function Response Time of EEPROM Emulation Library Pack02

Table 6-2 Total Processing Time of EEPROM Emulation Library Pack 02

Remarks fcpu: CPU/peripheral hardware clock frequency (for example, at 20 MHz, fcpu = 20)

Block Num: Number of EEPROM emulation blocks

Functions MAX time(Full Speed Mode) MAX time(Wide Voltage Mode)

FDL_Init 1199 / fcpu 1199 / fcpu

FDL_Open 27 / fcpu + 14us 27 / fcpu + 14us

FDL_Close 836 / fcpu + 444us 791 / fcpu + 969us

EEL_Init 3268 / fcpu 3268 / fcpu

EEL_Open 14 / fcpu 14 / fcpu

EEL_Close 17 / fcpu 17 / fcpu

EEL_GetSpace 47 / fcpu 47 / fcpu

EEL_GetVersionString 14 / fcpu 14 / fcpu

EEL_Execute 320 / fcpu 320 / fcpu

EEL_Handler 4582 / fcpu 4582 / fcpu

Functions MAX time(Full Speed Mode) MAX time(Wide Voltage Mode)

EEL_Execute / EEL_Handler

EEL_CMD_STARTUP (280530 + 235 * Block Num)

/ fcpu + 1612 us

(277604 + 235 * Block Num)

/ fcpu + 8798 us

EEL_CMD_FORMAT (67102 + 288981 * Block Num)

/ fcpu + (266627 * Block Num) us

(67102 + 256218 * Block Num)

/ fcpu + (303359 * Block Num) us

 EEL_CMD_REFRESH

1. Finished normally
5163828 / fcpu + 774424 us 5072479 / fcpu + 1421917 us

EEL_CMD_REFRESH

2. REFRESH processing

failed until Block Num -1

(1554000 + 7538406 * (Block Num - 1))

/ fcpu + (1548404 * (Block Num - 1)) us

(1554000 + 7355752 * (Block Num - 1))

/ fcpu + (2842866 * (Block Num - 1)) us

EEL_CMD_VERIFY 30869 / fcpu + 4126 us 19605 / fcpu + 29754 us

EEL_CMD_WRITE 303387 / fcpu + 111858 us 289240 / fcpu + 253342 us

EEL_CMD_READ 5102 / fcpu 5102 / fcpu

EEL_CMD_SHUTDOWN 219 / fcpu 219 / fcpu

RL78 Family Chapter 6 Software Resources and Processing Time

EEPROM Emulation Library Pack02

R01US0068EJ0100 Rev.1.00 Page 50 of 53
Mar. 28, 2014

6. 2 Software Resources

In the EEL, program areas corresponding to parts of the library to be used, RAM areas for variables to be used in

the library, and RAM areas for work area (self-RAM) are used to assign an appropriate program to the user area.

Also, since the FDL will be used, the EEL must have a separate area for use by the FDL.

Tables 6-3 and 6-4 list required software resources Note 1, 2. Figures 6-2 and 6-3 show the images of allocating software

resources to the RAM.

Table 6-3 Software Resources Used by EEL

Note 1: Please contact about products added after this document is issued.

Item Size(byte) Restrictions on Allocation and UsageNote1,2

Self-RAMNote3 0 to 1024Note3

RL78/D1A
RAM 4KB ROM 64KB FEF00H to FF2FFH

RAM 16KB ROM 256KB FBF00H to FC2FFH

RL78/F12 RAM 4KB ROM 64KB FEF00H to FF2FFH

RL78/F13

RAM 4KB ROM 64KB

(R5F10AmE (m = 6, A, B, G, L))
FEF00H to FF2FFH

RAM 8KB ROM128KB FDF00H to FE2FFH

RL78/F14

RAM 8KB ROM 96KB

(R5F10PmF (m = G, L, M))
FDF00H to FE2FFH

RAM 20KB ROM 256KB FAF00H to FB2FFH

RL78/G13

RAM 4KB ROM 64KB FEF00H to FF2FFH

RAM 20KB ROM 256KB

(R5F100xJ (x = F, G, J, L, M, P))
FAF00H to FB2FFH

RAM 32KB ROM 512KB F7F00H to F82FFH

RL78/G14

RAM 5.5KB ROM 48KB FE900H to FECFFH

RAM 5.5KB ROM 64KB FE900H to FECFFH

RAM 24KB ROM 256KB F9F00H to FA2FFH

RL78/G1A RAM 4KB ROM 64KB FEF00H to FF2FFH

RL78/I1A RAM 4KB ROM 64KB FEF00H to FF2FFH

RL78/L13 RAM 8KB ROM 128KB FDF00H to FE2FFH

RL78/L1C
RAM 16KB ROM 192KB FBF00H to FC2FFH

RAM 16KB ROM 256KB FBF00H to FC2FFH

ALL Note 1,2 Products other than the above Contact us.

