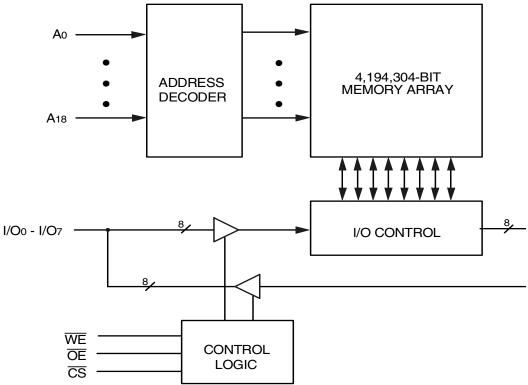


3.3V CMOS Static RAM 4 Meg (512K x 8-Bit)

IDT71V424S/YS/VS IDT71V424L/YL/VL

Features

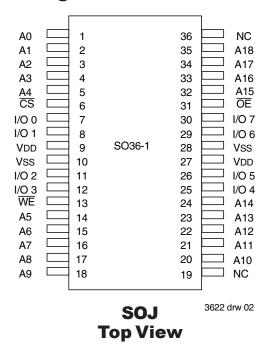
- 512K x 8 advanced high-speed CMOS Static RAM
- JEDEC Center Power / GND pinout for reduced noise
- Equal access and cycle times
 Commercial and Industrial: 10/12/15ns
- Single 3.3V power supply
- One Chip Select plus one Output Enable pin
- Bidirectional data inputs and outputs directly TTL-compatible
- Low power consumption via chip deselect
- Available in 36-pin, 400 mil plastic SOJ package and 44-pin, 400 mil TSOP.


Description

The IDT71V424 is a 4,194,304-bit high-speed Static RAM organized as 512K x 8. It is fabricated using IDT's high-perfomance, high-reliability CMOS technology. This state-of-the-art technology, combined with innovative circuit design techniques, provides a cost-effective solution for highspeed memory needs.

The IDT71V424 has an output enable pin which operates as fast as 5ns, with address access times as fast as 10ns. All bidirectional inputs and outputs of the IDT71V424 are TTL-compatible and operation is from a single 3.3V supply. Fully static asynchronous circuitry is used, requiring no clocks or refresh for operation.

The IDT71V424 is packaged in a 36-pin, 400 mil Plastic SOJ and 44-pin, 400 mil TSOP.


Functional Block Diagram

3622 drw 01

SEPTEMBER 2008

Pin Configuration

Pin Configuration

NC	1 🔿			44		NC
NC	2			43		NC
A0	3			42		NC
A1	4			41		A18
A2	5			40		A17
A3	6			39		A16
A4	7			38		A15
CS	8			37		ŌĒ
I/00	9			36		I/07
I/01	10			35		I/06
Vdd	11		SO44-2	34		Vss
Vss	12			33		VDD
I/02	13			32		I/05
I/03	14			31		I/04
WE	15			30		A14
A5	16			29		A13
A6	17			28		A12
A7	18			27		A11
A8	19			26		A10
A9	20			25		NC
NC	21			24		NC
NC	22			23		NC
					J	

TSOP

3622 drw 11

Top View

Pin Description

A0 – A18	Address Inputs	Input
CS	Chip Select	Input
WE	Write Enable	Input
ŌĒ	Output Enable	Input
I/O0 - I/O7	Data Input/Output	I/O
Vdd	3.3V Power	Power
Vss	Ground	Gnd

3622 tbl 02

Capacitance

(TA = +25°C, f = 1.0MHz, SOJ package)

Symbol	Parameter ⁽¹⁾	Conditions	Max.	Unit	
Cin	Input Capacitance	Vin = 3dV	7	pF	
C⊮o	I/O Capacitance	Vout = 3dV	8	pF	
NOTE					

NOTE:

1. This parameter is guaranteed by device characterization, but not production tested.

Truth Table^(1,2)

CS	ŌĒ	WE	I/O	Function	
L	L	Н	DATAOUT	Read Data	
L	Х	L	DATAIN	Write Data	
L	Н	Н	High-Z	Output Disabled	
Н	Х	Х	High-Z	Deselected - Standby (ISB)	
VHC ⁽³⁾	Х	Х	High-Z	Deselected - Standby (ISB1)	
3622 tbl 01					

NOTES:

1. $H = V_{IH}$, $L = V_{IL}$, x = Don't care.

2. $V_{LC} = 0.2V$, $V_{HC} = V_{DD} - 0.2V$.

