

8-BIT SINGLE CHIP MICROCONTROLLER LC863448A/40A

Preliminary

Overview

The LC863448/40A are 8-bit single chip microcontrollers with the following on-chip functional blocks:

- CPU: Operable at a minimum bus cycle time of 0.424µs
- On-chip ROM capacity

Program ROM: 48K/40K bytes

CGROM: 16K bytes

- On-chip RAM capacity: 640 bytes
- OSD RAM : 352×9 bits
- Closed-Caption TV controller and the on-screen display controller
- Closed-Caption data slicer
- Four channels × 6-bit AD Converter
- Three channels × 7-bit PWM
- 16-bit timer/counter, 14-bit base timer
- IIC-bus compliant serial interface circuit (Multi-master type)
- ROM correction function
- 11-source 8-vectored interrupt system
- Integrated system clock generator and display clock generator

Only one X'tal oscillator (32.768kHz) for PLL reference is used for both generators

TV control and the Closed Caption function

All of the above functions are fabricated on a single chip.

- ♦ No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - 1) Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - 2) Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- ♦ Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

Note: This product includes the IIC bus interface circuit. If you intend to use the IIC bus interface, please notify us of this in advance of our receiving your program ROM code order.

Purchase of SANYO IIC components conveys a license under the Philips IIC Patents Rights to use these components in an IIC system, provided that the system conforms to the IIC Standard Specification as defined by Philips.

Trademarks

IIC is a trademark of Philips Corporation.

This catalog provides information as of April 2001. Specifications and information herein are subject to change without notice.

SANYO Electric Co., Ltd. Semiconductor Company System BusinessI Div.
Microcomputer Development Dep.
1-1-1, Sakata Oizumi-Machi, Gunma, JAPAN

Features

(1) Read-Only Memory (ROM): 49152×8 bits (LC863448A) / 40960×8 bits (LC863440A) for

program

 16128×8 bits for CGROM

(2) Random Access Memory (RAM): 512×8 bits (working area)

 128×8 bits (working or ROM correction function)

 352×9 bits (for CRT display)

(3) OSD functions

- Screen display : 36 characters × 16 lines (by software)

- RAM : 352 words (9 bits per word)

Display area : $36 \text{ words} \times 8 \text{ lines}$ Control area : $8 \text{ words} \times 8 \text{ lines}$

- Characters

Up to 252 kinds of 16×32 dot character fonts

(4 characters including 1 test character are not programmable)

Each font can be divided into two parts and used as two fonts (Ex. 16×16 dot character font \times 2)

At least 111 characters need to be divide between a 16×18 dot and 8×9 dot character font to display the caption fonts.

- Various character attributes

Rounding Underline

Italic character (slanting)

- Attribute can be changed without spacing
- Vertical display start line number can be set for each row independently (Rows can be overlapped)
- Horizontal display start position can be set for each row independently
- Horizontal pitch (bit 9 16)*1 and vertical pitch (bit-32) can be set for each row independently
- Different display modes can be set for each row independently

Caption • Text mode / OSD mode 1 / OSD mode 2 (Quarter size) / Simplified graphic mode

- Ten character sizes *1

Horez.
$$\times$$
 Vert. = (1×1) , (1×2) , (2×2) , (2×4) , (0.5×0.5)
 (1.5×1) , (1.5×2) , (3×2) , (3×4) , (0.75×0.5)

- Shuttering and scrolling on each row
- Simplified Graphic Display
- *1 Note : range depends on display mode : refer to the manual for details.
- (4) Data Slicer (closed caption format)
 - Closed caption data and XDS data extraction
 - NTSC/PAL, and extracted line can be specified
- (5) Bus Cycle Time / Instruction-Cycle Time

Bus cycle time	Instruction cycle time	Clock divider	System clock oscillation	Oscillation Frequency	Voltage
0.424μs	0.848µs	1/2	Internal VCO	14.156MHz	4.5V to 5.5V
			(Ref : X'tal 32.768kHz)		
7.5µs	15.0µs	1/2	Internal RC	800kHz	4.5V to 5.5V
91.55µs	183.1µs	1/1	Crystal	32.768kHz	4.5V to 5.5V
183.1µs	366.2µs	1/2	Crystal	32.768kHz	4.5V to 5.5V

(6) Ports

- Input / Output Ports : 4 ports (23 terminals)

Data direction programmable in nibble units : 1 port (8 terminals)

(If the N-ch open drain output is selected by option, the corresponding port data can be read in output mode.)

