

ASM3P2598A

Low Power Peak EMI Reducing Solution

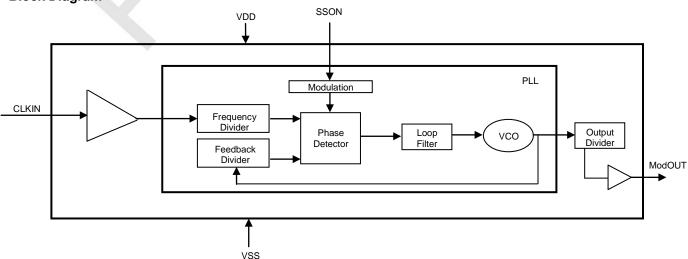
Features

- Generates a 1X low EMI optimized clock signal at the output.
- Integrated loop filter components.
- Operates with a 3.3 / 2.5V Supply.
- Operating current less than 5mA.
- Low power CMOS design.
- Input frequency range:
 - 60MHz to 120MHz for 2.5V
 - 60MHz to 120MHz for 3.3V
- Frequency deviation: ±1.5 (Typ) @ 85MHz Output frequency.
- Available in 6-pin TSOT-23 Package.

Product Description

The ASM3P2598A is a versatile spread spectrum frequency modulator designed specifically for a wide range of clock frequencies. The ASM3P2598A reduces electromagnetic interference (EMI) at the clock source, allowing system wide reduction of EMI of all clock dependent signals. The ASM3P2598A allows significant system cost savings by reducing the number of circuit board layers, ferrite beads and shielding that are traditionally required to pass EMI regulations.

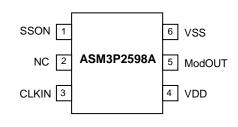
The ASM3P2598A uses the most efficient and optimized modulation profile approved by the FCC and is implemented by using a proprietary all digital method.


The ASM3P2598A modulates the output of a single PLL in order to "spread" the bandwidth of a synthesized clock, and more importantly, decreases the peak amplitudes of its harmonics. This results in significantly lower system EMI compared to the typical narrow band signal produced by oscillators and most frequency generators. Lowering EMI by increasing a signal's bandwidth is called 'spread spectrum clock generation.'

Applications

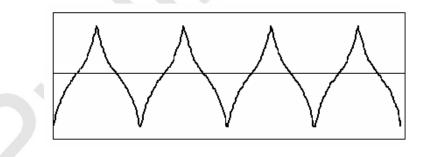
The ASM3P2598A is targeted towards all portable devices with very low power requirements like MP3 players, MFP, LCD Panel Module and digital still cameras.

Key Specifications


Description	Specification
Supply voltages	VDD = 3.3V / 2.5V
Cycle-to-Cycle Jitter	360pS (Typ)
Output Duty Cycle	45/55%
Modulation Rate Equation	F _{IN} /2560
Frequency Deviation	±1.5% (Typ) @ 85MHz Output

©2010 SCILLC. All rights reserved. JANUARY 2010 – Rev. 1

Block Diagram


Pin Configuration (6-pin TSOT-23 Package)

Pin Description

Pin#	Pin Name	Туре	Description
1	SSON	I	When SSON is HIGH, the spread spectrum is enabled and when LOW, it turns off the spread spectrum. Connect the pin to ground When Spread Spectrum feature is not required.
2	NC	-	No Connect.
3	CLKIN	I	Clock Input.
4	VDD	Р	Power supply for the entire chip.
5	ModOUT	0	Spread spectrum clock output.
6	VSS	Р	Ground connection.

