UG4A THRU UG4D

ULTRAFAST EFFICIENT PLASTIC RECTIFIER Reverse Voltage – 50 to 200 V Forward Current – 4 A

Features

- Ultrafast recovery time for high efficiency
- Soft recovery characteristics
- Excellent high temperature switching
- Glass passivated junction

Mechanical Data

- Case: Molded plastic, DO-201AD
- Terminals: Plated axial leads, solderable per

MIL-STD-750, method 2026

- · Polarity: Color band denotes cathode end
- Mounting position: Any

DO-201AD

Dimensions in inches and (millimeters)

Absolute Maximum Ratings and Characteristics

Ratings at 25 °C ambient temperature unless otherwise specified.

Tratings at 25 Cambient temperature unless otherwise specified.						
Parameter	Symbols	UG4A	UG4B	UG4C	UG4D	Units
Maximum Repetitive Peak Reverse Voltage	V_{RRM}	50	100	150	200	V
Maximum RMS Voltage	V _{RMS}	35	70	105	140	V
Maximum DC Blocking Voltage	V_{DC}	50	100	150	200	V
Maximum Average Forward Rectified Current 0.375"(9.5 mm) Lead Length at $T_L = 75$ °C	I _(AV)	4				Α
Peak Forward Surge Current, 8.3 ms Single Half-sine-wave Superimposed on rated load (JEDEC method) at $T_L = 75^{\circ}\text{C}$	I _{FSM}	150				Α
Maximum Forward Voltage at 4 A	V _F	0.95			V	
Maximum Reverse Current $T_A = 25 ^{\circ}\text{C}$ at Rated DC Blocking Voltage $T_A = 100 ^{\circ}\text{C}$	I _R	5 300				μΑ
Maximum Reverse Recovery Time 1)	t _{rr}	20			ns	
Maximum Reverse Recovery Time $^{2)}$ $T_J = 25 ^{\circ}\text{C}$ $T_J = 100 ^{\circ}\text{C}$	t _{rr}	30 50			ns	
Maximum Recovered stored charge Time $^{2)}$ T _J = 25 $^{\circ}$ C T _J = 100 $^{\circ}$ C	Q _{rr}	15 30			nC	
Typical Junction Capacitance 3)	CJ	20			pF	
Typical Thermal Resistance 4)	$R_{\theta JA}$	25			°C/W	
Operating Junction and Storage Temperature Range	T _J , T _{stg}	-55 to +150			°C	

 $^{^{(1)}}$ Reverse recovery test conditions: $I_F = 0.5$ A, $I_R = 1$ A, $I_{rr} = 0.25$ A.

⁴⁾ Thermal resistance from junction to ambient at 0.375" (9.5 mm) lead length.

SEMTECH ELECTRONICS LTD.

(Subsidiary of Semtech International Holdings Limited, a company listed on the Hong Kong Stock Exchange, Stock Code: 724)

Dated : 26/04/2006 C

 $^{^{2)}}$ t_{rr} and Q_{rr} measured at tester: I_{F} = 4 A, V_{R} = 30 V, di/dt = 50 A/µs, I_{rr} = 10% I_{RM} for measurement of t_{rr}

³⁾ Measured at 1 MHz and applied reverse voltage of 4 V.

FIG. 1 - FORWARD CURRENT DERATING CURVE AVERAGE FORWARD RECTIFIED CURRENT, AMPERES 6.0 RESISTIVE OR INDUCTIVE LOAD LEAD TEMPERATURE 375" (9.5mm) LEAD LENGTH 5.0 4.0 2.0 0 0 25 75 100 50 125 150 TEMPERATURE, °C

SEMTECH ELECTRONICS LTD.

(Subsidiary of Semtech International Holdings Limited, a company listed on the Hong Kong Stock Exchange, Stock Code: 724)