3. Other inputs $\geq V_{HC}$ or $\leq V_{LC}$.

Symbol	Rating	Value	Unit
Vdd	Supply Voltage Relative to Vss	-0.5 to +4.6	V
Vin, Vout	Terminal Voltage Relative to Vss	-0.5 to Vdd+0.5	V
Tbias	Temperature Under Bias	-55 to +125	°C
Tstg	Storage Temperature	-55 to +125	٥C
Рт	Power Dissipation	1	W
Ιουτ	DC Output Current	50	mA
NOTE			3622 tbl 04

Absolute Maximum Ratings⁽¹⁾

NOTE:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Recommended Operating Temperature and Supply Voltage

Grade	Temperature	Vss	Vdd
Commercial	0°C to +70°C	0V	See Below
Industrial	–40°C to +85°C	0V	See Below
			3622 tbl 05

Recommended DC Operating Conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vdd	Supply Voltage	3.0	3.3	3.6	V
Vss	Ground	0	0	0	V
Viн	Input High Voltage	2.0		VDD+0.3 ⁽¹⁾	V
Vil	Input Low Voltage	-0.3 ⁽²⁾		0.8	V

NOTES:

1. VIH (max.) = VDD+2V for pulse width less than 5ns, once per cycle.

2. VIL (min.) = -2V for pulse width less than 5ns, once per cycle.

DC Electrical Characteristics

(VDD = Min. to Max., Commercial and Industrial Temperature Ranges)

			IDT71V424		
Symbol	Parameter	Test Condition	Min.	Max. Unit	
lu	Input Leakage Current	VDD = Max., VIN = VSS to VDD		5	μA
Ilo	Output Leakage Current	$V_{DD} = Max., \overline{CS} = V_{IH}, V_{OUT} = V_{SS} to V_{DD}$	_	5	μA
Vol	Output Low Voltage	IOL = 8mA, VDD = Min.		0.4	V
Vон	Output High Voltage	Ioh = $-4mA$, VDD = Min.	2.4		V

3622 tbl 07

3622 tbl 06

DC Electrical Characteristics^(1, 2, 3)

(VDD = Min. to Max., VLC = 0.2V, VHC = VDD - 0.2V)

	Parameter				71V424	IS/L 10	71V42	4S/L 12	71V424	S/L 15	Unit
Symbol			Com'l.	Ind. ⁽⁵⁾	Com'l.	Ind. ⁽⁵⁾	Com'l.	Ind. ⁽⁵⁾	Unit		
loo	$\label{eq:lcc} \mbox{Icc} \frac{\mbox{Dynamic Operating Current}}{\mbox{CS} \le \mbox{VLc, Outputs Open, Vdd} = \mbox{Max}_{, f} = \mbox{fmax}^{(4)} \ - \mbox{Max}_{, f} = \mbox{fmax}_{, f$		180	180	170	170	160	160	mA		
ICC			165	_	155	155	145	145	mA		
lan	Dynamic Standby Power Supply Current	S	60	60	55	55	50	50	mA		
ISB	$ \begin{array}{l} \hline Dynamic Standby Power Supply Current \\ \hline \overline{CS} \geq V_{HC}, \mbox{ Outputs Open, } V_{DD} = Max., f = f_{MAX}^{(4)} \end{array} $	L	55	_	50	50	45	45	mA		
ISB1	Full Standby Power Supply Current (static) $\overline{CS} \ge$ VHc, Outputs Open, VDD = Max., f = 0 ⁽⁴⁾		20	20	20	20	20	20	mA		
I2B1			10	_	10	10	10	10	mA		

NOTES:

1. All values are maximum guaranteed values.

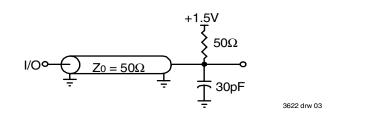
2. All inputs switch between 0.2V (Low) and VDD - 0.2V (High).

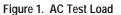
3. Power specifications are preliminary.

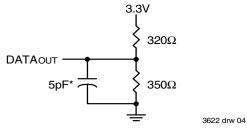
4. fmax = 1/trc (all address inputs are cycling at fmax); f = 0 means no address input lines are changing.

5. Standard power 10ns (S10) speed grade only.

3622 tbl 08


IDT71V424S/YS/VS, IDT71V424L/YL/VL, 3.3V CMOS Static RAM 4 Meg (512K x 8-bit)


AC Test Conditions


Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	1.5ns
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
AC Test Load	See Figure 1, 2 and 3

3622 tbl 09

AC Test Loads

*Including jig and scope capacitance.

Figure 2. AC Test Load (for tclz, tolz, tchz, tohz, tow, and twhz)

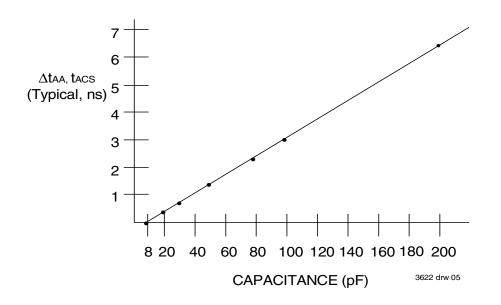
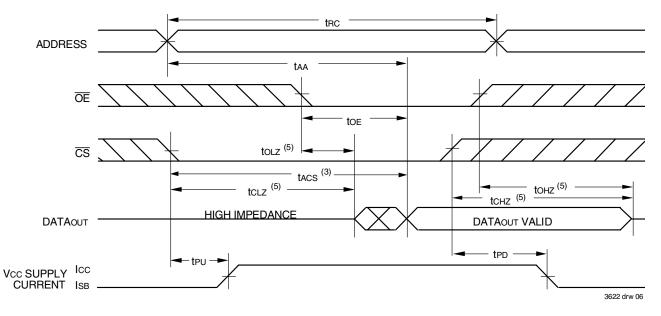


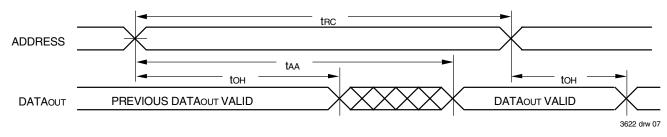
Figure 3. Output Capacitive Derating

AC Electrical Characteristics

(Vcc = 3.3V ± 10%, Commercial and Industrial Temperature Ranges)

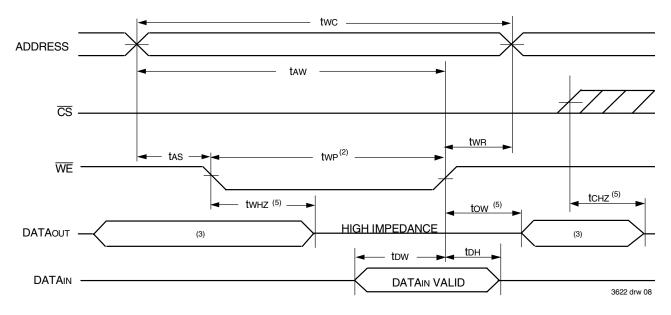

		71V424	71V424S/L10 ⁽²⁾		71V424S/L12		71V424S/L15	
Symbol	Symbol Parameter		Max.	Min.	Max.	Min.	Max.	Unit
READ CYCLE	-						-	
trc	Read Cycle Time	10		12		15		ns
taa	Address Access Time		10		12		15	ns
tacs	Chip Select Access Time		10		12		15	ns
tclz ⁽¹⁾	Chip Select to Output in Low-Z	4		4		4		ns
tснz ⁽¹⁾	Chip Deselect to Output in High-Z		5		6		7	ns
toe	Output Enable to Output Valid		5		6		7	ns
tolz ⁽¹⁾	Output Enable to Output in Low-Z	0		0		0		ns
tонz ⁽¹⁾	Output Disable to Output in High-Z		5		6		7	ns
toн	Output Hold from Address Change	4		4		4		ns
tpu ⁽¹⁾	Chip Select to Power Up Time	0		0		0		ns
tpd ⁽¹⁾	Chip Deselect to Power Down Time		10		12		15	ns
WRITE CYCL	E		•		•	•		
twc	Write Cycle Time	10		12		15		ns
taw	Address Valid to End of Write	8		8		10		ns
tcw	Chip Select to End of Write	8		8		10		ns
tas	Address Set-up Time	0		0		0		ns
twp	Write Pulse Width	8		8		10		ns
twr	Write Recovery Time	0		0		0		ns
tdw	Data Valid to End of Write	6		6		7		ns
tdн	Data Hold Time	0		0		0		ns
tow ⁽¹⁾	Output Active from End of Write	3		3		3		ns
twhz ⁽¹⁾	Write Enable to Output in High-Z		6		7		7	ns

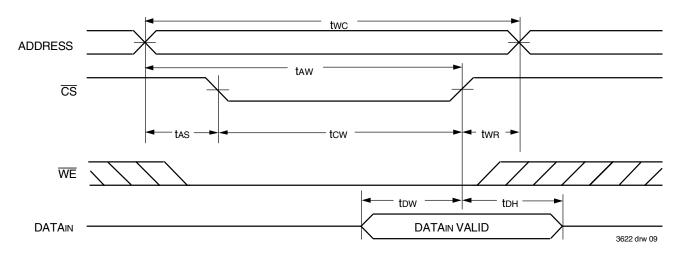
NOTES:


1. This parameter guaranteed with the AC load (Figure 2) by device characterization, but is not production tested.

2. 0°C to +70°C temperature range only for low power 10ns (L10) speed grade.

