

AP393

Features

- Wide supply
 - Voltage range: 2.0V to 36V
 - Single or dual supplies: ±1.0V to ±18V
- Very low supply current drain (0.4 mA) independent of supply voltage
- Low input biasing current: 25 nA
- Low input offset current: ±5 nA
- Maximum offset voltage: ±3 mV
- Input common-mode voltage range includes ground
- Differential input voltage range equal to the power supply voltage
- Low output saturation voltage: 250 mV at 4 mA
- Output voltage compatible with TTL, DTL, ECL, MOS and CMOS logic systems
- Packages: 8-pin SOP-8L and DFN (Under Development) Green packages

Advantages

- High precision comparators
- Reduced Vos drift over temperature
- Eliminates need for dual supplies
- Allows sensing near ground
- Compatible with all forms of logic
- Power drain suitable for battery operation

Pin Assignment

Pin Descriptions

Pin Name	Pin No.	Description
OUTPUT 1	1	Channel 1 Output
INVERTING INPUT 1	2	Channel 1 Negative Input
NON-INVERTING INPUT 1 3		Channel 1 Positive Input
GND	4	Ground

Pin Name	Pin No.	Description
NON-INVERTING INPUT 2	5	Channel 2 Positive Input
INVERTING INPUT 2	6	Channel 2 Negative Input
OUTPUT 2	7	Channel 2 Output
V ⁺	8	Vcc

General Description

The AP393 consists of two independent precision voltage comparators with an offset voltage specification as low as 2.0 mV max for two comparators which were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage. These comparators also have a unique characteristic in that the input common-mode voltage range includes ground, even though operated from a single power supply voltage.

Application areas include limit comparators, simple analog to digital converters; pulse, squarewave and time delay generators; wide range VCO; MOS clock timers; multivibrators and high voltage digital logic gates. The AP393 is designed to directly interface with TTL and CMOS. When operated from both plus and minus power supplies, the AP393 will directly interface with MOS logic where their low power drain is a distinct advantage over standard comparators.

LOW POWER LOW OFFSET VOLTAGE DUAL COMPARATORS

Ordering Information (Note 1)

Backago			7" Tape an	d Reel	13" Tape and Reel		
Device	Code	Packaging	Quantity	Part Number Suffix	Quantity	Part Number Suffix	
AP393SM	SM	SOP-8L	3000/Tape & Reel	-7	10,000/Tape & Reel	-13	
AP393FE	FE	DFN	3000/Tape & Reel	-7	10,000/Tape & Reel	-13	

Block Diagram

Note 1: For Packaging Details, go to our website at http://www.diodes.com/datasheets/ap02007.pdf.

Absolute Maximum Ratings (Note 11)

Symbol	Pa	Rating	Unit		
V _{cc}	Supply Voltage	36	V		
V _{IN}	Differential Input Voltage (Note 9)			36	V
V _{IN}	Input Voltage			-0.3 to +36	V
Icc	Input Current (V _{IN} -0.3V) (Note 4)	50	mA		
р	Device Discipation (Note 2)	SOP-8L	(SM)	600	m\//
FD		DFN (FE	Ξ)	250	IIIVV
	Output Short-Circuit to Ground (No	Continuous			
T _{OP}	Operating Temperature Range	0 to +70	°C		
T _{ST}	Storage Temperature Range			-65 to +150	°C
T _{Lead}	Lead Temperature Range (Solderin	g, 10 sec)		+260	°C
		DFN	Soldering (10 sec)	+260	
	Soldering Information		Vapor Phase (60 sec)	+215	°C
		30P-0L	Infrared (15 sec)	+220	
	ESD rating (1.5k Ω in with 100pF)	1300	V		