Data direction programmable for each bit individually : 3 ports (15 terminals)

(7) AD converter

- 4 channels × 6-bit AD converters

(8) Serial interfaces

- IIC-bus compliant serial interface (Multi-master type)

Consists of a single built-in circuit with two I/O channels. The two data lines and two clock lines can be connected internally.

(9) PWM output

- 3 channels × 7-bit PWM

(10) Timer

- Timer 0 : 16-bit timer/counter

With 2-bit prescaler + 8-bit programmable prescaler

Mode 0: Two 8-bit timers with a programmable prescaler

Mode 1: 8-bit timer with a programmable prescaler + 8-bit counter

Mode 2: 16-bit timer with a programmable prescaler

Mode 3: 16-bit counter

The resolution of timer is 1 tCYC.

- Base timer

Generate every 500ms overflow for a clock application (using 32.768kHz crystal oscillation for the base timer clock)

Generate every 976µs, 3.9ms, 15.6ms, 62.5ms overflow (using 32.768kHz crystal oscillation for the base timer clock)

Clock for the base timer is selectable from 32.768kHz crystal oscillation, system clock or programmable prescaler output of Timer 0

(11) Remote control receiver circuit (connected to the P73/INT3/T0IN terminal)

- Noise rejection function
- Polarity switching

(12) Watchdog timer

External RC circuit is required

Interrupt or system reset is activated when the timer overflows

(13) ROM correction function

Max 128 bytes / 2 addresses

(14) Interrupts

- 11 sources 8 vectored interrupts
 - 1. External Interrupt INTO
 - 2. External Interrupt INT1
 - 3. External Interrupt INT2, Timer/counter T0L (Lower 8 bits)
 - 4. External Interrupt INT3, base timer
 - 5. Timer/counter T0H (Upper 8 bits)
 - 6. Data slicer
 - 7. Vertical synchronous signal interrupt (\overline{VS}), horizontal line (\overline{HS})
 - 8. IIC

- Interrupt priority control

Three interrupt priorities are supported (low, high and highest) and multi-level nesting is possible. Low or high priority can be assigned to the interrupts from 3 to 8 listed above. For the external interrupt INT0 and INT1, low or highest priority can be set.

(15) Sub-routine stack level

- A maximum of 128 levels (stack is built in the internal RAM)

(16) Multiplication/division instruction

- 16 bits \times 8 bits (7 instruction cycle times)
- 16 bits / 8 bits (7 instruction cycle times)

(17) 3 oscillation circuits

- Built-in RC oscillation circuit used for the system clock
- Built-in VCO circuit used for the system clock and OSD
- X'tal oscillation circuit used for base timer, system clock and PLL reference

(18) Standby function

- HALT mode

The HALT mode is used to reduce the power dissipation. In this operation mode, the program execution is stopped. This mode can be released by the interrupt request or the system reset.

