

DESCRIPTION

The SPN5001 is the N-Channel logic enhancement mode power field effect transistor which is produced with high voltage BiCMOS technology. This device is particularly suited for reducing the no load consumption in PC power, TV power and Adapter.

APPLICATIONS

- Desk PC Power Supply
- AC adapter
- LCD TC Power Supply

FEATURES

- 600V/27mA, RDS(ON)= $300\Omega@VGS=10V$
- Super high density cell design for extremely low RDS (ON)
- Exceptional on-resistance and maximum DC current capability
- SOT-23 package design

PIN CONFIGURATION(SOT-23)

PART MARKING

YW: Date Code

PIN DESCRIPTION

Pin	Symbol	Description
1	G	Gate
2	S	Source
3	D	Drain

ORDERING INFORMATION

	Part Number	Part Marking
SPN5001S23RGB SOT-23 501YW	SPN5001S23RGB	501YW

X SPN5001S23RGB : Tape Reel ; Pb – Free ; Halogen – Free

ABSOULTE MAXIMUM RATINGS (TA=25°C Unless otherwise noted)

Parameter		Symbol	Typical	Unit
Drain-Source Voltage		VDSS	600	V
Gate –Source Voltage - Continuous		VGSS	±20	V
Continuous Drain Current	Ta=25°C	ID	27	mA
Power Dissipation	TA=25°C	Pd	0.5	W
Operating Junction Temperature		TJ	-55 ~ 150	°C
Storage Temperature Range		Tstg	-55 ~ 150	°C
Thermal Resistance-Junction to Ambient		Rөја	250	°C/W

ELECTRICAL CHARACTERISTICS (TA=25°C Unless otherwise noted)										
Parameter	Symbol	Conditions	Min.	Тур	Max.	Unit				
Static										
Drain-Source Breakdown Voltage	V(BR)DSS	Vgs=0V,Id=250uA	600			v				
Gate Threshold Voltage	VGS(th)	VDS=VGS,ID=250uA	3.0		4.5					
Gate Leakage Current	IGSS	VDS=0V,VGS=±20V			±100	nA				
Zero Gate Voltage Drain Current	Idss	VDS=480V,VGS=0V TJ=25℃			25	uA				
Drain-Source On-Resistance	RDS(on)	VGS=10V,ID=16mA			300	Ω				
Forward Transconductance	Gfs(1)	$V_{DS} = 10 V$, $I_{D} = 16 mA$		28		mS				
Dynamic										
Total Gate Charge	Qg	$V_{DD} = 200 \text{ V}, \text{ ID} = 0.1 \text{ A},$ $V_{CS} = 10 \text{ V}$	1.8	2.5	3.2	nC				
Gate-Source Charge	Qgs			1.3						
Gate-Drain Charge	Qgd			0.8						
Input Capacitance	Ciss	$V_{DS} = 25 V, f = 1 MHz,$ $V_{GS} = 0$	8.8	12.5	16.2	pF				
Output Capacitance	Coss		7	10	13					
Reverse Transfer Capacitance	Crss		5	7	9					
Turn-On Time	td(on)			11.5		- ns				
	tr	$V_{DS} = 300 V, I_D = 10m A$		14.5						
Turn-Off Time	td(off)	$R_{\rm D} = 3.3\Omega \ V_{\rm GS} = 10.0 \ V$ $R_{\rm D} = 30 k \Omega$		14						
	tf			120						

TYPICAL CHARACTERISTICS

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance v.s. Junction Temperature

TYPICAL CHARACTERISTICS

Fig 6. Gate Threshold Voltage v.s. Junction Temperature

Fig 7. Gate Charge Characteristics

Fig 8. Typical Capacitance Characteristics

TYPICAL CHARACTERISTICS

Fig 9. Maximum Safe Operating Area

Fig 10. Effective Transient Thermal Impedance

Fig 11. Switching Time Waveform

Fig 12. Gate Charge Circuit

Information provided is alleged to be exact and consistent. SYNC Power Corporation presumes no responsibility for the penalties of use of such information or for any violation of patents or other rights of third parties which may result from its use. No license is granted by allegation or otherwise under any patent or patent rights of SYNC Power Corporation. Conditions mentioned in this publication are subject to change without notice. This publication surpasses and replaces all information previously supplied. SYNC Power Corporation products are not authorized for use as critical components in life support devices or systems without express written approval of SYNC Power Corporation.

©The SYNC Power logo is a registered trademark of SYNC Power Corporation ©2004 SYNC Power Corporation – Printed in Taiwan – All Rights Reserved SYNC Power Corporation 7F-2, No.3-1, Park Street NanKang District (NKSP), Taipei, Taiwan, 115, R.O.C Phone: 886-2-2655-8178 Fax: 886-2-2655-8468 ©http://www.syncpower.com