Electrical Characteristics (V_{CC}=5V, T_A=25°C, unless otherwise stated)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
VOFFSET	Input Offset Voltage	(Note 10)	-	7.0	12.0	mV
I _{BIAS}	Input Bias Current	I _{IN} (+) or I _{IN} (-) with Output In Linear Range, V _{CM} =0V (Note 6)	-	25	250	nA
IOFFSET	Input Offset Current	I _{IN} (+) - I _{IN} (-) V _{CM} =0V	-	5.0	50	nA
	Input Common Mode Voltage Range	V ⁺ =30V (Note 7)	0	-	V ⁺ -1.5	V
	Supply Current	P −∞ V ⁺ =5V	-	0.4	1	m۸
ICC	Supply Culterit	V ⁺ =36V	-	1	2.5	IIIA
	Voltage Gain	R _L <u>></u> 15kΩ, V ⁺ =15V V _O =1V to 11V	50	200	-	V/mV
	Large Signal Response Time	V _{IN} =TTL Logic Swing, V _{REF} =1.4V, V _{RL} =5V, R _L =5.1kΩ	-	300	-	ns
	Response Time	V _{RL} =5V, R _L =5.1kΩ (Note 8)	-	1.3	-	μs
I _{O(Sink)}	Output Sink Current	V _{IN} (-)=1V, V _{IN} (+)=0, V _O ≤1.5V	6.0	16	-	mA
V _{SAT}	Saturation Voltage	V _{IN} (-)=1V, V _{IN} (+)=0, I _{SINK} ≤ 4mA	-	250	400	mV
I _{O(Leak)}	Output Leakage Current	V _{IN} (-)=0, V _{IN} (+)=1V, V _O =5V	-	0.1	-	nA

Electrical Characteristics (V_{CC}=5V) (Note 5)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
VOFFSET	Input Offset Voltage	(Note 10)	-	-	12	mV
IOFFSET	Input Offset Current	I _{IN} (+) -I _{IN} (-), V _{CM} =0V	-	-	150	nA
I _{BIAS}	Input Bias Current	$I_{IN}(+)$ or $I_{IN}(-)$ with Output In Linear Range, V _{CM} =0V (Note 6)	-	-	400	nA
	Input Common Mode Voltage Range	V ⁺ =30V (Note 7)	0	-	V ⁺ -2.0	V
V _{SAT}	Saturation Voltage	V _{IN} (-)=1V, V _{IN} (+)=0, I _{SINK} <u>≤</u> 4mA	-	-	700	mV
I _{O(Leak)}	Output Leakage Current	V _{IN} (-)=0, V _{IN} (+)=1V, V _O =30V	-	-	1.0	μA
	Differential Input Voltage	Keep All V _{IN} 's <u>></u> 0V (or V⁻, if Used), (Note 9)	-	-	36	V

LOW POWER LOW OFFSET VOLTAGE DUAL COMPARATORS

- Note 2: For operating at high temperatures, the AP393 must be derated based on a 125°C maximum junction temperature and a thermal resistance of 170°C/W which applies for the device soldered in a printed circuit board, operating in a still air ambient. The AP393 must be derated based on a 150°C maximum junction temperature. The low bias dissipation and the "ON-OFF" characteristic of the outputs keeps the chip dissipation very small (P_D ≤100 mW), provided the output transistors are allowed to saturate.
- **Note 3:** Short circuits from the output to V⁺ can cause excessive heating and eventual destruction. When considering short circuits to ground, the maximum output current is approximately 20 mA independent of the magnitude of V⁺.
- Note 4: This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also lateral NPN parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the comparators to go to the V⁺ voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will re-establish when the input voltage, which is negative, again returns to a value greater than -0.3V.
- **Note 5:** The AP393 temperature specifications are limited to $0^{\circ}C \le T_A \le +70^{\circ}C$.
- **Note 6:** The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the reference or input lines.
- Note 7: The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of the common-mode voltage range is V⁺-1.5V at 25°C, but either or both inputs can go to 36V without damage, independent of the magnitude of V⁺.
- **Note 8:** The response time specified is for a 100 mV input step with 5 mV overdrive. For larger overdrive signals 300 ns can be obtained, see typical performance characteristics section.
- **Note 9:** Positive excursions of input voltage may exceed the power supply level. As long as the other voltage remains within the common-mode range, the comparator will provide a proper output state. The low input voltage state must not be less than -0.3V (or 0.3V below the magnitude of the negative power supply, if used).
- **Note 10:** At output switch point, $V_0 \simeq 1.4V$, $R_s=0\Omega$ with V^+ from 5V to 30V; and over the full input common-mode range (0V to $V^+-1.5V$), at 25°C.
- Note 11: Refer to RETS193AX for AP393 military specifications.