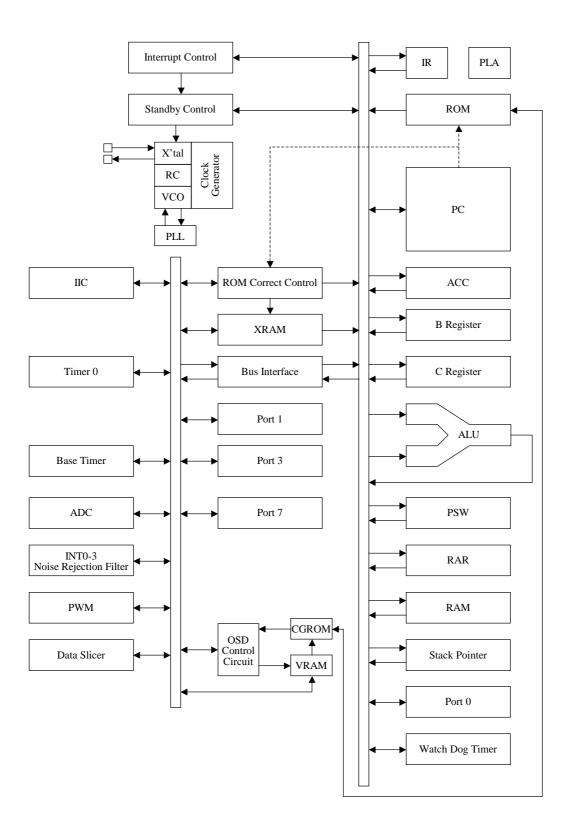
- HOLD mode

The HOLD mode is used to stop the oscillations; RC (internal), VCO, and X'tal oscillations. This mode can be released by the following conditions.

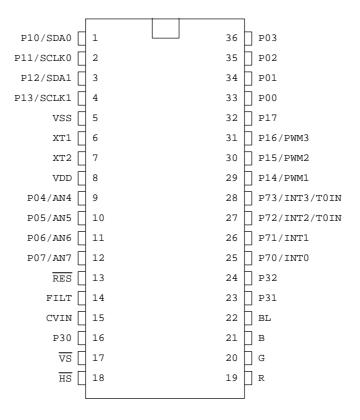
- Pull the reset terminal (\overline{RES}) to low level.
- Feed the selected level to either P70/INT0 or P71/INT1.

(19) Package

- MFP36S
- DIP36S


(20) Development tools

- Flash EEPROM: LC86F3448A- Evaluation chip: LC863096


- Emulator: EVA86000 (main) + ECB863400 (evaluation chip board)

+ POD36-CABLE (cable) + POD36-DIP (for DIP36S) or POD36-MFP (for MFP36S)

System Block Diagram

Pin Assignment

Pin Description

Pin Description Table

Terminal	I/O	Function Description	Option
VSS	-	Negative power supply	
XT1	I	Input terminal for crystal oscillator	
XT2	0	Output terminal for crystal oscillator	
VDD	ı	Positive power supply	
RES	I	Reset terminal	
FILT	O	Filter terminal for PLL	
CVIN	I	Video signal input terminal	
$\overline{\text{VS}}$	I	Vertical synchronization signal input terminal	
HS	I	Horizontal synchronization signal input terminal	
R	0	Red (R) output terminal of RGB image output	
G	0	Green (G) output terminal of RGB image output	
В	0	Blue (B) output terminal of RGB image output	
BL	O	Fast blanking control signal	
		Switch TV image signal and caption/OSD image signal	
Port 0		•8-bit input/output port,	Pull-up resistor
P00 - P07	I/O	Input/output can be specified in nibble unit	provided/not provided
		(If the N-ch open drain output is selected by option, the	Output Format
		corresponding port data can be read in output mode.)	CMOS/Nch-OD
		•Other functions	
		AD converter input port (P04 to P07: 4 channels)	
Port 1	T/O	•8-bit input/output port	Output Format
P10 - P17	I/O	Input/output can be specified for each bit	CMOS/Nch-OD
		(programmable pull-up resister provided) •Other functions	
		l ————	
		P11 IIC0 clock output P12 IIC1 data I/O	
		P13 IIC1 clock output	
		P14 PWM1 output	
		P15 PWM2 output	
		P16 PWM3 output	
Port 3		•3-bit input/output port	
P30 – P32	I/O	Input/output can be specified for each bit	
		(CMOS output/input with programmable pull-up resister)	

