

Silicon N-Channel MOSFET

Features

- 4.5A,500V,R_{DS(on)(}Max 1.5Ω)@V_{GS}=10V
- Ultra-low Gate Charge(Typical 32nC)
- Fast Switching Capability
- 100%Avalanche Tested
- Maximum Junction Temperature Range(150°C)

General Description

This Power MOSFET is produced using Winsemi's advanced planar stripe, DMOS technology. This latest technology has been especially designed to minimize on-state resistance, have a high rugged avalanche characteristics. This devices is specially well suited for high efficiency switch model power supplies, power factor correction and half bridge and full bridge resonant topology line a electronic lamp ballast.

GDS	TO-220F

Symbol	Parameter	Value	Units
VDSS	Drain Source Voltage	500	v
1-	Continuous Drain Current(@Tc=25℃)	4.5*	A
lo	Continuous Drain Current(@Tc=100°C)	2.9*	A
Ідм	Drain Current Pulsed (Note	1) 18*	A
Vgs	Gate to Source Voltage	±30	V
Eas	Single Pulsed Avalanche Energy (Note	2) 300	mJ
Ear	Repetitive Avalanche Energy (Note	1) 7.5	mJ
dv/dt	Peak Diode Recovery dv/dt (Note	3) 4.5	V/ns
Da	Total Power Dissipation(@Tc=25℃)	38	W
Po	Derating Factor above 25℃	0.3	W/℃
TJ, Tstg	Junction and Storage Temperature	-55~150	°C
T∟	Channel Temperature	300	°C

Absolute Maximum Ratings

*Drain current limited by maximum junction temperature

Thermal Characteristics

Symbol	Paramatar	Value			Linita	
Symbol	Parameter	Min	Тур	Max	Units	
Rajc	Thermal Resistance, Junction-to-Case	-	-	3.3	°C/W	
Rqja	Thermal Resistance, Junction-to-Ambient	-	-	62.5	°C/W	

Electrical Characteristics (Tc = 25° C)

Charact	eristics	Symbol	Test Condition	Min	Туре	Max	Unit
Gate leakage curr	ent	lgss	$V_{GS} = \pm 30 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$	-	-	±100	nA
Gate-source brea	kdown voltage	V(BR)GSS	Ig = $\pm 10 \ \mu$ A, Vds = 0 V	\pm 30	-	-	V
Drain cut-off curr	ent	loss	V _{DS} = 500 V, V _{GS} = 0 V	-	-	1	μA
Drain-source brea	akdown voltage	V(BR)DSS	I _D = 250 μA, V _{GS} = 0 V	500	-	-	V
Break Voltage Te Coefficient	mperature	ΔBV _{DSS} / ΔTJ	I⊳=250µA, Referenced to 25℃	-	0.55	-	V/℃
Gate threshold vo	Itage	V _{GS(th)}	V _{DS} = 10 V, I _D =250 μA	2	-	4	V
Drain-source ON	resistance	Rds(on)	Vgs = 10 V, Id = 2.25A	-	1.16	1.5	Ω
Forward Transcor	nductance	gfs	V _{DS} = 40 V, I _D = 2.25A	-	4.2	-	S
Input capacitance		Ciss	V _{DS} = 25 V,	-	800	1050	
Reverse transfer capacitance		Crss	V _{GS} = 0 V,	-	18	23	pF
Output capacitance	Output capacitance		f = 1 MHz	-	76	100	
	Rise time	tr	Vdd =250 V,	-	15	40	- ns
Switching time	Turn-on time	ton	ID =4.5A	-	40	90	
Switching time	Fall time	tf	Rg=25Ω	-	85	180	
	Turn-off time	toff	(Note4,5)	-	45	100	
Total gate charge (gate-source plus gate-drain)		Qg	V _{DD} = 400 V, V _{GS} = 10 V,	-	32	44	-0
Gate-source charge		Qgs	ID =4.5 A	-	3.7	-	nC
Gate-drain ("miller") Charge		Qgd	(Note4,5)	-	15	-	

Source–Drain Ratings and Characteristics (Ta = 25°C)

		•		-		
Characteristics	Symbol	Test Condition	Min	Туре	Max	Unit
Continuous drain reverse current	ldr	-	-	-	4.5	А
Pulse drain reverse current	IDRP	-	-	-	18	А
Forward voltage (diode)	VDSF	I _{DR} = 4.5 A, V _{GS} = 0 V	-	-	1.4	V
Reverse recovery time	trr	IDR = 4.5 A, VGS = 0 V,	-	305	-	ns
Reverse recovery charge	Qrr	dl _{DR} / dt = 100 A / µs	-	2.6	-	μC

