

$+2.5 \text{ V to } +5.5 \text{ V}, 140 \mu\text{A}, 2\text{-Wire Serial}$ Input, Voltage Output 8/10/12-Bit DACs

Prelim Technical Information

AD5301/11/21

FEATURES

AD5301: Single 8-Bit DAC AD5311: Single 10-Bit DAC AD5321: Single 12-Bit DAC

6 Pin SOT-23 and 8-pin microSOIC Packages

Micropower Operation: 140µA @ 5V (including Reference

Power Down to 200nA @ 5V, 50nA @ 3V

+2.5V to +5.5V Operation

Guaranteed Monotonic by Design Reference derived from Power Supply

Power-On-Reset to Zero Volts

2-Wire Serial Interface

On-Chip Output Buffer Amplifier, Rail-to-Rail Operation

APPLICATIONS

Portable Battery Powered Instruments **Digital Gain and Offset Adjustment Programmable Voltage and Current Sources Programmable Attenuators**

GENERAL DESCRIPTION

The AD5301/11/21 are single 8, 10 and 12-bit buffered voltage out DACs which operate from a single +2.5V to +5.5V supply. Their on-chip precision output amplifiers allow rail-to-rail output swing to be achieved. The AD5301/11/21 utilize a 2-wire serial interface which operates at clock rates up to 400kHz. This simple interface allows communication between multiple devices on a single bus. The AD5301/11/21 contain A0 and A1 pins which allow the 2 LSBs of the 7-bit slave address to be set by the user. The first six bits have been factory programmed and are always 000110 for the 6-pin package. The first five bits are programmed as 00011 for the 8-pin package.

The reference for the AD5301/11/21 is derived from the power supply inputs and thus gives the widest dynamic output range. The parts incorporate a power-on-reset circuit that ensures that the DAC outputs power up to zero volts and remain there until a valid write takes place to the device. The parts contain a power-down feature which reduces the current consumption of to 50nA @ 3V. The parts are put into power-down mode over the serial interface with an extra option of a hardware powerdown using the PD pin in the 8-pin versions.

The low power consumption of these parts in normal operation makes them ideally suited to portable battery-operated equipment. The power consumption is 0.7mW at 5V reducing to 1μW in power-down mode.

otherwise under any patent or patent rights of Analog Devices.

FUNCTIONAL BLOCK DIAGRAM

8-Lead MicroSOIC

PRODUCT HIGHLIGHTS

- 1. Low-power, single-supply operation. These parts operate from a single +2.5V to +5.5V supply and consume typically 0.35mW at 3V and 0.7mW at 5V making them ideal for battery-powered applications.
- 2. The on-chip output buffer amplifiers allow the outputs of the DACs to swing rail-to-rail with a slew rate of 1V/µs.
- 3. Reference derived from the power supply.
- 4. 2-Wire serial interface with clock speeds up to 400kHz.
- 5. Power-down capability. When powered down the DAC consume 50nA at 3V and 200nA at 5V.
- 6. Packaged in 6-pin SOT-23 and in 8-Lead MicroSOIC packages.

Prelim.H1 8/98

© Analog Devices, Inc., 1998

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its One Technology Way, P.O. Box 9106, Norwood. MA 02062-9106, U.S.A. use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or

WWW: http://www.analog.com Tel: 781/329-4700 Fax: 781/326-8703

AD5301/11/21-SPECIFICATIONS

(VDD = +2.5V to +5.5 V; RL=2k Ω to GND; CL=200pFto GND; All specifications TMIN to TMAX unless otherwise noted.)

