General Description

This P-Channel 1.8 V specified MOSFET uses Fairchild's advanced low voltage PowerTrench process. It has been optimized for battery power management applications.

Applications

- Battery management
- Load switch
- Battery protection

Features

- -2.4 A, -20 V. $R_{D S(O N)}=52 \mathrm{~m} \Omega @ \mathrm{~V}_{\mathrm{GS}}=-4.5 \mathrm{~V}$
$R_{\mathrm{DS}(\mathrm{ON})}=70 \mathrm{~m} \Omega @ \mathrm{~V}_{\mathrm{GS}}=-2.5 \mathrm{~V}$
$R_{\mathrm{DS}(\mathrm{ON})}=100 \mathrm{~m} \Omega @ \mathrm{~V}_{\mathrm{GS}}=-1.8 \mathrm{~V}$
- Fast switching speed
- ESD protection diode
- High performance trench technology for extremely low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$
- SuperSOT ${ }^{T M}-3$ provides low $\mathrm{R}_{\mathrm{DS}(0 \mathrm{~N})}$ and 30% higher power handling capability than SOT23 in the same footprint

G

Absolute Maximum Ratings $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter		Ratings	Units
$V_{\text {DSs }}$	Drain-Source Voltage		-20	V
$\mathrm{V}_{\text {GSS }}$	Gate-Source Voltage		± 8	V
ID	$\begin{aligned} \hline \text { Drain Current } & \text { - Continuous } \\ & - \text { Pulsed } \end{aligned}$	(Note 1a)	-2.4	A
			-10	
P_{D}	Maximum Power Dissipation	(Note 1a) (Note 1b)	0.5	W
			0.46	
$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {sta }}$	Operating and Storage Junction Temperature Range		-55 to +150	${ }^{\circ} \mathrm{C}$

Thermal Characteristics

$\mathrm{R}_{\text {өJA }}$	Thermal Resistance, Junction-to-Ambient	(Note 1a)	250	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {өコC }}$	Thermal Resistance, Junction-to-Case	(Note 1)	75	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width	Quantity
$04 Z$	FDN304PZ	$7^{\prime \prime}$	8 mm	3000 units

Electrical Characteristics		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted				
Symbol	Parameter	Test Conditions	Min	Typ	Max	Units
Off Characteristics						
BV ${ }_{\text {DSs }}$	Drain-Source Breakdown Voltage	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}$	-20			V
$\frac{\Delta \mathrm{BV} \mathrm{~V}_{\mathrm{DSS}}}{\Delta \mathrm{~T}_{\mathrm{J}}}$	Breakdown Voltage Temperature Coefficient	$\mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}$, Referenced to $25^{\circ} \mathrm{C}$		-13		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\text {dss }}$	Zero Gate Voltage Drain Current	$\mathrm{V}_{\mathrm{DS}}=-16 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$			-1	$\mu \mathrm{A}$
$I_{\text {gss }}$	Gate-Body Leakage	$\mathrm{V}_{\mathrm{GS}}= \pm 8 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$			± 10	UA
On Characteristics (Note 2)						
$\mathrm{V}_{\text {GS (th) }}$	Gate Threshold Voltage	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}$	-0.4	-0.8	-1.5	V
$\Delta \mathrm{VGS}($ th) $\Delta \mathrm{T}_{\mathrm{J}}$	Gate Threshold Voltage Temperature Coefficient	$\mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}$, Referenced to $25^{\circ} \mathrm{C}$		3		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\text {DS(on) }}$	Static Drain-Source On-Resistance	$\mathrm{V}_{\mathrm{GS}}=-4.5 \mathrm{~V}$, $\mathrm{I}_{\mathrm{D}}=-2.4 \mathrm{~A}$ $\mathrm{~V}_{\mathrm{GS}}=-2.5 \mathrm{~V}$, $\mathrm{I}_{\mathrm{D}}=-2.0 \mathrm{~A}$ $\mathrm{~V}_{\mathrm{GS}}=-1.8 \mathrm{~V}$, $\mathrm{I}_{\mathrm{D}}=-1.8 \mathrm{~A}$		$\begin{aligned} & 36 \\ & 47 \\ & 65 \\ & \hline \end{aligned}$	$\begin{gathered} 52 \\ 70 \\ 100 \\ \hline \end{gathered}$	$\mathrm{m} \Omega$
$\mathrm{I}_{\mathrm{D} \text { (on) }}$	On-State Drain Current	$\mathrm{V}_{\mathrm{GS}}=-4.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{DS}}=-5 \mathrm{~V}$	-10			A
$\mathrm{g}_{\text {FS }}$	Forward Transconductance	$\mathrm{V}_{\mathrm{DS}}=-5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{D}}=-1.25 \mathrm{~A}$		12		S

Dynamic Characteristics

$\mathrm{C}_{\text {iss }}$	Input Capacitance	$\begin{aligned} & V_{D S}=-10 \mathrm{~V}, \quad V_{G S}=0 \mathrm{~V}, \\ & f=1.0 \mathrm{MHz} \end{aligned}$	1310	pF
$\mathrm{C}_{\text {oss }}$	Output Capacitance		240	pF
$\mathrm{C}_{\text {rss }}$	Reverse Transfer Capacitance		106	pF
R_{G}	Gate Resistance	$\mathrm{V}_{\mathrm{GS}}=15 \mathrm{mV}, \mathrm{f}=1.0 \mathrm{MHz}$	5.6	Ω

Switching Characteristics (Note 2)

$\mathrm{t}_{\text {d(on) }}$	Turn-On Delay Time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=-10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{GS}}=-4.5 \mathrm{~V}, \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{D}}=-1 \mathrm{~A}, \\ & \mathrm{R}_{\text {GEN }}=6 \Omega \end{aligned}$	15	27	ns
t_{r}	Turn-On Rise Time			15	27	ns
$\mathrm{t}_{\text {d(off) }}$	Turn-Off Delay Time			40	64	ns
t_{f}	Turn-Off Fall Time			25	40	ns
Q_{g}	Total Gate Charge	$\begin{aligned} & V_{D S}=-10 \mathrm{~V}, \\ & V_{G S}=-4.5 \mathrm{~V} \end{aligned}$	$\mathrm{I}_{\mathrm{D}}=-2.4 \mathrm{~A}$,	12	20	nC
Q_{gs}	Gate-Source Charge			2		nC
Q_{gd}	Gate-Drain Charge			2		nC

Drain-Source Diode Characteristics and Maximum Ratings
$\left.\begin{array}{l|l|l|l|c|c|c}\hline \mathrm{I}_{\mathrm{S}} & \text { Maximum Continuous Drain-Source Diode Forward Current } & & & -0.42 & \mathrm{~A} \\ \hline \mathrm{~V}_{\mathrm{SD}} & \begin{array}{l}\text { Drain-Source Diode Forward } \\ \text { Voltage }\end{array} & \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{S}}=-0.42 \quad \text { (Note 2) }\end{array}\right)$

Notes:

1. $R_{\theta J A}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta C C}$ is guaranteed by design while $R_{\theta C A}$ is determined by the user's board design.

a) $250^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a

b) $270^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a minimum pad.

Scale 1:1 on letter size paper
2. Pulse Test: Pulse Width $\leq 300 \mu \mathrm{~s}$, Duty Cycle $\leq 2.0 \%$