Modulation Profile

Specifications

Description		Specification	
	For 2.5V Supply	60MHz < CLKIN < 120MHz	
Frequency Range	For 3.3V Supply	60MHz < CLKIN < 120MHz	
Modulation Equation	n	F _{IN} /2560	
Frequency Deviation	n	±1.5% (Typ) @ 85MHz Output	

Absolute Maximum Ratings

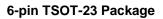
Symbol	Parameter	Rating	Unit
VDD, V _{IN}	Voltage on any pin with respect to Ground	-0.5 to +4.6	V
T _{STG}	Storage temperature	-65 to +125	°C
T _A	Operating temperature	-40 to +85	°C
Ts	Max. Soldering Temperature (10 sec)	260	°C
TJ	Junction Temperature	150	°C
T_{DV}	Static Discharge Voltage (As per JEDEC STD22- A114-B)	2	κv
Note: These are s device relia	tress ratings only and are not implied for functional use. Exposure to absolute maximum ratings f	for prolonged periods of time	may affect

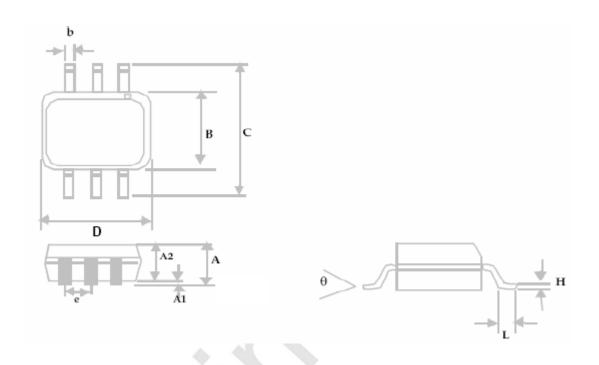
DC Electrical Characteristics for 2.5V Supply

Symbol	Parameter	Min	Тур	Max	Unit
VIL	Input low voltage	VSS-0.3	-	0.8	V
VIH	Input high voltage	2.0	_	VDD+0.3	V
IIL	Input low current	-	-	-35	μA
I _{IH}	Input high current	-	-	35	μA
V _{OL}	Output low voltage (VDD = 2.5V, I _{OL} = 8mA)		_	0.6	V
V _{OH}	Output high voltage (VDD = 2.5V, I _{OH} = 8mA)	1.8	-	-	V
IDD	Static supply current ¹	E _	1.8	-	mA
Icc	Dynamic supply current (2.5V, 85MHz and no load)	-	4.0	-	mA
VDD	Operating voltage	2.375	2.5	2.625	V
t _{ON}	Power-up time (first locked cycle after power-up)	-	-	5	mS
ZOUT	Output impedance	-	50	-	Ω
Note: 1. CLK	IN pin is pulled low.	•		•	

AC Electrical Characteristics for 2.5V Supply

Symbol	Parameter			Тур	Мах	Unit	
CLKIN	Input frequency		60	Ι	120	MHz	
ModOUT	Output frequency		60	-	120	MHz	
f _d	Frequency Deviation	Input Frequency = 60MHz	-	±1.6	-	%	
Id	Frequency Deviation	Input Frequency = 120MHz	-	±1.1	-		
t _{LH} ¹	Output rise time (measured from 0.7V to 1.7V)		0.7	1.8	2.6	nS	
t _{HL} 1	Output fall time (measured from 1.7V to 0.7V)			0.9	1.1	nS	
t _{JC}	Jitter (Cycle-to-cycle)	Jitter (Cycle-to-cycle)			-	pS	
t _D	Output duty cycle		45	50	55	%	
Note: 1. t_{LH} and t_{HL} are m	Note: 1. t _{LH} and t _{HL} are measured into a capacitive load of 15pF.						

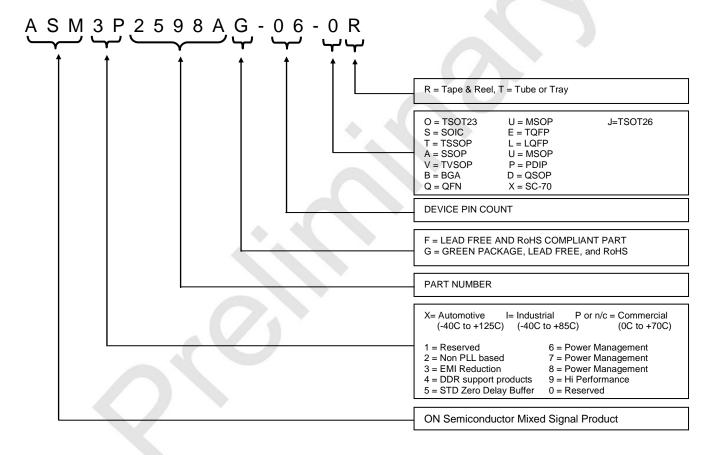

Symbol	Parameter	Min	Тур	Max	Unit	
VIL	Input low voltage	VSS-0.3	_	0.8	V	
VIH	Input high voltage	2.0	_	VDD+0.3	V	
IIL	Input low current	_	_	-35	μA	
I _{IH}	Input high current	-	-	35	μA	
V _{OL}	Output low voltage (VDD = 3.3V, I _{OL} = 8mA)	-		0.4	V	
V _{OH}	Output high voltage (VDD = 3.3V, I _{OH} = 8mA)	2.5	-	-	V	
IDD	Static supply current ¹	-	2.2	-	mA	
Icc	Dynamic supply current (3.3V, 85MHz and no load)	-	4.5	-	mA	
VDD	Operating voltage	3.0	3.3	3.6	V	
t _{ON}	Power-up time (first locked cycle after power-up)	-	-	5	mS	
Z _{OUT}	Output impedance	- /	45	_	Ω	
Note: 1. CLKIN pin is pulled low.						
AC Electri	cal Characteristics for 3.3V Supply					


DC Electrical Characteristics for 3.3V Supply

AC Electrical Characteristics for 3.3V Supply

Symbol	Parameter			Тур	Max	Unit
CLKIN	Input frequency		60	_	120	MHz
ModOUT	Output frequency		60	_	120	MHz
4	Fragueseu Devietien	Input Frequency = 60MHz	_	±1.6	_	
f _d	Frequency Deviation Input Frequency = 120MHz	-	±1.1	_	%	
t _{LH} ¹	Output rise time (measur	Output rise time (measured from 0.8 to 2.0V)		1.2	1.8	nS
t _{HL} ¹	Output fall time (measure	Output fall time (measured at 2.0V to 0.8V)		0.8	1.1	nS
t _{JC}	Jitter (cycle-to-cycle)	Jitter (cycle-to-cycle)		360	_	pS
t _D	Output duty cycle		45	50	55	%
1. t_{LH} and t_{HL} are me	easured into a capacitive load of 15pF.					

Package Information



		Dim	ensions		
Symbol	Inches		Millim	neters	
	Min	Мах	Min	Max	
А		0.04		1.00	
A1	0.00	0.004	0.00	0.10	
A2	0.033	0.036	0.84	0.90	
b	0.012	0.02	0.30	0.50	
Н	0.005	BSC	0.127 BSC		
D	0.114	BSC	2.90	BSC	
В	0.06 BSC		1.60	BSC	
е	0.0374 BSC		0.950 BSC		
С	0.11 BSC		2.80	BSC	
L	0.0118	0.02	0.30 0.50		
θ	0°	4°	0°	4°	

Ordering Information

Part Number	Marking	Package Type	Temperature
ASM3P2598AF-06OR	A11	6-Pin TSOT-23, TAPE & REEL, Pb Free	Commercial
ASM3P2598AG-06-OR	A12	6-Pin TSOT-23, TAPE & REEL, Green	Commercial
ASM3I2598AF-06-OR	A14	6-Pin TSOT-23, TAPE & REEL, Pb Free	Industrial
ASM3I2598AG-06-OR	A15	6-Pin TSOT-23, TAPE & REEL, Green	Industrial

Device Ordering Information

Licensed under US Patent #5,488,627 and #5,631,921.

ASM3P2598A

Note: This product utilizes US Patent #6,646,463 Impedance Emulator Patent issued to PulseCore Semiconductor, dated 11-11-2003.

ON Semiconductor and ^(III) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. U.S Patent Pending; Timing-Safe and Active Bead are trademarks of PluseCore Semiconductor, a wholly owned subsidiary of ON Semiconductor. This literature is subject to all applicable coorying thas and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone:** 303-675-2175 or 800-344-3860 Toll Free USA/Canada **Fax:** 303-675-2176 or 800-344-3867 Toll Free USA/Canada **Email:** orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative