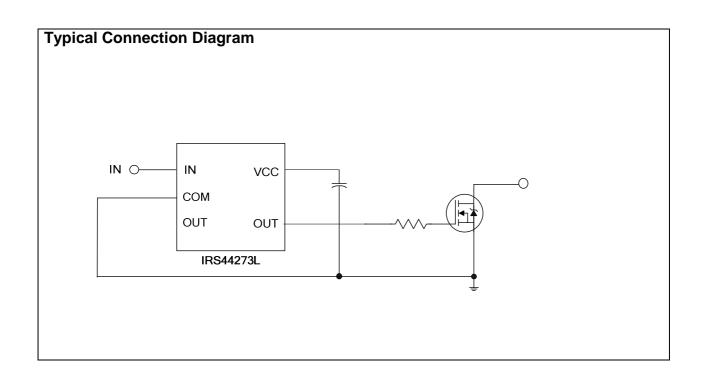
Single Low-Side Driver IC

Features

- CMOS Schmitt-triggered inputs
- Under voltage lockout
- 3.3V logic compatible
- Output in phase with input
- Leadfree, RoHS compliant

Typical Applications


- General Purpose Gate Driver
- DC-DC converters
- Plasma display panel (PDP) applications

Product Summary

Topology	General Driver
I _{o+} & I _{o-} (typical)	1.5A / 1.5A
t _{on} & t _{off} (typical)	50ns & 50ns

Package Type

Table of Contents	Page
Typical connection diagram	1
Description	3
Qualification Information	4
Absolute Maximum Ratings	5
Recommended Operating Conditions	5
Static Electrical Characteristics	6
Dynamic Electrical Characteristics	6
Functional Block Diagrams	7
Input/Output Pin Equivalent Circuit Diagram	8
Lead Definitions	9
Lead Assignments	9
Application Information and Additional Details	10
Package Details: SOT23-5	11
Package Details: SOT23-5, Tape and Reel	12
Part Marking Information	14
Ordering Information	15

Description

The IRS44273L is a low voltage, power MOSFET and IGBT non-inverting gate driver. Proprietary latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output. The output driver features a current buffer stage.

Qualification Information[†]

Qualification Level		Industrial ^{††} Comments: This family of ICs has passed JEDEC's			
					Qualification Level
		granted by extension of the higher Industrial level.			
Moisture Sensitivity Level		MSL1 ^{†††} 260℃			
		(per IPC/JEDEC J-STD-020)			
	Machine Model	Class B			
ESD	Macrime Model	(per JEDEC standard JESD22-A115)			
E3D	Human Rady Madal	Class 2			
	Human Body Model	(per EIA/JEDEC standard EIA/JESD22-A114)			
IC Latch-Up Test		Class 1 Level A			
ic Later-op rest		(per JESD78)			
RoHS Compliant		Yes			

- † Qualification standards can be found at International Rectifier's web site http://www.irf.com/
- †† Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information.
- ††† Higher MSL ratings may be available for the specific package types listed here. Please contact your International Rectifier sales representative for further information.

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. The device may not function or not be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. All voltage parameters are absolute voltages <u>referenced to COM</u>. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition		Max	Units
V _{cc}	Fixed supply voltage	-0.3	25	
Vo	Output voltage	-0.3	V _{CC} + 0.3	V
V _{IN}	Logic input voltage	-0.3	$V_{CC} + 0.3$	
P_{D}	Package power dissipation @ TA ≤ 25℃	_	250	mW
Rth_JA	Thermal resistance, junction to ambient		191	€\M
T_J	Junction temperature	_	150	
Ts	Storage temperature	-55	150	${\mathbb C}$
TL	Lead temperature (soldering, 10 seconds)	_	300	

Recommended Operating Conditions

For proper operation, the device should be used within the recommended conditions. All voltage parameters are absolute voltages referenced to COM unless otherwise stated in the table. The offset rating is tested with supply of $V_{CC} = 15V$.