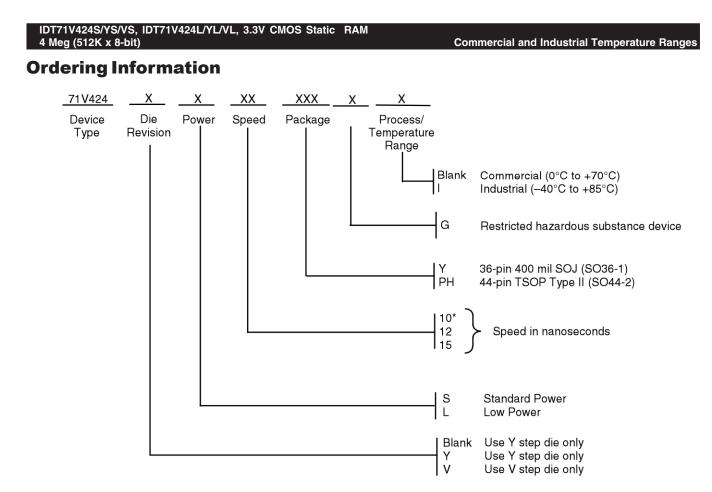
Timing Waveform of Read Cycle No. 1⁽¹⁾


Timing Waveform of Read Cycle No. 2^(1, 2, 4)


NOTES:

- 1. $\overline{\text{WE}}$ is HIGH for Read Cycle.
- 2. Device is continuously selected, \overline{CS} is LOW.
- 3. Address must be valid prior to or coincident with the later of \overline{CS} transition LOW; otherwise taa is the limiting parameter.
- 4. $\overline{\text{OE}}$ is LOW.
- 5. Transition is measured $\pm 200 \text{mV}$ from steady state.

Timing Waveform of Write Cycle No. 1 (WE Controlled Timing)^(1, 2, 4)



Timing Waveform of Write Cycle No. 2 (CS Controlled Timing)^(1, 4)

NOTES:

- 1. A write occurs during the overlap of a LOW \overline{CS} and a LOW \overline{WE} .
- OE is continuously HIGH. During a WE controlled write cycle with OE LOW, two must be greater than or equal to twHz + tow to allow the I/O drivers to turn off and data to be placed on the bus for the required tow. If OE is HIGH during a WE controlled write cycle, this requirement does not apply and the minimum write pulse is the specified twp.
- 3. During this period, I/O pins are in the output state, and input signals must not be applied.
- 4. If the CS LOW transition occurs simultaneously with or after the WE LOW transition, the outputs remain in a high impedance state. CS must be active during the tcw write period.
- 5. Transition is measured ±200mV from steady state.

* Commercial only for low power 10ns (L10) speed grade.

3622 drw 10

Datasheet Document History

8/13/99		Updated to new format
	Pg. 2	Removed SO44-1 from TSOP pinout
	Pg. 7	Revised footnotes on Write Cycle No. 1 diagram
	-	Removed footnote for twe on Write Cycle No. 2 diagram
	Pg. 9	Added Datasheet Document History
8/31/99	Pg. 1–9	Added Industrial temperature range offerings
11/22/02	Pg. 8	Added die revision option to ordering information
07/31/03	Pg. 8	Updated note, L10 speed grade commercial temperature only and updated die stepping from YF to Y.
07/28/04	Pg. 3	Increased ISB for all "L" and S15 speeds by 10mA and increased for S12 speed by 5mA (refer to
		PCN# SR-0402-02).
	Pg. 8	Added "Restricted hazardous substance device" to the ordering information.
09/20/08	Pg. 1, 8	Added Y and V step part numbers to front page and ordering information. Updated the ordering
	-	information by removing the "IDT" notation.

for SALES: 800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com

for Tech Support: ipchelp@idt.com 800-345-7015

The IDT logo is a registered trademark of Integrated Device Technology, Inc.