Product specification

DESCRIPTION

TY Semicondutor[®]

The μ PA1950 is a switching device which can be driven directly by a 1.8 V power source.

T

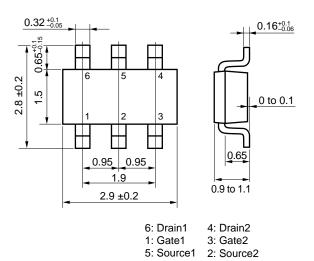
This device features a low on-state resistance and excellent switching characteristics, and is suitable for applications such as power switch of portable machine and so on.

FEATURES

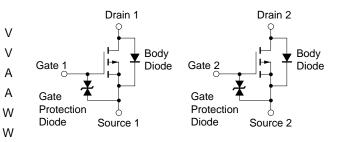
- 1.8 V drive available
- Low on-state resistance $R_{DS(on)1} = 130 \text{ m}\Omega \text{ MAX}. (V_{GS} = -4.5 \text{ V}, \text{ ID} = -1.5 \text{ A})$ $R_{DS(on)2} = 176 \text{ m}\Omega \text{ MAX}. (V_{GS} = -3.0 \text{ V}, \text{ ID} = -1.5 \text{ A})$ $R_{DS(on)3} = 205 \text{ m}\Omega \text{ MAX}. (V_{GS} = -2.5 \text{ V}, \text{ ID} = -1.5 \text{ A})$ $R_{DS(on)4} = 375 \text{ m}\Omega \text{ MAX}. (V_{GS} = -1.8 \text{ V}, \text{ ID} = -1.0 \text{ A})$

ORDERING INFORMATION

PART NUMBER	PACKAGE		
μΡΑ1950ΤΕ ^{Νote}	SC-95 (Mini Mold Thin Type)		


Note Marking: TM

ABSOLUTE MAXIMUM RATINGS ($T_A = 25^{\circ}C$)

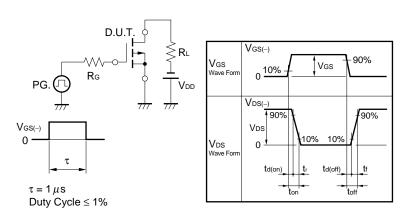

Drain to Source Voltage (Vgs = 0 V)	VDSS	-12	
Gate to Source Voltage (VDS = 0 V)	Vgss	∓8.0	
Drain Current (DC) (T _A = 25°C)	D(DC)	∓2.5	
Drain Current (pulse) Note1	D(pulse)	∓7.0	
Total Power Dissipation (2unit) Note2	P _{T1}	1.15	
Total Power Dissipation (1unit) Note2	P T2	0.57	,
Channel Temperature	Tch	150	
Storage Temperature	Tstg	–55 to +150	•
Notes 1 $D V < 10$ up Duty Cycle < 19/			

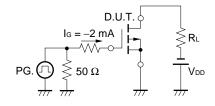
Notes 1. PW \leq 10 μ s, Duty Cycle \leq 1% **2.** Mounted on FR-4 board, t \leq 5 sec.

PACKAGE DRAWING (Unit : mm)

EQUIVALENT CIRCUIT

°C °C




ELECTRICAL CHARACTERISTICS (T_A = 25°C)

CHARACTERISTICS	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Zero Gate Voltage Drain Current	IDSS	$V_{DS} = -12 V, V_{GS} = 0 V$			-10	μA
Gate Leakage Current	lgss	$V_{GS} = \mp 8.0 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$			∓10	μA
Gate Cut-off Voltage	VGS(off)	$V_{DS} = -10 V$, $I_D = -1.0 mA$	-0.45		-1.5	V
Forward Transfer Admittance	y _{fs}	$V_{DS} = -10 V$, $I_D = -1.5 A$	1.0			S
Drain to Source On-state Resistance	RDS(on)1	$V_{GS} = -4.5 \text{ V}, \text{ ID} = -1.5 \text{ A}$		105	130	mΩ
	RDS(on)2	$V_{GS} = -3.0 \text{ V}, \text{ ID} = -1.5 \text{ A}$		135	176	mΩ
	RDS(on)3	$V_{GS} = -2.5 V, I_D = -1.5 A$		160	205	mΩ
	RDS(on)4	$V_{GS} = -1.8 V, I_{D} = -1.0 A$		225	375	mΩ
Input Capacitance	Ciss	V _{DS} = -10 V		220		pF
Output Capacitance	Coss	Vgs = 0 V		90		pF
Reverse Transfer Capacitance	Crss	f = 1.0 MHz		40		pF
Turn-on Delay Time	td(on)	$V_{DD} = -6.0 \text{ V}, \text{ ID} = -1.5 \text{ A}$		15		ns
Rise Time	tr	Vgs = -4.0 V		80		ns
Turn-off Delay Time	td(off)	R _G = 10 Ω		150		ns
Fall Time	tr			120		ns
Total Gate Charge	QG	$V_{DD} = -10 V$		1.9		nC
Gate to Source Charge	Q _{GS}	Vgs = -4.0 V		0.5		nC
Gate to Drain Charge	Qgd	ID = -2.5 A		0.7		nC
Body Diode Forward Voltage	VF(S-D)	IF = 2.5 A, VGS = 0 V		0.86		V

TEST CIRCUIT 1 SWITCHING TIME

TEST CIRCUIT 2 GATE CHARGE