LC863448A/40A

Terminal	I/O		Function Description							Option
Port 7		•4-bit	•4-bit input/output port							
P70	I/O	Inpu	t or o	output c	an be spec	cified for e	each bit			
P71 - P73		P70	0: I/C) with p	rogramma	able pull-u	ıp resister) [
		P7	1 to I	P73: CM	IOS outpu	ıt/input w	ith progra	mmable p	ull-up	
		re	esiste	er					J	
		•Other	r fun	ction						
			P70	INT	0 input/H	OLD relea	se input/			
				Nch-	-Tr. outpu	t for wach	dog timer	•		
			P71	INT	1 input/H0	OLD relea	se input			
			P72	INT	2 input/Ti	mer 0 eve	nt input			
			P73	INT3	input (noi	se rejection	filter conn	ected)/		
				Time	er 0 event	input				
		Interru	upt r	eceiver	format, ve	ctor addre	esses		<u></u>	
				rising	falling	rising/	H level	L level	vector	7
						falling				
		INT0) (enable	enable	disable	enable	enable	03H	
		INT1	l 6	enable	enable	disable	enable	enable	0BH	
		INT2	2 6	enable	enable	enable	disable	disable	13H	1
		INT3	3 6	enable	enable	enable	disable	disable	1BH	

Note: A capacitor of at least $10\mu F$ must be inserted between VDD and VSS when using this IC.

- Output form and existance of pull-up resistor for all ports can be specified for each bit.
- Programmable pull-up resistor is always connected regardless of port option, CMOS or N-ch open drain output in port 1.
- Port status in reset

Terminal	I/O	Pull-up resistor status at selecting CMOS output option
Port 0	I	Pull-up resistor OFF, ON after reset release
Port 1	Ι	Programmable pull-up resistor OFF

1. Absolute maximum ratings / VSS=0V and Ta=25°C

Para	meter	Symbol	Pins	Conditions		Limits			
					VDD[V]	min.	typ.	max.	unit
Supply v	oltage	VDDMAX	VDD			-0.3		+7.0	V
Input vol	tage	VI(1)	• RES, HS, VS, CVIN			-0.3		VDD+0.3	
Output v	_	VO(1)	R, G, B, BL, FILT			-0.3		VDD+0.3	
Input/out voltage		VIO	•Ports 0, 1, 3, 7			-0.3		VDD+0.3	
High level	Peak output	IOPH(1)	•Ports 0, 1, 3, 7	•CMOS output •For each pin.		-4			mA
output current	current	IOPH(2)	R, G, B, BL	•CMOS output •For each pin.		-5			
	Total output	ΣIOAH(1)	Ports 0, 1	The total of all pins.		-20			
	current	ΣIOAH(2)	Ports 3, 7	The total of all pins.		-10			
		ΣIOAH(3)	R, G, B, BL	The total of all pins.		-12			
Low	Peak	IOPL(1)	Ports 0, 1, 3	For each pin.				20	,
level	output	IOPL(2)	Port 7	For each pin.				15	
output	current	IOPL(3)	R, G, B, BL	For each pin.				5	
current	Total output	ΣIOAL(1)	Ports 0, 1	The total of all pins.				40	
	current	ΣIOAL(2)	Ports 3, 7	The total of all pins.				20	
		ΣIOAL(3)	R, G, B, BL	The total of all pins.				12	
Maximui dissipatio		Pdmax	MFP36S DIP36S	Ta=-10 to +70°C				340 550	mW
Operating temperating range		Topg				-10		+70	°C
Storage temperati	ure	Tstg				-55		+125	