Symbol	Definition	Min	Max	Units
V _{CC}	Fixed supply voltage		20	
Vo	Output voltage	0	V_{CC}	V
V _{IN}	Logic input voltage	0	V_{CC}	
T _A	Ambient temperature	-40	125	C

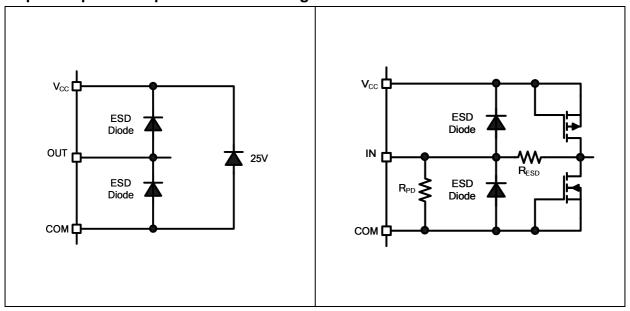
Static Electrical Characteristics

 V_{CC} = 15V, T_A = 25°C unless otherwise specified. The V_{IN_i} and I_{IN} parameters are referenced to COM and are applicable to input leads: IN. The V_O and I_O parameters are referenced to COM and are applicable to the output leads: OUT.

Symbol	Definition	Min	Тур	Max	Units	Test Conditions
V_{CCUV+}	Vcc supply undervoltage positive going threshold	9.2	10.2	11.2		
V_{CCUV}	Vcc supply undervoltage negative going threshold	8.2	9.2	10.2		
V_{CCUVH}	Vcc supply undervoltage lockout hysteresis		1.0			
V_{IL}	Logic "0" input voltage (OUT = LO)		_	0.8	V	
V_{IH}	Logic "1" input voltage (OUT = HI)	2.5	_	_		
V_{OH}	High level output voltage, V _{BIAS} -V _O		_	1.4		$I_O = 0 \text{ mA}$
V_{OL}	Low level output voltage, Vo	I	_	0.15		$I_O = 20 \text{ mA}$
I _{IN+}	Logic "1" input bias current		5	15		$V_{IN} = 5V$
I _{IN-}	Logic "0" input bias current	-30	-10	_	μΑ	$V_{IN} = 0V$
I _{QCC}	Quiescent V _{CC} supply current	l	170	340		$V_{IN} = 0V \text{ or } 5V$
I _{O+}	Output high short circuit pulsed current		1.5	_	Α	$V_O = 0V$, $V_{IN} = 5V$
I _{O-}	Output low short circuit pulsed current		1.5		A	$V_0 = 15V, V_{IN} = 0V$

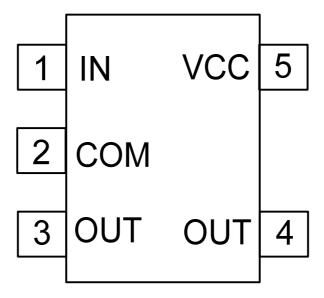
Dynamic Electrical Characteristics

 V_{CC} = 15V, T_A = 25°C, and C_L = 1000pF unless otherwise specified.


Symbol	Definition	Min	Тур	Max	Units	Test Conditions
t _{on}	Turn-on propagation delay		50	95		
t _{off}	Turn-off propagation delay	_	50	95		F: 0
t _r	Turn-on rise time	_	25	55	ns	Figure 2
t _f	Turn-off fall time	_	25	55		

Functional Block Diagram UVLO PREDRY PREDRY OUT COM IRS44273L

Input/Output Pin Equivalent Circuit Diagrams

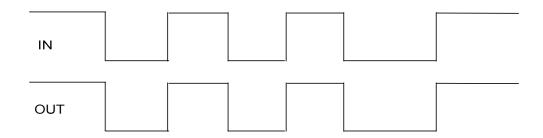
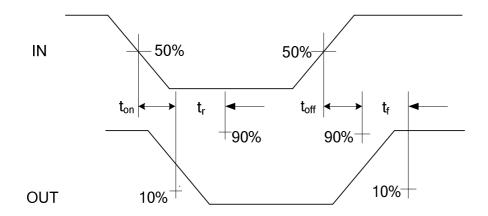


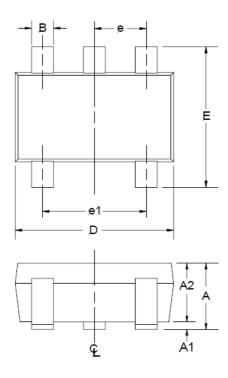
Pin Definitions

PIN	Symbol	Description	
1	IN	ogic input for gate driver output (OUT)	
2	СОМ	Ground	
3	OUT	Gate drive output	
4	OUT	Gate drive output	
5	VCC	Supply Voltage	