Stack 80

Can be allocated to a RAM area other than the self-RAM and the area from FFE20H
to FFEFFH

Data buffer Note4 1 to 255

Request Structure 5

SADDR RAM work
area

SADDR : 3

(fdl:2)

(eel:1)

Can be allocated to a short-addressing RAM area

Library size
3400

(fdl:600)
(eel:2800)

Can be allocated to any program area other than the self-RAM and the area from
FFE20H to FFEFFH (ROM is recommended)

Data table 3 to 68

Fixed-parameter area

(default)

14

(fdl:10)

(eel:2)

EEL Blocks
3,072 or more
(at least 3
blocks)

Only data flash memory can be used.

RL78 Family Chapter 6 Software Resources and Processing Time

EEPROM Emulation Library Pack02

R01US0068EJ0100 Rev.1.00 Page 51 of 53
Mar. 28, 2014

 2: The RL78/G12, L12 and G1C product does not support the EEL

 3: An area used as the working area by the EEL is called self-RAM in this manual and the release note. The

self-RAM requires no user setting because it is an area that is not mapped and automatically used at

execution of the EEL (previous data is discarded). When the EEL is not used, the self-RAM can be used as

a normal RAM space.

For the RL78 microcontroller with self-RAM, the chapter of "memory space" in the user's manual of the

RL78 microcontroller has a note on an area (self-RAM) whose usage is prohibited during self-programming.

If the above table does not include the target RL78 microcontroller, refer to the user's manual of the target

RL78 microcontroller.

 4: The data buffer is used as the working area for EEL internal processing or the area where the data to be

set is allocated in the EEL_Execute function. The required size depends on the function to be used.

Table 6-4 Data Buffer Size Used by EEL Functions

Note: An additional 5-byte area is used by the request structure.

Figure 6-2 Arrangement Example of Self-RAM and Addresses FFE20H to FFEFFH

(RL78/G13: product with 4-Kbyte RAM and 64-Kbyte ROM)

Function Name Bytes Function Name Bytes

FDL_Init 0 EEL_Close 0

FDL_Open 0 EEL_Execute Note 0 to 255

FDL_Close 0 EEL_Handler Note 0 to 255

EEL_Init 0 EEL_GetSpace 2

EEL_Open 0 EEL_GetVersionString 0

RL78 Family Chapter 6 Software Resources and Processing Time

EEPROM Emulation Library Pack02

R01US0068EJ0100 Rev.1.00 Page 52 of 53
Mar. 28, 2014

Figure 6-3 Arrangement Example of Addresses FFE20H to FFEFFH

(RL78/G13: product with 2-Kbyte RAM and 32-Kbyte ROM)

6. 2. 1 Sections

Functions, constants, and variables to be used are allocated to specified sections in the EEL and FDL.

The following table lists sections defined by the EEL and FDL.

Table 6-5 Sections Used in the EEL/FDL

Section name Description

FDL_CODE FDL’s code section that contains FDL programs.

FDL_SDAT FDL’s variable data section that contains variable data used in the FDL.

Place this section in the short addressing RAM area.

FDL_CNST FDL’s constant data section that contains constant data used in the FDL.

EEL_CODE EEL’s code section that contains EEL programs.

EEL_SDAT EEL’s variable data section that contains variable data used in the EEL.

Place this section in the short addressing RAM area.

EEL_CNST EEL’s constant data section that contains constant data used in the EEL.

RL78 Family Appendix A Revision History

EEPROM Emulation Library Pack02

R01US0068EJ0100 Rev.1.00 Page 53 of 53
Mar. 28, 2014

Appendix A Revision History

Major Changes in This Document

Page Change/Addition Type

All Newly created -

Remark: "Type" in the above table indicates types of revisions.

(a): Correction of erroneous description

(b): Addition/change to specifications

(c): Addition/change to description or notes

(d): Addition/change to the package, order name, or classification

(e): Addition/change to related documents

奥付

RL78 Family User’s Manual

EEPROM Emulation Library Pack 02

Publication Date: Mar 28, 2014 Rev.1.00

Published by: Renesas Electronics Corporation

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Ku, Seoul, 135-920, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2014 Renesas Electronics Corporation and Renesas Solutions Corp. All rights reserved.
Colophon 3.0

裏表紙

RL78 Family

R01US0068EJ0100

