

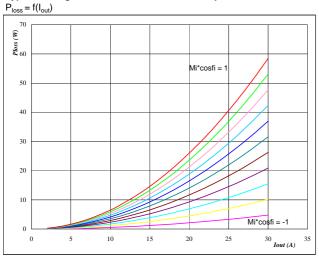
flow1

, incotech

Output Inverter Application

1200V/15A

3phase SPWM

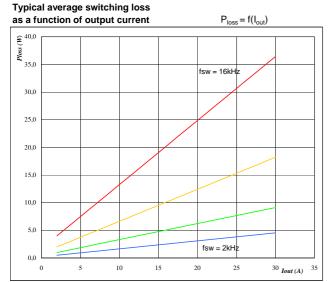

15 V V_{GEon} = V_{GEoff} -15 V

 R_{gon} 32 Ω

 R_{goff} 32 Ω

Figure 1

Typical average static loss as a function of output current

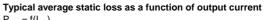


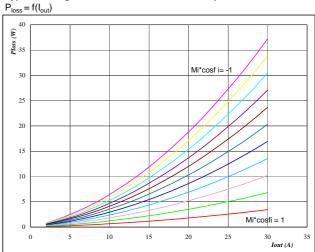
Αt $T_j =$

151 \mathcal{C}

Mi*cosφ from -1 to 1 in steps of 0,2

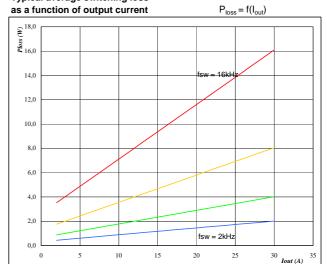
IGBT Figure 3




Αt

T_j = 151 \mathcal{C} DC link = 600 ٧

 f_{sw} from 2 kHz to 16 kHz in steps of factor 2

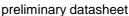


 \mathbf{At} $T_j =$

151 ${\mathfrak C}$

 $\mbox{Mi*}\mbox{cos}\phi$ from -1 to 1 in steps of 0,2

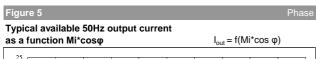
Figure 4 Typical average switching loss

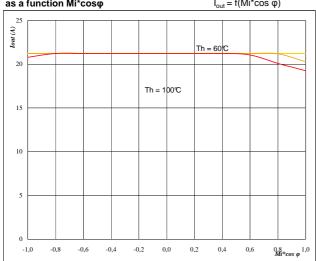

 $\begin{array}{l} \textbf{At} \\ \textbf{T}_{j} = \end{array}$

151 ${\mathfrak C}$ ٧

DC link = 600

 $f_{\rm sw}$ from 2 kHz to 16 kHz in steps of factor 2





incotech

Output Inverter Application

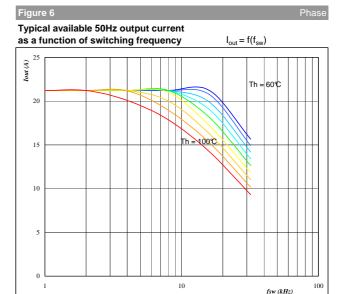
1200V/15A



Αt

 ${\mathfrak C}$ $T_j =$ 151 DC link = V 600 kHz $f_{sw} =$

60 °C to 100 °C in steps of 5 °C T_h from

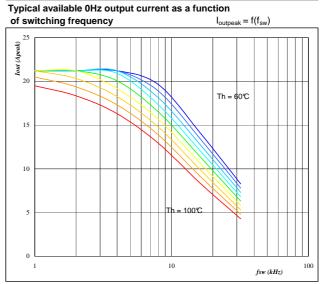


Αt

 $T_h =$

~ .		
$T_j =$	151	C
DC link =	600	V
T _b =	80	C

 ${\mathfrak C}$

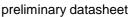


At

 $T_j =$ 151 ${\mathfrak C}$ DC link = 600

 $Mi^*\cos \varphi = 0.8$

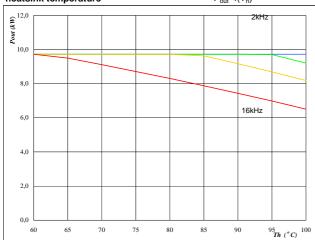
 T_h from 60 ℃ to 100 ℂ in steps of 5 ℂ


Αt

 $T_j =$ 151 ${\mathfrak C}$ DC link = 600

 T_h from 60 ${\mathbb C}$ to 100 ${\mathbb C}$ in steps of 5 ${\mathbb C}$

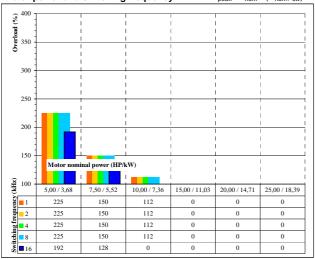
Mi = 0



Output Inverter Application flow1

1200V/15A

Αt


 $T_j =$ 151 ٧

DC link = 600 Mi =

0,80 cos φ= 2 kHz to 16 kHz in steps of factor 2 f_{sw} from

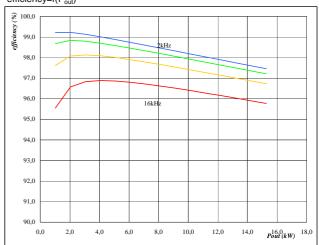
 \mathcal{C}

Typical available overload factor as a function of motor power and switching frequency $P_{peak}/P_{nom}=f(P_{nom},f_{sw})$

Αt

 $T_j =$ 151 \mathcal{C} DC link = 600

Mi =


cos φ= f_{sw} from 1 kHz to 16kHz in steps of factor 2

80

Motor eff = 0.85

Typical efficiency as a function of output power efficiency=f(P_{out})

Αt $T_j =$

151 ${\mathfrak C}$

DC link = 600 ٧

Mi = cos φ= 0.80

 f_{sw} from 2 kHz to 16 kHz in steps of factor 2