Pin Assignments

Application Information and Additional Details


Figure 1: Input/output Timing Diagram

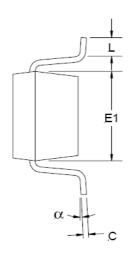
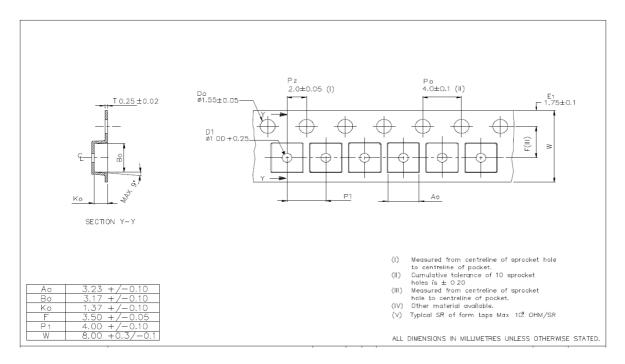
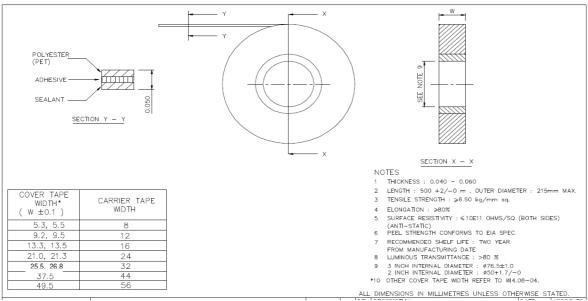


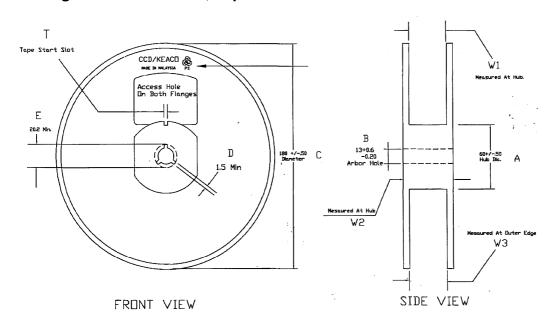
Figure 2: Switching Time Waveform Definitions

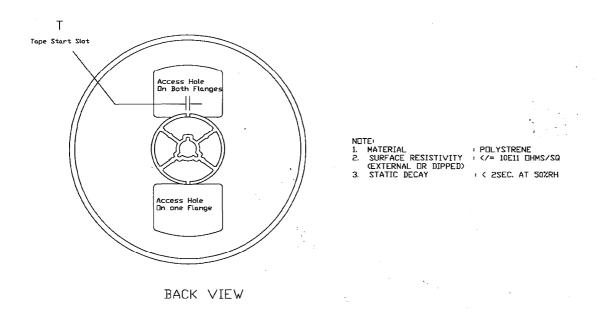
Package Details, SOT23-5



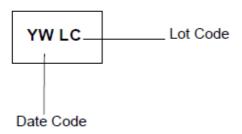

SYMBOL	MIN	MAX			
Α	0.90	1.45			
A1	0.00	0.15			
A2	0.90	1.30			
В	0.25	0.50			
С	0.09	0.20			
D	2.80	3.00			
Е	2.60	3.00			
E1	1.50	1.75			
е	0.95	REF			
e1	1.90 REF				
L	0.35	0.55			
α	08	108			

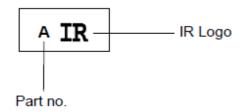
NOTE: ALL MEASUREMENTS ARF IN MILL IMFTERS


Package details: SOT23-5, Tape and Reel



Package details: SOT23-5, Tape and Reel





Part Marking information

Top Marking

BOTTOM MARKING

Ordering Information

Basa Bart Namehan	Bashawa Tawa	Standard F	Pack	Occupated a Part Name have	
Base Part Number	Package Type	Form	Quantity	Complete Part Number	
IRS44273L	SOT23-5	Tape and Reel	3000	IRS44273LTRPBF	

The information provided in this document is believed to be accurate and reliable. However, International Rectifier assumes no responsibility for the consequences of the use of this information. International Rectifier assumes no responsibility for any infringement of patents or of other rights of third parties which may result from the use of this information. No license is granted by implication or otherwise under any patent or patent rights of International Rectifier. The specifications mentioned in this document are subject to change without notice. This document supersedes and replaces all information previously supplied.

For technical support, please contact IR's Technical Assistance Center http://www.irf.com/technical-info/

WORLD HEADQUARTERS:

101N Sepulveda Blvd., El Segundo, California 90245 Tel: (310) 252-7105