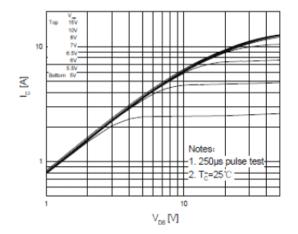
Note 1.Repeativity rating :pulse width limited by junction temperature

2.L=24mH,I_{AS}=4.5A,V_{DD}=50V,R_G=25\Omega,Starting T_J=25 $^\circ\!\mathrm{C}$

 $3.I_{SD} \leq 4.5A, di/dt \leq 300A/us, V_{DD} < BV_{DSS}, STARTING T_J = 25 ^{\circ}C$

4.Pulse Test: Pulse Width≤300us,Duty Cycle≤2%

5.Essentially independent of operating temperature.


This transistor is an electrostatic sensitive device

Please handle with caution

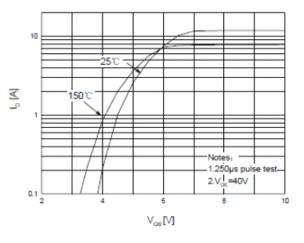


Fig.1 On-State Characteristics

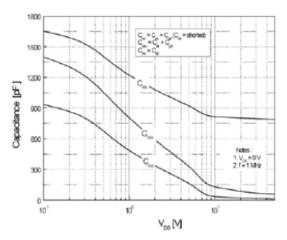


Fig.3 Capacitance Variation vs drain voltage

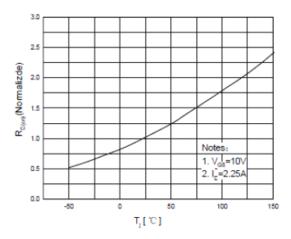


Fig.5 On-Resistance Variation vs.JunctionTemperature

ШÎ

Fig.2 Transfer Current characteristics

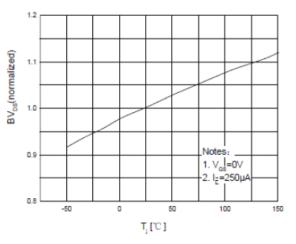
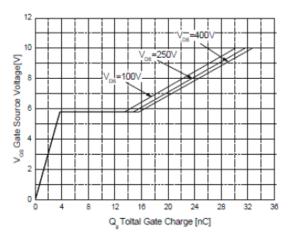
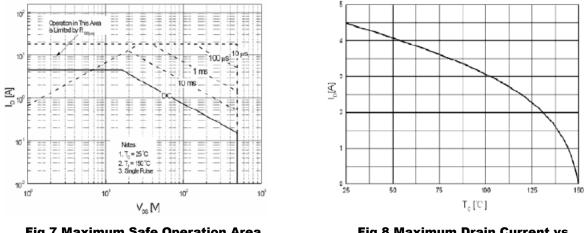
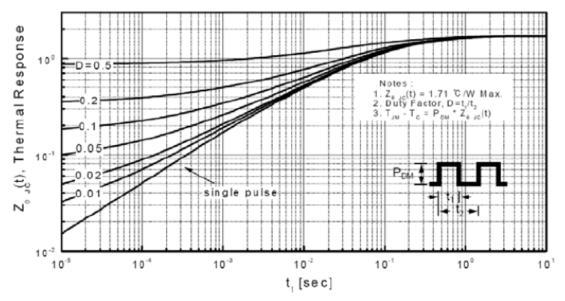



Fig.4 Breakdown Voltage Variation Vs Temperature

Fig.6 Gate Charge Characteristics

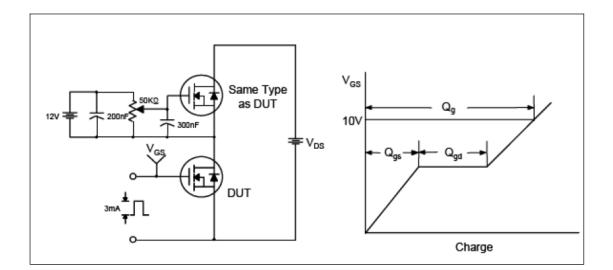

Fig.7 Maximum Safe Operation Area

Fig.8 Maximum Drain Current vs **Case Temperature**

Fig.9Transient Thermal Response Curve

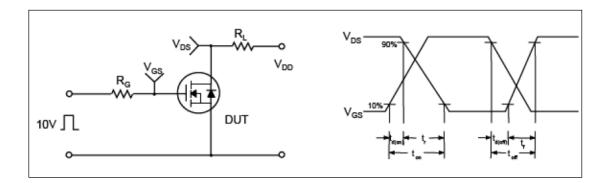


Fig.11 Resistive Switching Test Circuit & Waveform

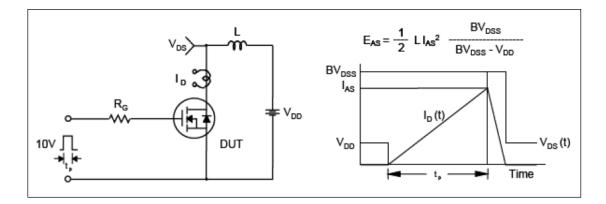


Fig.12 Unclamped Inductive Switching Test Circuit & Waveform

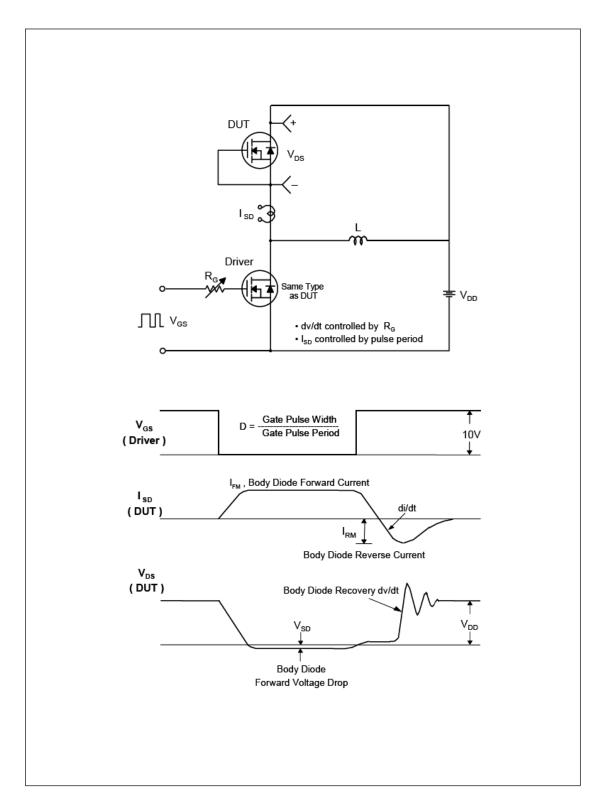
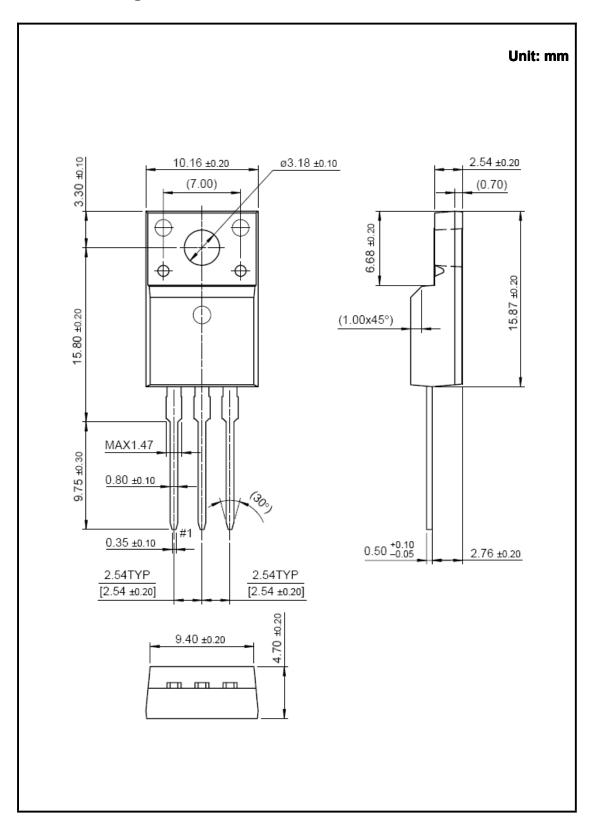



Fig.13 Peak Diode Recovery dv/dt Test Circuit & Waveform

ШÎ

TO-220F Package Dimension