2. Recommended operating range / Ta=-10°C to +70°C, VSS=0V

Parameter	Symbol	Pins	Conditions		Limits			
				VDD[V]	min.	typ.	max.	unit
Operating supply voltage	VDD(1)	VDD	0.844μs ≤ tCYC ≤ 0.852μs		4.5		5.5	V
range	VDD(2)		4μs ≤ tCYC ≤ 400μs		4.5		5.5	
Hold voltage	VHD	VDD	RAMs and the registers data are kept in HOLD mode.		2.0		5.5	
High level input voltage	VIH(1)	Port 0	Output disable	4.5 - 5.5	0.6VDD		VDD	
, ,	VIH(2)	•Ports 1,3 (Schumitt) •Port 7 (Schumitt) port input/interrupt • HS, VS, RES (Schumitt)	Output disable	4.5 - 5.5	0.75VDD		VDD	
	VIH(3)	Port 70 Watchdog timer input	Output disable	4.5 - 5.5	VDD-0.5		VDD	
Low level	VIL(1)	Port 0	Output disable	4.5 - 5.5	VSS		0.2VDD	
input voltage	VIL(2)	•Ports 1,3 (Schumitt) •Port 7 (Schumitt) port input/interrupt • HS, VS, RES (Schumitt)	Output disable	4.5 - 5.5	VSS		0.25VDD	
	VIL(3)	Port 70 Watchdog timer input	Output disable	4.5 - 5.5	VSS		0.6VDD	
CVIN	VCVIN	CVIN		5.0	0.7Vp-p	1Vp-p	1.4Vp-p	Vp-p
Operation cycle time	tCYC(1)		•All functions operating	4.5 - 5.5	0.844	0.848	0.852	μs
	tCYC(2)		•AD converter operating •OSD and Data slicer are not operating	4.5 - 5.5	0.844		30	
	tCYC(3)		•OSD, AD converter and Data slicer are not operating	4.5 - 5.5	0.844		400	
Oscillation frequency range	FmRC		Internal RC oscillation	4.5 - 5.5	0.4	0.8	3.0	MHz

^{*} Vp-p : Peak-to-peak voltage

LC863448A/40A 3. Electrical characteristics / Ta=-10°C to +70°C, VSS=0V

Parameter	Symbol	Pins	Conditions		Limits			
	-			VDD[V]	min.	typ.	max.	unit
High level input current	IIH(1)	Ports 0, 1, 3, 7	•Output disable •Pull-up MOS Tr. OFF •VIN=VDD (including the off-leak current of the output Tr.)	4.5 - 5.5			1	μА
	IIH(2)	• RES • HS , VS	•VIN=VDD	4.5 - 5.5			1	
Low level input current	IIL(1)	Ports 0, 1, 3, 7	•Output disable •Pull-up MOS Tr. OFF •VIN=VSS (including the off-leak current of the output Tr.)	4.5 - 5.5	-1			
	IIL(2)	• RES • HS , VS	VIN=VSS	4.5 - 5.5	-1			
High level output voltage	VOH(1)	•CMOS output of ports 0,1,3,71-73	IOH=-1.0mA	4.5 - 5.5	VDD-1			V
	VOH(2)	R, G, B, BL	IOH=-0.1mA R.G.B: digital mode	4.5 - 5.5	VDD-0.5			
Low level	VOL(1)	Ports 0,1,3,71-73	IOL=10mA	4.5 - 5.5			1.5	
output voltage	VOL(2)	Ports 0,3,71-73	IOL=1.6mA	4.5 - 5.5			0.4	
	VOL(3)	•R, G, B, BL •Port 1	IOL=3.0mA R.G.B: digital mode	4.5 - 5.5			0.4	
	VOL(4)	Port 70	IOL=1mA	4.5 - 5.5			0.4	
Pull-up MOS Tr. resistance	Rpu	•Ports 0, 1, 3, 7	VOH=0.9VDD	4.5 - 5.5	13	38	80	kΩ
Bus terminal short circuit resistance (SCL0-SCL1, SDA0-SDA1)	RBS	•P10-P12 •P11-P13		4.5 - 5.5			130	Ω
Hysteresis voltage	VHIS	•Ports 1, 3, 7 • RES • HS, VS	Output disable	4.5 - 5.5		0.1VDD		V
Input clump votage	VCLMP	CVIN		5.0	2.3	2.5	2.7	
Pin capacitance	СР	All pins	•f=1MHz •Every other terminals are connected to VSS. •Ta=25°C	4.5 - 5.5		10		pF

