

General Description

This P-Channel 1.8V specified MOSFET uses Fairchild's advanced low voltage PowerTrench process. It has been optimized for battery power management applications.

Applications

- Battery management
- · Load switch
- Battery protection

Features

- -2.4 A, -20 V. $R_{DS(ON)} = 52 \text{ m}\Omega @ V_{GS} = -4.5 \text{ V}$ $R_{DS(ON)} = 70 \text{ m}\Omega @ V_{GS} = -2.5 \text{ V}$ $R_{DS(ON)} = 100 \text{ m}\Omega @ V_{GS} = -1.8 \text{ V}$
- · Fast switching speed
- ESD protection diode
- High performance trench technology for extremely low $R_{\text{DS}(\text{ON})}$
- SuperSOT[™] -3 provides low R_{DS(ON)} and 30% higher power handling capability than SOT23 in the same footprint

Absolute Maximum Ratings T_A=25°C unless otherwise noted

Symbol	Parameter		Ratings	Units	
V _{DSS}	Drain-Source Voltage		-20	V	
V _{GSS}	Gate-Source Voltage		±8	V	
I _D	Drain Current – Continuous	(Note 1a)	-2.4	А	
	- Pulsed		-10		
PD	Maximum Power Dissipation	(Note 1a)	0.5	W	
		(Note 1b)	0.46		
T_J, T_{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C	
Therma	I Characteristics			·	
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambi	ent (Note 1a)	250	°C/W	
R _{0JC}	Thermal Resistance, Junction-to-Case	(Note 1)	75	°C/W	

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width	Quantity
04Z	FDN304PZ	7"	8mm	3000 units

FDN304P

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Char	racteristics					
BV _{DSS}	Drain–Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, \text{ I}_{D} = -250 \mu\text{A}$	-20			V
<u>ΔBVdss</u> ΔTj	Breakdown Voltage Temperature Coefficient	$I_D = -250 \ \mu\text{A}, \text{Referenced to } 25^{\circ}\text{C}$		-13		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -16 \text{ V}, V_{GS} = 0 \text{ V}$			-1	μA
I _{GSS}	Gate-Body Leakage	$V_{GS} = \pm 8 \text{ V}, \ V_{DS} = 0 \text{ V}$			±10	uA
On Char	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = -250 \ \mu A$	-0.4	-0.8	-1.5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	$I_D = -250 \ \mu\text{A}, \text{Referenced to } 25^{\circ}\text{C}$		3		mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance	$ \begin{array}{ll} V_{GS} = -4.5 \ V, & I_D = -2.4 \ A \\ V_{GS} = -2.5 \ V, & I_D = -2.0 \ A \\ V_{GS} = -1.8 \ V, & I_D = -1.8 \ A \end{array} $		36 47 65	52 70 100	mΩ
I _{D(on)}	On–State Drain Current	$V_{GS} = -4.5 \text{ V}, \qquad V_{DS} = -5 \text{ V}$	-10			А
g fs	Forward Transconductance	$V_{DS} = -5 V$, $I_D = -1.25 A$		12		S
Dynamio	c Characteristics					
C _{iss}	Input Capacitance	$V_{DS} = -10 V$, $V_{GS} = 0 V$,		1310		pF
Coss	Output Capacitance	f = 1.0 MHz		240		pF
Crss	Reverse Transfer Capacitance	-		106		pF
R _G	Gate Resistance	$V_{GS} = 15 \text{ mV}, \text{ f} = 1.0 \text{ MHz}$		5.6		Ω
Switchir	ng Characteristics (Note 2)	· ·			•	
t _{d(on)}	Turn–On Delay Time	$V_{DD} = -10 V$, $I_D = -1 A$,		15	27	ns
tr	Turn–On Rise Time	$V_{GS} = -4.5 \text{ V}, R_{GEN} = 6 \Omega$		15	27	ns
t _{d(off)}	Turn–Off Delay Time			40	64	ns
t _f	Turn–Off Fall Time			25	40	ns
Qg	Total Gate Charge	$V_{DS} = -10 V$, $I_D = -2.4 A$,		12	20	nC
Q _{gs}	Gate-Source Charge	$V_{GS} = -4.5 V$		2		nC
Q _{gd}	Gate-Drain Charge			2		nC
Drain-S	ource Diode Characteristics	and Maximum Ratings				
ls	Maximum Continuous Drain-Source				-0.42	Α
V _{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 V$, $I_S = -0.42$ (Note 2)		-0.6	-1.2	V
t _{rr}	Reverse Recovery Time	$I_{\rm F} = -2.4 {\rm A},$		18		ns
Q _{rr}	Reverse Recovery Charge	$d_{iF}/d_t = 100 \text{ A}/\mu\text{s}$		7		nC
	um of the junction-to-case and case-to-ambient the Is. R _{eJC} is guaranteed by design while R _{eCA} is dete		e is defined	d as the sol	der mounti	ng surface

Scale 1 : 1 on letter size paper

兲

2. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%

http://www.twtysemi.com s

 \mathcal{S}