AP393

AP393

Typical Circuit (Continued) (V_{CC} = 5.0V_{DC})

* OR LOGIC GATE WITHOUT PULL-UP RESISTOR

Output Strobing

Limit Comparator

AP393

Typical Circuit (Continued) (V_{CC} = 5.0V_{DC})

Bi-Stable Multivibrator

LOW POWER LOW OFFSET VOLTAGE DUAL COMPARATORS

Typical Circuit (Continued) (V_{CC}=5.0V_{DC})

One-Shot Multivibrator with Input Lock Out

Time Delay Generator

LOW POWER LOW OFFSET VOLTAGE DUAL COMPARATORS

Split-Supply Applications (V⁺=+15V_{DC} and V⁻=-15 V_{DC})

LOW POWER LOW OFFSET VOLTAGE DUAL COMPARATORS

Typical Characteristics

Application Information

The AP393 are high gain, wide bandwidth devices which, like most comparators, can easily oscillate if the output lead is inadvertently allowed to capacitively couple to the inputs via stray capacitance. This shows up only during the output voltage transition intervals as the comparator change states. Power supply bypassing is not required to solve this problem. Standard PC board layout is helpful as it reduces stray input-output coupling. Reducing the input resistors to < $10k\Omega$ reduces the feedback signal levels and finally, adding even a small amount (1.0 to 10 mV) of positive feedback (hysteresis) causes such a rapid transition that oscillations due to stray feedback are not possible. Simply socketing the IC and attaching resistors to the pins will cause input-output oscillations during the small transition intervals unless hysteresis is used. If the input signal is a pulse waveform, with relatively fast rise and fall times, hysteresis is not required. All input pins of any unused comparators should be tied to the negative supply.

The bias network of the AP393 establishes a drain current which is independent of the magnitude of the power supply voltage over the range of from 2.0 $V_{\rm DC}$ to 30 $V_{\rm DC}$. It is usually unnecessary to use a bypass capacitor across the power supply line.

The differential input voltage may be larger than V+ without damaging the device (Note 8). Protection should be provided to

prevent the input voltages from going negative more than -0.3 V_{DC} (at 25°C). An input clamp diode can be used as shown in the applications section.

The output of the AP393 is the uncommitted collector of a grounded-emitter NPN output transistor. Many collectors can be tied together to provide an output OR'ing function. An output pull-up resistor can be connected to any available power supply voltage within the permitted supply voltage range and there is no restriction on this voltage due to the magnitude of the voltage which is applied to the V $^{+}$ terminal of the AP393 package. The output can also be used as a simple SPST switch to ground (when a pull-up resistor is not used). The amount of current which the output device can sink is limited by the drive available (which is independent of $V^{\scriptscriptstyle +})$ and the β of this device. When the maximum current limit is reached (approximately 16mA), the output transistor will come out of saturation and the output voltage will rise very rapidly. The output saturation voltage is limited by the approximately $60\Omega r_{SAT}$ of the output transistor. The low offset voltage of the output transistor (1.0 mV) allows the output to clamp essentially to ground level for small load currents

LOW POWER LOW OFFSET VOLTAGE DUAL COMPARATORS

Marking Information

(1) SOP-8L

(2) DFN

Marking Code Table

Device	Package	Marking Code	Date Code
AP393SM	SOP-8L	AP393	YWW
AP393FE	DFN	D6	-

Date Code Key

Year	2006	2007	2008	2009	2010
Code	Т	U	V	W	Х

Month	Jan	Feb	March	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Code	1	2	3	4	5	6	7	8	9	0	Ν	D

LOW POWER LOW OFFSET VOLTAGE DUAL COMPARATORS

Package Information (All Dimensions in mm)

(1) DFN2116-8

(2) SOP-8L

RECOMMENDED LAND PATTERN

LOW POWER LOW OFFSET VOLTAGE DUAL COMPARATORS

Diodes, Inc. and its subsidiaries reserve the right to make changes without further notice to any product herein to make corrections, modifications, enhancements, improvements, or other changes. Diodes, Inc. does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on our website, harmless against all damages.

LIFE SUPPORT

The products located on our website at www.diodes.com are not recommended for use in life support systems where a failure or malfunction of the component may directly threaten life or cause injury without the expressed written approval of Diodes Incorporated.