4. IIC input/output conditions / Ta=-10°C to +70°C, VSS=0V

Parameter	Symbol	Stan	dard	High	speed	unit
		min.	max.	min.	max.	
SCL Frequency	fSCL	0	100	0	400	kHz
BUS free time between stop - start	tBUF	4.7	-	1.3	ı	μs
HOLD time of start, restart condition	tHD;STA	4.0	-	0.6	ı	μs
L time of SCL	tLOW	4.7	-	1.3	-	μs
H time of SCL	tHIGH	4.0	-	0.6	1	μs
Set-up time of restart condition	tSU;STA	4.7	-	0.6	1	μs
HOLD time of SDA	tHD;DAT	0	-	0	0.9	μs
Set-up time of SDA	tSU;DAT	250	-	100	1	ns
Rising time of SDA, SCL	tR	-	1000	20+0.1Cb	300	ns
Falling time of SDA, SCL	tF	-	300	20+0.1Cb	300	ns
Set-up time of stop condition	tSU;STO	4.0	-	0.6	1	μs

Refer to figure 8

(Note) Cb: Total capacitance of all BUS (unit: pF)

5. Pulse input conditions / Ta=-10°C to +70°C, VSS=0V

Parameter	Symbol	Pins	Conditions		Limits			
	-			VDD[V]	min.	typ.	max.	unit
High/low level	tPIH(1)	•INT0, INT1	•Interrupt acceptable	4.5 - 5.5	1			tCYC
pulse width	tPIL(1)	•INT2/T0IN	•Timer0-countable					
	tPIH(2)	INT3/T0IN	 Interrupt acceptable 	4.5 - 5.5	2			
	tPIL(2)	(1 tCYC is	•Timer0-countable					
		selected for noise						
		rejection clock.)						
	tPIH(3)	INT3/T0IN	 Interrupt acceptable 	4.5 - 5.5	32			
	tPIL(3)	(16 tCYC is	•Timer0-countable					
		selected for noise						
		rejection clock.)						
	tPIH(4)	INT3/T0IN	•Interrupt acceptable	4.5 - 5.5	128			
	tPIL(4)	(64 tCYC is	•Timer0-countable					
		selected for noise						
		rejection clock.)						
	tPIL(5)	RES	Reset acceptable	4.5 - 5.5	200			μs
	tPIH(6)	$\overline{\mathrm{HS}}$, $\overline{\mathrm{VS}}$	•Display position	4.5 - 5.5	8			
	tPIL(6)	,	controllable (Note)					
			 The active edge of 					
			$\overline{\text{HS}}$ and $\overline{\text{VS}}$ must					
			be apart at least					
			1 tCYC.					
			•Refer to figure 6.					
Rising/falling	tTHL	HS	Refer to figure 6.	4.5 - 5.5			500	ns
time	tTLH							

6. AD converter characteristics / Ta=-10°C to + 70°C, VSS=0V

Parameter	Symbol	Pins	Conditions		Limits			
				VDD[V]	min.	typ.	max.	unit
Resolution	N			4.5 - 5.5		6		bit
Absolute precision	ET		(Note)				±1	LSB
Conversion time	tCAD	Vref selection to conversion finish	1 bit conversion time = 2 × Tcyc			1.69		μs
Analog input voltage range	VAIN	AN4 - AN7			VSS		VDD	V
Analog port	IAINH		VAIN=VDD				1	μΑ
input current	IAINL		VAIN=VSS		-1			

(Note) Absolute precision does not include quantizing error (1/2LSB).

7. Analog mode RGB characteristics / Ta=-10°C to +70°C, VSS=0V

Parameter	Symbol	Pins	Conditions		Limits			
				VDD[V]	min.	typ.	max.	unit
Analog output		R.G.B	Low level output	5.0	0.45	0.5	0.55	V
voltage		Analog output mode	Intensity output		0.90	1.0	1.10	
			Hi lebel output		1.35	1.5	1.65	
Time setting		R.G.B	70%	,			50	ns
			10pf load					

8. Sample current dissipation characteristics / Ta=-10°C to +70°C, VSS=0V

The sample current dissipation characteristics is the measurement result of Sanyo provided evaluation board when the recommended circuit parameters shown in the sample oscillation circuit characteristics are used externally. The currents through the output transistors and the pull-up MOS transistors are ignored.

Parameter	Symbol	Pins	Conditions		Limits			
				VDD[V]	min.	typ.	max.	unit
Current dissipation during basic operation (Note 3)	IDDOP(1)	VDD	•FmX'tal=32.768kHz X'tal oscillation •System clock: VCO •VCO for OSD	4.5 - 5.5		17	28	mA
			operating •OSD is Digital mode •Internal RC oscillation stops					
	IDDOP(2)	VDD	•FmX'tal=32.768kHz X'tal oscillation •System clock: VCO •VCO for OSD operating •OSD is Analog mode •Internal RC oscillation stops	4.5 - 5.5		26	40	
	IDDOP(3)	VDD	•FmX'tal=32.768kHz X'tal oscillation •System clock: X'tal •VCO for system VCO for OSD, internal RC oscillation stop •Data slicer, AD converters stop	4.5 - 5.5		120	300	μА
Current dissipation in HALT mode (Note 3)	IDDHALT(1)	VDD	HALT mode FmX'tal=32.768kHz X'tal oscillation System clock: VCO VCO for OSD stops Internal RC oscillation stops	4.5 - 5.5		5	10	mA
	IDDHALT(2)		•HALT mode •FmX'tal=32.768kHz X'tal oscillation •VCO for system stops •VCO for OSD stops •System clock: Internal RC	4.5 - 5.5		350	1000	μΑ
	IDDHALT(3)	VDD	•HALT mode •FmX'tal=32.768kHz X'tal oscillation •VCO for system stops •VCO for OSD stops •System clock: X'tal	4.5 - 5.5		40	200	
Current dissipation in HOLD mode (Note 3)	IDDHOLD	VDD	•HOLD mode •All oscillation stops.	4.5 - 5.5		0.05	20	μA

(Note 3) The currents through the output transistors and the pull-up MOS transistors are ignored.

Recommended Oscillation Circuit and Sample Characteristics

The sample oscillation circuit characteristics in the table below is based on the following conditions:

- Recommended circuit parameters are verified by an oscillator manufacturer using a Sanyo provided oscillation evaluation board.
- Sample characteristics are the result of the evaluation with the recommended circuit parameters connected externally.

Recommended oscillation circuit and sample characteristics ($Ta = -10 \text{ to } +70^{\circ}\text{C}$)

Frequency	Manufacturer	Oscillator	Recommended circuit parameters			Operating supply voltage range	Oscillation stabilizing time		Notes	
			C1	C2	Rf	Rd		typ.	max	
32.768kHz	Seiko Epson	C-002RX	T.B.D	T.B.D	T.B.D	T.B.D	4.5 – 5.5V	T.B.D	T.B.D	

Notes The oscillation stabilizing time period is the time until the VCO oscillation for the internal system becomes stable after the following conditions. (Refer to Figure 2.)

- 1. The VDD becomes higher than the minimum operating voltage after the power is supplied.
- 2. The HOLD mode is released.

The sample oscillation circuit characteristics may differ applications. For further assistance, please contact with oscillator manufacturer with the following notes in your mind.

- Since the oscillation frequency precision is affected by wiring capacity of the application board, etc., adjust the oscillation frequency on the production board.
- The above oscillation frequency and the operating supply voltage range are based on the operating temperature of -10°C to +70°C. For the use with the temperature outside of the range herein, or in the applications requiring high reliability such as car products, please consult with oscillator manufacturer.
- When using the oscillator which is not shown in the sample oscillation circuit characteristics, please consult with Sanyo sales personnel.