Parameter		B Version ¹		Units	Conditions/Comments
	Min	Typ	Max		
DC PERFORMANCE					
AD5301					
Resolution	8			Bits	
Relative Accuracy	-	±0.25	±1	LSB	Output Unloaded
Differential Nonlinearity			±0.25	LSB	Output Unloaded. Guaranteed Monotonic by design
AD5311			_0.23	====	output omounts. Output into of utoign
Resolution	10			Bits	
Relative Accuracy		±1	±3	LSB	Output Unloaded
Differential Nonlinearity			±0.5	LSB	Output Unloaded. Guaranteed Monotonic by design
AD5321			_0.5		a compare of medical control of
Resolution	12			Bits	
Relative Accuracy		±4	±10	LSB	Output Unloaded
Differential Nonlinearity			±1	LSB	Output Unloaded. Guaranteed Monotonic by design
Zero Code Error			+3	LSB	Output Unloaded. All 0s loaded to DAC register.
Fullscale Error			-3	LSB	Output Unloaded. All 1s loaded to DAC register.
Gain Error			±0.75	% of FSR	output Officiacia. The 13 loaded to Dire register.
Zero Code Error Drift ³		-20	20.73	μV/°C	
Gain Temperature Coefficient ³		-20 5		ppm of FSR/°C	
•		,		ppin of Fold C	<u> </u>
OUTPUT CHARACTERISTICS ³				l	
Output Voltage Range	0		$ m V_{DD}$	V	
Output Voltage Settling Time					/ //
AD5301		4	6	μs	1/4 Scale to 3/4 Scale change (40Hex to C0 Hex)
AD5311		6	8	μs	1/4 Scale to 3/4 Scale change (100Hex to 300 Hex)
AD5321		8	10	μs	1/4 Scale to 3/4 Scale change (400Hex to C00 Hex)
Slew Rate		1		V/μs	
Digital-to-Analog Glitch Impulse		20		nV-s	1 LSB change around major carry.
Digital Feedthrough		0.5		nV-s	
DC Output Impedance		1		Ω	
Short Circuit Current		50		mA	$V_{DD} = +5V$
		20		mA	$V_{DD} = +3V$
Power Up Time		2.5		μs	Coming out of Power Down Mode. $V_{DD} = +5V$
		5		μs	Coming out of Power Down Mode. $V_{DD} = +3V$
LOGIC INPUTS (A0,A1) ³					
Input Current			±1	μA	
V _{INL} , Input Low Voltage			0.8	l v	$V_{DD} = +5 \text{ V} \pm 10\%$
V _{INL} , Input Low Voltage			0.6	l v	$V_{DD} = +3 \text{ V} \pm 10\%$
V _{INL} , Input Low Voltage			⊚ 0.5	v	$V_{DD} = +2.5 \text{ V}$
V _{INH} , Input High Voltage	2.4		y	v	$V_{DD} = +5 \text{ V} \pm 10\%$
V _{INH} , Input High Voltage	2.1			l v	$V_{DD} = +3 \text{ V} \pm 10\%$
V _{INH} , Input High Voltage	2.0			v	$V_{DD} = +2.5 \text{ V}$
Pin Capacitance	12.0		3	pF	100 .2.3 (
	7000	** <u>*</u>		F*	
LOGIC INPUTS (SCL, SDA) ³	0.7.		¥7 .05	77	
V _{IH} , Input High Voltage	0.7 V_{D}	Ð	$V_{\rm DD} + 0.5$	V	
V _{IL} , Input Low Voltage	-0.5	mpp.	$0.3~V_{ m DD}$	V.	
I _{IN} , Input Leakage Current		TBD	±1	μA	$V_{\rm IN} = 0 V$ to $V_{\rm DD}$.
V _{HYST} , Input Hysteresis	0.05 V			V_	
C _{IN} , Input Capacitance		3		pF	
LOGIC OUTPUT (SDA) ³					
V _{OL} , Output Low Voltage			0.4	V	$I_{SINK} = 3 \text{ mA}$
			0.6	V	$I_{SINK} = 6 \text{ mA}$
Three-State Leakage Current			±1	μA	
Three-State Output Capacitance			10	pF	
POWER REQUIREMENTS				T -	
V _{DD}	2.5		5.5	l v	
V _{DD} I _{DD} (Normal Mode)	2.5		ر.ر	*	DAC active and excluding load current.
,		140	250	l	
V_{DD} = +4.5V to +5.5V		140	250	μΑ	$V_{IH} = V_{DD}$ and $V_{IL} = GND$
$V_{\rm DD} = +2.5 \text{V to } +3.6 \text{V}$		115	200	μΑ	$V_{IH} = V_{DD}$ and $V_{IL} = GND$
I _{DD} (Power Down)		0.2	1	l	W -W AV -CND
$V_{DD} = +4.5V \text{ to } +5.5V$		0.2	1	μΑ	$V_{IH} = V_{DD}$ and $V_{IL} = GND$
$V_{\rm DD}$ = +2.5V to +3.6V		0.05	1	μΑ	$V_{IH} = V_{DD}$ and $V_{IL} = GND$

NOTES

¹Temperature range: B Version: -40°C to +105°C.

²Linearity is tested using a reduced code range.

³Guaranteed by Design and Characterization, not production tested.

Specifications subject to change without notice.

TIMING CHARACTERISTICS 1 ($V_{DD} = +2.5 \text{ V to } +5.5 \text{ V}$. All specifications T_{MIN} to T_{MAX} unless otherwise noted)

Parameter	Limit at T _{MIN} , T _{MAX} (B Version)	Units	Conditions/Comments
F_{SCL}	400	kHz max	SCL Clock Frequency
t_1	2.5	μs min	SCL Cycle Time
t_2	0.6	μs min	t _{HIGH} , SCL High Time
t_3	1.3	μs min	t _{LOW} , SCL Low Time
t_4	0.6	μs min	t _{HD,STA} , Start/Repeated Start Condition Hold Time
t ₅	100	ns min	t _{SU,DAT} , Data Setup Time
t_6^2	0.9	μs max	t _{HD,DAT} , Data Hold Time
	0	μs min	
t ₇	0.6	μs min	t _{SU,STA} , Setup Time for Repeated Start
t ₈	0.6	μs min	t _{SU,STO} , Stop Condition Setup Time
t ₉	1.3	μs min	t _{BUF} , Bus Free Time Between a STOP Condition and a
			START Condition.
t ₁₀	300	ns max	t _R , Rise Time of both SCL and SDA when receiving
	$20 + 0.1C_b^3$	ns min	
t ₁₁	250	ns max	t _F , Fall Time of SDA when transmitting.
t ₁₁	300	ns max	t _F , Fall Time of both SCL and SDA when receiving
	$20 + 0.1C_b^3$	ns min	
C_b	400	pF max	Capacitive Load for Each Bus Line.
t_{SP}^4	50	ns max	Pulse width of spike Suppressed.

NOTES

Figure 1. 2-Wire Serial Interface Timing Diagram.

¹See Figure 1.

²A master device must provide a hold time of at least 300ns for the SDA signal (referred to the V_{IH min} of the SCL signal) in order to bridge the undefined region of SCL's falling edge.

 $^{^3}C_b$ is the total capacitance of one bus line in pF. t_R and t_F measured between 0.3 V_{DD} and 0.7 V_{DD} .

⁴Input filtering on both the SCL and SDA inputs suppress noise spikes which are less than 50ns.

ABSOLUTE MAXIMUM RATINGS*

$(T_A = +25^{\circ}C \text{ unless otherwise})$	noted)
V _{DD} to GND	0.3 V to +7 V
SCL, SDA to GND	0.5 V to V_{DD} + 0.5 V
A0, A1, PD to GND	0.3V to V_{DD} + 0.3V
V _{OUT} to GND	0.3V to $V_{DD} + 0.3V$
Operating Temperature Range	
Industrial (B Version)	40°C to +105°C
Storage Temperature Range	65°C to +150°C
Junction Temperature	+150°C
SOT-23 Package	
Power Dissipation	240mW
θ _{JA} Thermal Impedance	190°C/W
Industrial (B Version)	65°C to +150°C+150°C

Lead Temperature, Soldering	
Vapor Phase (60 sec)	+215°C
Infrared (15 sec)	+220°C
MicroSOIC Package, Power Dissipation	220 mW
θ _{IA} Thermal Impedance	206°C /W
θ _{IC} Thermal Impedance	44°C /W
Lead Temperature, Soldering	
Vapor Phase (60 sec)	+215°C
Infrared (15 sec)	+220°C

^{*}Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD5301/11/21 features proprietary ESD protection circuitry, permanent damage may still occur on these devices if they are subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATION

6-Lead SOT23

8-Lead microSOIC

PIN FUNCTION DESCRIPTION

SOT-23 PIN NUMBERS

Pin No.	Mnemonic	Function
1	GND	Ground reference point for all circuitry on the part.
2	SDA	Serial Data Line. This is used in conjunction with the SCL line to clock data into the 16-bit input shift register. It is a bi-directional open-drain data line which should be pulled to the supply with an external pull-up resistor.
3	SCL	Serial Clock Line. This is used in conjunction with the SDA line to clock data into the 16-bit input shift register. Clock rates of up to 400kbit/s can be accommodated in the I ² C compatible interface.
4	V_{OUT}	Analog output voltage from the DAC. The output amplifier can swing rail-to-rail.
5	A0	Address Input. Sets the least significant bit of the 7-bit slave address.
6	V_{DD}	Power Supply Input. These parts can be operated from +2.5V to +5.5V and should be decoupled to GND. This supply input is also used as the reference for the DAC.

PIN FUNCTION DESCRIPTION

8-PIN MICROSOIC PIN NUMBERS

Pin No.	Mnemonic	Function
1	$ m V_{DD}$	Power Supply Input. These parts can be operated from +2.5V to +5.5V and should be decoupled to GND. This supply input is also used as the reference for the DAC.
2-3	A0, A1	Address Inputs. Sets the two least significant bits of the 7-bit slave address. (A0=LSB)
4	V_{OUT}	Analog output voltage from the DAC. The output amplifier can swing rail-to-rail.
5	$\overline{ ext{PD}}$	Active Low Power-Down pin. When this pin is brought low, the part enters power-down mode.
6	SCL	Serial Clock Line. This is used in conjunction with the SDA line to clock data into the 16-bit input shift regis ter. Clock rates of up to 400kbit/s can be accommodated in the I ² C compatible interface
7	SDA	Serial Data Line. This is used in conjunction with the SCL line to clock data into the 16-bit input shift regis ter. It is a bi-directional open-drain data line which should be pulled to the supply with an external pull-up re sistor.
8	GND	Ground reference point for all circuitry on the part.

INPUT REGISTER CONTENTS

Figure 2. AD5301 Input Shift Register Contents

Figure 3. AD5311 Input Shift Register Contents

Figure 4. AD5321 Input Shift Register Contents

^{*} This bit must be 0 in the 6-pin SOT23 version

AD5311 WRITE SEQUENCE

^{*} This bit must be 0 in the 6-pin SOT23 version

DATA BYTE

MASTER

MASTER

ADDRESS BYTE

^{*} This bit must be 0 in the 6-pin SOT23 version

^{*} This bit must be 0 in the 6-pin SOT23 version

AD5321 READBACK SEQUENCE

^{*} This bit must be 0 in the 6-pin SOT23 version

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

6-Lead SOT-23 (RT-6)

8-Lead MicroSOIC (RM-8)

-8-