Since the oscillation circuit characteristics are affected by the noise or wiring capacity because the circuit is designed with low gain in order to reduce the power dissipation, refer to the following notices.

- The distance between the clock I/O terminal (XT1 terminal XT2 terminal) and external parts should be as short as possible.
- The capacitors' VSS should be allocated close to the microcontroller's GND terminal and be away from other GND.
- The signal lines with rapid state changes or with large current should be allocated away from the oscillation circuit.

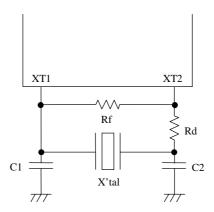
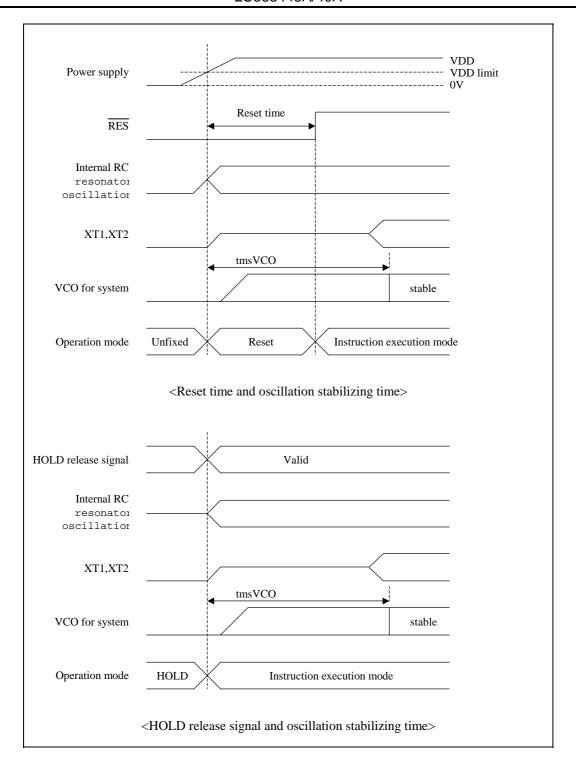
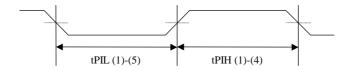
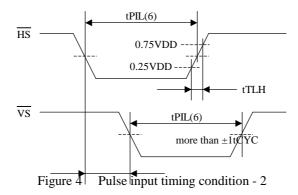
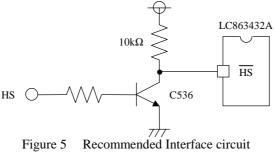
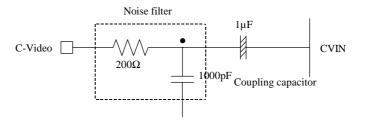


Figure 1 Recommended oscillation circuit.


Figure 2 Oscillation stabilizing time

 $Figure \ 3 \quad \ Pulse \ input \ timing \ condition-1$

Output impedance of C-Video before Noise filter should be less then 100Ω .

Figure 6 CVIN recommended circuit

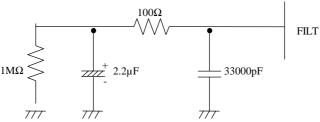


Figure 7 FILT recommended circuit

(Note) Place FILT parts on board as close to the microcontroller as possible.

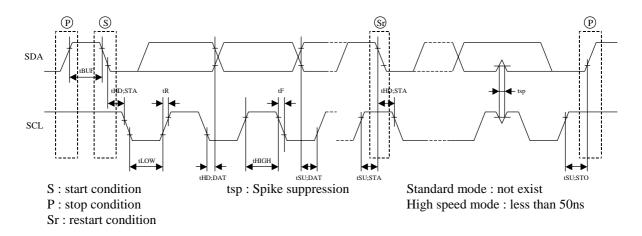


Figure 8 IIC timing

Figure 9 R.G.B. analog output equivalent circuit

memo: